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Abstract

Integrating computer simulation with conventional wet-lab research has proven to have much potential in furthering the
understanding of biological systems. Success requires the relationship between simulation and the real-world system to be
established: substantial aspects of the biological system are typically unknown, and the abstract nature of simulation can
complicate interpretation of in silico results in terms of the biology. Here we present spartan (Simulation Parameter Analysis
R Toolkit ApplicatioN), a package of statistical techniques specifically designed to help researchers understand this
relationship and provide novel biological insight. The tools comprising spartan help identify which simulation results can be
attributed to the dynamics of the modelled biological system, rather than artefacts of biological uncertainty or
parametrisation, or simulation stochasticity. Statistical analyses reveal the influence that pathways and components have on
simulation behaviour, offering valuable biological insight into aspects of the system under study. We demonstrate the
power of spartan in providing critical insight into aspects of lymphoid tissue development in the small intestine through
simulation. Spartan is released under a GPLv2 license, implemented within the open source R statistical environment, and
freely available from both the Comprehensive R Archive Network (CRAN) and http://www.cs.york.ac.uk/spartan. The
techniques within the package can be applied to traditional ordinary or partial differential equation simulations as well as
agent-based implementations. Manuals, comprehensive tutorials, and example simulation data upon which spartan can be
applied are available from the website.
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Introduction

The integration of computer simulation with current experi-
mental techniques has become a popular approach to aid the
understanding of biological systems [1]. Computational techniques
permit exploration of the underlying biological data on which a
simulation is based, and complement wet-lab research by
facilitating in silico experimentation impractical or impossible to
perform using current methods [2–4]. Simulations are however
abstractions of the biological systems they capture, and this
separation must be appreciated in the interpretation of in silico
results. Such simulation results may be affected by uncertainty
arising from aspects of the biological system that are currently
unknown and need to be assumed, and by uncertainty introduced
in the implementation of the simulator [5]. We recently noted that
for a majority of simulation results in the biological literature, little
attempt is made to elucidate how representative a simulation result
is in terms of the biological system captured [6]. Uncertainty and

sensitivity analyses have, however, found recent application in
exploring the behaviour of biological simulations to appreciate the
effect of uncertainty on simulation results [6–10].
Whereas a number of packages have been developed that aid

simulation development [11,12] to the best of our knowledge
there is no comprehensive package available for determining
how representative a simulation is of its biological system and
understanding how in silico results can be interpreted in the
context of the biological domain. As such, we have developed
spartan (Simulation Parameter Analysis R Toolkit ApplicatioN), a
toolkit of statistical techniques that aid understanding and analysis
of results generated through simulation. Spartan is freely available,
open-source, and implemented within the R statistical environ-
ment. The package provides implementations of previously
described statistical analysis techniques [6,7,13] that when brought
together provide a comprehensive toolkit to explore the effect
uncertainty has on simulation results. Such uncertainty may be
present in two forms: aleatory uncertainty that arises through
stochasticity inherent in both the biological and simulated systems,
and epistemic uncertainty reflecting simulation parameters for
which a value has yet to be or cannot be determined as the
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biological understanding is incomplete [5]. Appreciating this effect
is critical for interpreting simulation results with respect to the
biological system under study [6]. The use of statistical tools
provides evidence of which simulation results can be ascribed to
the dynamics of the model of the biological system implemented,
an important consideration for retaining confidence in the results
of in silico experimentation.
In previous work we have utilised computer simulation to model

the process of lymphoid tissue development [9,10]. Here we
demonstrate the use of spartan in an exploration of results
generated from this simulator: to determine the number of
simulation samples required to mitigate stochastic effects and
attain a desired level of experimental accuracy, build confidence
that our results are representative of biology as opposed to
parameterisation artefacts resulting from epistemic uncertainty,
and gain valuable biological insight through rigorous statistical
analysis of simulation results. Whereas our previous work
highlights the need to adhere to a robust method of simulation
design and development informed by wet-lab research, our case
study shows how spartan can provide a mechanism to integrate
simulation results back into wet-lab research.

Design and Implementation

Spartan was created to provide a comprehensive toolkit of
previously described statistical techniques. Four techniques are
included, each providing a different means of analysing simulation
data to understand the effect of uncertainty on results and to
provide biological insight. The first two techniques have been
previously described [6], but this package includes the first
available implementation of these techniques. Spartan assumes that
calibration has been performed to establish the parameter values
that produce a baseline simulation behaviour [6]. Such behaviour
is measured through a set of simulation outputs (responses) that are
of biological interest and can be qualitatively compared with the
biological system. Uncertainty and sensitivity analyses can then
determine the effects of parameter perturbations on simulation
responses. As each technique utilises different parameter sampling
methods, it is not possible to use the results generated for one
technique for any other technique currently in the package.
Although Technique 1 is specifically designed for use with
stochastic simulations (such as agent-based implementations),
techniques 2–4 can be applied for both mathematical (ODE/
PDE) and agent-based implementations. For techniques 2–4,
spartan provides methods to generate parameter values and
analyse the output generated from them. For Technique 4
(eFAST), spartan includes a bespoke implementation of the eFAST
algorithm rather than makes use of available methods in other
packages for reasons of consistency and ability to analyse a range
of output from different simulation implementations. As it is not
assumed that simulation data is normally distributed, all statistical
comparisons that establish significance between sets of simulation
responses are performed using non-parametric tests.

1. Consistency (or Aleatory) Analysis: Understanding
Effect of Aleatory Uncertainty
Prior to any simulator being used as a tool to complement wet-

lab investigations, it is critical that the effect of inherent simulation
stochasticity on results be understood [5]. To illustrate, in agent-
based simulations the use of pseudo-random number generators in
dictating agent behaviour can produce different simulation results
despite use of identical parameter values. To mitigate the effects of
this uncertainty and achieve representative in silico results,
replicate simulation runs are necessary. A technique developed

by Read et al. [6] is provided that establishes the number of
replicate runs required to achieve a desired level of experimental
accuracy. In contrast to the other techniques in spartan, this need
only be applied to stochastic simulation systems.
Consistency analysis operates by contrasting distributions of

simulation responses, all generated using the same fixed set of
parameter values and containing identical numbers of simulation
samples. By varying the number of samples comprising the
distributions, the analysis determines the number required to
obtain statistically consistent distributions. Larger sample sizes
produce increasingly identical distributions, thereby mitigating the
effect of simulation stochasticity on results. In the description by
Read et al [6], 20 distributions are generated and contrasted for
each sample size, but this can be varied within spartan to suit
particular applications.
As an example, one could consider analysing sample sizes of 5,

50, 100, and 300 to determine the number of simulation runs
required to mitigate aleatory uncertainty. A set of parameter
values is fixed and used for all runs. The researcher performing the
analysis must then gather 20 sets of simulation results for each
sample size being analysed, each containing that number of
results. In this example, where a sample size of 5 is being
examined, 20 sets of simulation results should be generated, with
each containing 5 sets of simulation results. Where a sample size of
300 is being analysed, each of the 20 sets should contain the results
of 300 runs. When this is complete, each sample size is analysed in
turn. A distribution of median responses for each simulation run is
generated for each of the 20 subsets.
Distributions 2–20 are contrasted with the distribution from the

1st set using the Vargha-Delaney A-Test [14], a non-parametric
effect magnitude test that establishes scientific significance by
contrasting two populations of samples and returning the
probability that a randomly selected sample from one population
will be larger than a randomly selected sample from the other.
Statistical significance is determined by comparing this result with
measures set by the authors of the test: results above 0.71 or below
0.29 indicate a scientifically significant difference between the
populations, and 0.5 indicates no difference [14]. However spartan
provides the option to change these magnitude effects if required.
A suitable sample size is found where there is no statistical
difference between the 1st set of results and the remaining 19 sets.
This statistical difference can be seen in plots spartan produces for
each sample size. A further plot is produced detailing the
maximum A-Test score observed for each sample size, easing
identification of the number of runs required to minimise
difference between simulation results and thus mitigate aleatory
uncertainty.

2. Robustness Analysis: Determining a Simulation’s
Robustness to Parameter Perturbation
Any biological simulation will feature biologically-derived

parameters for which values are fully or partially unknown: some
biological values cannot be determined experimentally, whereas
others cannot be represented easily within a simulation. For
example, diffusion of a chemoattractant could be implemented
using a particular mathematical function for which values cannot
be verified, as biological quantities cannot currently be measured.
Robustness analysis examines the implications of biological
uncertainty or parameter estimation on simulation results. Where
a simulation is found to be highly sensitive to such parameters
caution must be exercised when interpreting results; they may be
artefacts of parametrisation rather than representations of the
biology [5].

Spartan: Simulation Results Analysis Toolkit
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Robustness to parameter perturbation is explored using a ‘one
at a time’ approach [6]: each parameter is adjusted independently
of others, which retain their calibrated values. The Vargha-
Delaney A-Test described previously [14] is employed to
determine if changing a parameter value leads to scientifically
significant behavioural alteration in contrast to the baseline
simulation. This indicates how robust the simulator is to alteration
of each parameter, and the points at which parameter perturba-
tions result in significant changes in simulation behaviour.
Confidence in the validity of simulation results can be gauged by
contrasting this information with biologically accepted ranges of
values. The A-Test results for each parameter are presented on a
plot, providing easy identification of parameter values that cause a
scientifically significant change in simulation response.

3. Global Sensitivity Analysis: Identification of Compound
Effects through Simultaneously Perturbing All
Parameters
Though robustness analysis elucidates affects of perturbing

single parameters, it cannot reveal compound effects that occur
when two or more are adjusted simultaneously. The effect one
parameter has may rely on the value of another. Global sensitivity
analyses reveal such effects, showing how different parameters
could be coupled, and can indicate the parameters that have the
greatest influence on simulation responses. Spartan includes a
sampling-based technique that perturbs the values of all param-
eters of interest simultaneously [6,7,13] based on a provided range
of values for each parameter. Through simultaneous perturbation
of parameters, the results of this analysis are highly representative
of simulation dynamics. Highly influential parameters indicate the
pathways and components that have a substantial effect on
simulation behaviour, and in identifying such relationships, this
analysis has the potential to offer unique biological insight into the
system the model describes. This has the potential to inform future
wet-lab investigations by suggesting specific biological components
to focus upon.
A latin-hypercube sampling approach is used to select

parameter sets from within these ranges, whilst minimising
correlations in parameter values across the sets and ensuring an
efficient coverage of parameter space [13]. The methodology used
in sampling is described in detail by Read et al [6]. Simulations are
executed for each parameter set generated, and simulation
response values determined. Where necessary these responses will
represent an averaged response over a number of runs for a
particular set of parameter values. A plot is produced for each
parameter-response pairing, revealing correlations between pa-
rameter and response values, which are quantified through
calculation of Partial Rank Correlation Coefficients (PRCC) and
are reported on the plot header. PRCCs account for non-linear
relationships between parameter and response, and correct for the
effects of other parameters on the response, giving a robust
indication of the effect this parameter has on simulation response
although others are also being perturbed.

4. eFAST: Partitioning Output Variance between Input
Parameters
The extended Fourier Amplitude Sampling Test (eFAST)

developed by Saltelli et al [15,16] also a global analysis technique,
is a variance decomposition method that partitions the simulation
output variance caused by an alteration in parameter values
between the input parameters. This provides a statistical measure
revealing the proportion of variance that can be explained by
perturbing the value of each factor, and thus determines how

sensitive the simulation and biological system is to that
parameter. Through applying this technique, highly influential
pathways can be identified as potential targets for future
laboratory investigation.
For each simulation parameter included in this analysis, a range

over which values are to be explored is provided. Taking each
in turn, values are chosen for all parameters through the use
of sinusoidal functions of a particular frequency through the
parameter space, with the frequency of the parameter of interest
being varied greatly to that used for its complementary set. A
number of parameter values are selected from points along each of
these curves, creating a set of simulation parameters for each
parameter of interest. An illustration of this sampling approach
can be seen in Marino et al [7]. The authors note that due to the
symmetrical properties of sinusoidal functions, it is possible that
the same parameter value sets could be selected. To address this, a
re-sampling scheme is encouraged where a phase shift is
introduced into each frequency, and sampling repeated using a
slightly different curve [7]. Selection of the number of re-sample
curves and parameter values chosen from the curves is an
important aspect of running this algorithm, and it is suggested that
the user makes themselves familiar with equations provided in
Marino et al [7] that aid this decision. Consequently, a number of
parameter value sets are created for each parameter of interest, for
a particular curve. This process is repeated for an extra parameter,
the ‘dummy’, which has an arbitrary value range but no impact on
simulation behaviour. This enables a comparison between the
impact of each parameter and one known to have no effect on
simulation response. As an example, for 7 parameters, plus a
dummy, three re-sample curves, and 65 parameter values from
points along the curves, 1,560 sets of parameters would be
produced. Spartan produces a csv file for each parameter of
interest and each curve, containing the parameter value sets on
which simulations should be executed. Thus in this example,
twenty-four files would be produced, each containing sixty five sets
of parameters. For analyses where a large number of parameters
are explored, this technique could be computationally expensive
[17,18].
Simulation results are analysed taking into account the

frequencies that were used to generate the parameter set used.
Through Fourier analysis using these frequencies, variation in
output can be partitioned between the parameters, giving an
indication of the impact each has on simulation response. Using
the equations given in Marino et al [7], two sensitivity indexes are
calculated for each parameter-response pairing: a first-order (Si)
and total order sensitivity (STi) index. The first indicates the
fraction of output variance in that response that can be explained
by the value assigned to the parameter. The latter indicates the
variance in that response caused by higher-order non-linear effects
between the parameter and the others under investigation.
Although the dummy parameter has no influence on simulation
dynamics, the algorithm may assign this parameter non-zero
sensitivity indexes due to aliasing or interference effects, or
simplifying assumptions the technique makes in calculating each
STi index [7]. Reasoning for this is given in Supplemental material
that accompanies the description of the technique in Marino et al
[7]. A determination of whether a parameter has a significant
impact on simulation response is made by examining the
sensitivity indexes, contrasting these with the indexes calculate
for the ‘Dummy’ parameter. As this is contrasting sensitivity
indexes rather than simulation responses, a statistical measure is
generated using a two-sample t-test. Spartan produces both a csv
file with these statistics and a plot for each simulation response,
detailing the Si and STi indexes for each parameter.

Spartan: Simulation Results Analysis Toolkit
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Results

The Case Study
The example simulation data, from which the results presented

here were generated, is taken from our recently published
lymphoid tissue development simulator (http://www.cs.york.ac.
uk/immunesims/frontiers) [9,10]. An agent-based simulation was
developed that captures an abstraction of the early stages of the
biological process (12 hours into a 72 hour period). The
simulation responses are cell velocity and displacement measures
taken at various time-points. All output data and tutorials that
reproduce each result described are available at www.cs.york.ac.
uk/spartan.
In our published analyses [9,10] and examples presented here,

we focus on six parameters for which a value remains unknown,
each constrained to the following respective range: chemoThres-
hold (0–1), chemoLowerLinearAdjust (0.015–0.08), chemoUpper-
LinearAdjust (0.1–0.5), thresholdBindProbability (0–1), vcamSlope
(0.25–2), and maxVCAMeffectProbabilityCutoff (0–1).

1. Consistency (or Aleatory) Analysis: Understanding
Effect of Aleatory Uncertainty
To determine the number of simulation runs required to obtain

a representative result, we analysed sample sizes of 1, 5, 50, 100,

300, and 500 runs. Parameter values were kept constant at their
calibrated values. Each sample size is analysed in turn using the
procedure described, with the generation of 20 subsets of each
sample size. This analysis thus required 19,120 individual runs.
The online tutorial examines the first five sample sizes. Spartan
produces the plots in Figure 1, where Figures 1(a,b,c) show the A-
Test scores for all simulation output responses in each of the 20
result sets, for 5, 50, and 100 samples respectively. Figure 1(d)
shows the maximum A Test score for each simulation response
over the 20 result sets, for all sample sizes analysed. The latter
indicates that reducing the effect magnitude of aleatory uncer-
tainty on simulation results to less than ‘small’ (the desired level)
requires more than 300 samples when compiling results, thus a
sample size of 500 was chosen. It is important to note however that
this is specific to our simulation, and unlikely to apply in all cases
where spartan is applied. A full analysis for this simulation is found
in Patel et al [9]; the online tutorial and results in Figure 1 stop at
300 runs to ensure the tutorial data is of manageable size for
download.

2. Robustness Analysis: Determining a Simulation’s
Robustness to Parameter Perturbation
In our case study [9], we analysed the six simulation parameters

for which biological values are currently unknown using the

Figure 1. Use of spartan to mitigate aleatory uncertainty in stochastic simulations. Spartan’s consistency analysis technique that can
determine the number of runs required to generate a representative result from a stochastic simulation. A, B, C: A-Test scores for sample sizes of 5, 50,
and 300 runs respectively. D. Maximum A Test score for each simulation response over 20 result sets for all sample sizes analysed. Scores below 0.5
are assigned corresponding values above 0.5 as direction of effect is not important. The effect magnitude thresholds are indicated.
doi:10.1371/journal.pcbi.1002916.g001
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robustness analysis. The online tutorial demonstrates how both the
parameter samples and results described in this section have been
generated for two of these parameters.

Parameter sampling. Parameter value sets for the six
parameters were created using the methods in the spartan package.
These are output as comma separated value files, one for each
parameter, then post-processed into a format that can be read by
the simulator. The sampling method begins at the parameters
lower value and increases the value by a set increment until the
upper limit is reached. For the six parameters under examination
here, the increments used were: chemoThreshold (0.1), chemo-
LowerLinearAdjust (0.005), chemoUpperLinearAdjust (0.05),
thresholdBindProbability (0.1), vcamSlope (0.25), and maxVCA-
MeffectProbabilityCutoff (0.1).

Analysis. Each parameter is addressed in turn, and simula-
tion results for each value assigned to that parameter analysed. 500
simulation executions are performed for each parameter value in
accordance with consistency analysis results. In our case, this
resulted in 32,500 individual simulation runs. The distribution of
response values obtained for each parameter value is contrasted
with a distribution obtained using baseline parameter values using
the Vargha-Delaney A-Test [14].
Spartan produced the plots in Figure 2, where Figures 2(a,b)

show the A-Test scores for an alteration in the values of two
simulation parameters that model expression of chemoattractant
molecules. The x-axis details the range of values explored and the
y-axis shows the A test scores obtained by contrasting response
values for perturbed parameter values with calibrated values.
Figure 2(c) shows the effect that adjusting the value of the

parameter in 2(a) has on cell displacement as a box-plot of
response distributions. Results suggest that a change in the initial
expression of chemoattractant molecules has a statistically
significant effect on simulation response, and is more critical than
the upper limit of expression, which has no statistically significant
impact. This suggests that the initial expression level of chemoat-
tractant molecules is an important factor influencing cell
behaviour at this time-point in development. Laboratory investi-
gations could then examine this experimentally through blocking
chemokine expression at certain time-points in development, to
determine if this prediction holds.

3. Global Sensitivity Analysis: Identification of Compound
Effects through Simultaneously Perturbing All
Parameters
In this analysis we sought to identify any compound effects that

become apparent when the values of the six parameters examined
in Technique 2 above are perturbed simultaneously. This has
revealed the parameters that are highly influential on simulation
behaviour, and provided unique biological insight into the factors
that are important at this stage of tissue development. The online
tutorial demonstrates how both the parameter samples and results
described in this section have been generated.

Parameter sampling. Using the latin-hypercube sampling
approach, 500 sets of simulation parameter values were generated.

Analysis. Five hundred parameter value sets were generated
from the parameter space using the latin-hypercube sampling
approach. With results from Technique 1 suggesting 500

Figure 2. Use of spartan to determine the simulators robustness to parameter perturbation. A: A-Test scores for simulations perturbing
the initial expression level of a chemoattractant. This parameter has a large effect on both simulation responses. B: A-Test scores for simulations
perturbing the upper limit of chemoattractant expression, which when perturbed has no significant effect on simulation response. C: Distribution of
cell displacement responses for the parameter perturbed in A.
doi:10.1371/journal.pcbi.1002916.g002

Figure 3. Use of spartan to identify compound effects between parameters. A: Parameter that captures the chemoattractant expression
level required to influence cell motility. No trend or effects are apparent. B: Parameter which captures the level of adhesion required to restrict cell
motility. A clear trend is apparent suggesting this has a large influence on simulated cell behaviour.
doi:10.1371/journal.pcbi.1002916.g003
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simulation executions are required to gain a representative result
from our simulation, a total of 250,000 simulation executions were
performed to generate the data required for this analysis. Median
output responses for each of the parameter value sets were then
calculated from the 500 sets of results. Taking each parameter in
turn, median response values are plotted against the parameter
value that generated them, and partial rank correlation coefficients
are calculated.
For online tutorial 3, spartan produces the plots in Figure 3.

These detail cell velocity responses for two parameters. In
Figure 3(b), detailing the effect of cellular adhesion, a clear trend
emerges. The correlation coefficient reveals this parameter’s
significant influence on the simulation response. The same
conclusions cannot be drawn for the parameter in Figure 3(a),
where no trend emerges. Whereas the previous technique
identified initial chemokine expression as an influential factor
when the parameters where perturbed individually, this result
suggests adhesion factor expression is the highly influential
pathway at this time-point. Such a prediction could be verified
experimentally through examining cell behaviour when expression
of adhesion factors are blocked.

4. eFAST: Partitioning Output Variance between Input
Parameters
In this analysis we examined the same six parameters as above,

and determined the proportion of variation in simulation response
that can be explained by perturbing the value of each parameter.
Through use of the eFAST approach [7,16] we have determined
how sensitive the simulation is to each parameter, and thus
suggested the impact of each biological factor on tissue develop-
ment. The online tutorial demonstrates how both the parameter
samples and results described in this section have been generated.

Sampling. Parameter value sets have been generated using
the sinusoidal curve sampling approach. We have seven param-
eters (six plus the ‘dummy’ used for statistical comparison), taken
65 parameter values from each curve, and employed three re-
sampling curves, producing 1,365 parameter value sets, 195 per
parameter.

Analysis. Simulation responses are analysed using the Fourier
frequency approach [7,15]. 500 runs were performed for each set
of parameter values, as suggested by results generated using
Technique 1, and median responses calculated. With 1,365
individual parameter sets, this analysis therefore required
682,500 runs in our case. Plots are created for each simulation
output response (velocity and displacement), detailing the first-
order (Si) and total-order (STi) sensitivity indexes calculated for
each parameter of interest. Indications of significance of each
parameters sensitivity index, contrasted to those calculated for the
‘Dummy’ parameter using a two-sample t-test, are output to a
CSV file in the directory specified by the user prior to running the
analysis. For online tutorial 4, spartan produces the plots in
Figure 4. In our published study [9], we utilised our simulator and
statistical methods described in techniques one to three, and
determined no significant role for chemoattractant factors at an
early stage of tissue development. Results shown in Figure 4
examine the same time-point with this additional analysis method,
and support these conclusions. We suggest that the factor that
influences cell velocity at this early stage in development is the

level of expression of cellular adhesion factors (maxVCAMeffect-
ProbabilityCutoff parameter). This supports predictions made by
use of Technique 3, but counters the accepted view in the
literature, where chemokines are known to have an influential role
in tissue development [19,20]. However results in the literature
draw these conclusions from an examination of the whole tissue
development time-period (72 hours), rather than just the early
stage (12 hours) focused on here and in our previous study [9].
Thus potentially our analysis, using spartan, suggests that different
factors could be important at different stages of development.
Examining a later time-point in development, both in the lab and
through use of spartan, may suggest that this is indeed the case, and
the tissue development period is more complex than previously
thought.

Availability and Future Directions

Spartan has been developed and runs within the platform-
independent R statistical environment (version 2.13.1 or greater),
and can be freely downloaded from http://www.cs.york.ac.uk/
spartan or from the Comprehensive R Archive Network (CRAN).
The package is open source and available under the GNU General
Public License (GPLv2). The release of spartan as an R package
rather than as standalone software allows simulation developers to
build spartan into their analysis routine and extend the analysis with
methods provided in additional packages where necessary.
Manuals, comprehensive tutorials, and simulation data used are
available from the website. Spartan remains in on-going development
in parallel to further simulation case studies being developed in our
group, and thus further suitable sensitivity analysis techniques will
be added when appropriate. In similarity to recent advances in
simulation development toolkits [11,12], a graphical user interface
will also shortly be released for spartan and made available on the
website, aiding use of the tool for use unfamiliar with R.

Supporting Information

Software S1 Spartan R package for Linux and Mac OS.
Includes tutorials for each technique.
(ZIP)

Software S2 Spartan R package for Windows OS. Includes
tutorials for each technique.
(ZIP)

Acknowledgments

The authors would like to thank members of the Timmis lab who tested
spartan. We utilise the lhs and gplots R packages available in the R
repository, and Partial Rank Correlation Coefficients calculation code from
http://www.yilab.gatech.edu. We thank Marino et al [7] for making their
eFAST MATLAB scripts accessible, aiding implementation in R.

Author Contributions

Conceived and designed the experiments: KA MR JT PSA MC.
Performed the experiments: KA. Analyzed the data: KA MR.
Contributed reagents/materials/analysis tools: MR HVF MC. Wrote
the paper: KA MR JT PSA HVF MC. Provided biological expertise in
the development of the simulator and understanding of the results it
generated: HVF MC.

Figure 4. Use of eFAST method within spartan to partition variance in simulation results between parameters. Si (black): the fraction of
output variance that can be explained by the value assigned to that parameter; STi (grey): the variance caused by higher-order non-linear effects
between that parameter and the others explored. Error bars are standard error over three resample curves. A: Velocity response. B: Displacement
response.
doi:10.1371/journal.pcbi.1002916.g004

Spartan: Simulation Results Analysis Toolkit

PLOS Computational Biology | www.ploscompbiol.org 8 February 2013 | Volume 9 | Issue 2 | e1002916



References

1. Germain RN, Meier-schellersheim M, Nita-lazar A, Fraser IDC (2011) Systems
Biology in Immunology: A Computational Modeling Perspective. Annual
Review of Immunology 29: 527–585.

2. Efroni S, Harel D, Cohen IR (2003) Toward Rigorous Comprehension of
Biological Complexity: Toward Rigorous Comprehension of Biological
Complexity: Modeling, Execution, and Visualization of Thymic T-Cell
Maturation. Genome Research 13: 2485–2497.

3. Kirschner DE, Linderman JJ (2009) Mathematical and computational
approaches can complement experimental studies of host-pathogen interactions.
Cellular Microbiology 11: 531–539.

4. Andrews PS, Polack FAC, Sampson AT, Stepney S, Timmis J (2010) The
CoSMoS Process, Version 0.1: A Process for the Modelling and Simulation of
Complex Systems. Technical Report YCS-2010-453. Department of Computer
Science, University of York. 1–40.

5. Helton JC (2008) Uncertainty and sensitivity analysis for models of complex
systems. In: Barth TJ, Griebel M, Keyes DE, Nieminen RM, Roose D, et al.,
editors. Computational Methods in Transport: Verification and Validation.
Springer. pp. 207–228.

6. Read M, Andrews PS, Timmis J, Kumar V (2012) Techniques for Grounding
Agent-Based Simulations in the Real Domain: a case study in Experimental
Autoimmune Encephalomyelitis. Mathematical and Computer Modelling of
Dynamical Systems 18: 67–86.

7. Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for
performing global uncertainty and sensitivity analysis in systems biology. Journal
of theoretical biology 254: 178–196.

8. Ray JCJ, Flynn JL, Kirschner DE (2009) Synergy between individual TNF-
dependent functions determines granuloma performance for controlling myco-
bacterium tuberculosis infection. Journal of theoretical biology 182: 3706–3717.

9. Patel A, Harker N, Moreira-Santos L, Ferreira M, Alden K, et al. (2012)
Differential RET responses orchestrate lymphoid and nervous enteric system
development. Science Signalling 5: ra55.

10. Alden K, Timmis J, Andrews PS, Veiga-Fernandes H, Coles MC (2012) Pairing
experimentation and computational modelling to understand the role of tissue
inducer cells in the development of lymphoid organs. Frontiers in Immunology
3:172.

11. Puzone R, Kohler B, Seiden P, Celada F (2002) IMMSIM, a flexible model for
in machina experiments on immune system responses. Future Generation
Computer Systems 18: 961–972.

12. Meier-Schellersheim M, Xu X, Angermann B, Kunkel EJ, Jin T, et al. (2006)
Key role of local regulation in chemosensing revealed by a new molecular
interaction-based modeling method. PLoS Computational Biology 2: 710–724.

13. Saltelli A, Chan K, Scott EM (2000) Sensitivity Analysis. Wiley series in
probability and statistics. Wiley.

14. Vargha A, Delaney HD (2000) A critique and improvement of the CL Common
Language Effect Size Statistics of McGraw and Wong. Journal of Educational
and Behavioural Statistics 25: 101–132.

15. Saltelli A, Bollardo R (1998) An alternative way to compute Fourier amplitude
sensitivity test (FAST). Comput Stat Data Anal 26: 445–460.

16. Saltelli A (2004) Sensitivity Analysis in practice: A guide to assessing scientific
models. Wiley.

17. Tarantola S, Gatelli D, Mara TA. (2006) Random balance designs for the
estimation of first order global sensitivity indices. Reliability Engineering &
System Safety 91: 717–727.

18. Ratto M, Pagano A, Young P (2007) State Dependent Parameter metamodelling
and sensitivity analysis. Computer Physics Communications 177: 863–876.

19. Randall TD, Carragher DM, Rangel-Moreno J (2008) Development of
secondary lymphoid organs. Annual Review Immunology 26: 627–650.

20. Luther SA, Ansel KM, Cyster JG (2003) Overlapping roles of CXCL13,
interleukin 7 receptor alpha, and CCR7 ligands in lymph node development.
The Journal of experimental medicine 197: 1191–1198.

Spartan: Simulation Results Analysis Toolkit

PLOS Computational Biology | www.ploscompbiol.org 9 February 2013 | Volume 9 | Issue 2 | e1002916


