
OR I G I N A L A R T I C L E

Integration, exploration, and analysis of high-dimensional
single-cell cytometry data using Spectre

Thomas Myles Ashhurst1,2,3 | Felix Marsh-Wakefield3,4,5 |

Givanna Haryono Putri3,6 | Alanna Gabrielle Spiteri3,7 | Diana Shinko1,3 |

Mark Norman Read3,6,8 | Adrian Lloyd Smith1,3 |

Nicholas Jonathan Cole King1,2,3,7,9

1Sydney Cytometry Core Research Facility,

Charles Perkins Centre, Centenary Institute

and The University of Sydney, Sydney, New

South Wales, Australia

2Marie Bashir Institute for Infectious Diseases

and Biosecurity, The University of Sydney,

Sydney, New South Wales, Australia

3Charles Perkins Centre, The University of

Sydney, Sydney, New South Wales, Australia

4School of Medical Sciences, Faculty of

Medicine and Health, The University of

Sydney, Sydney, New South Wales, Australia

5Vascular Immunology Unit, Department of

Pathology, The University of Sydney, Sydney,

New South Wales, Australia

6School of Computer Science, The University

of Sydney, Sydney, New South Wales,

Australia

7Viral Immunopathology Laboratory, Discipline

of Pathology, School of Medical Sciences,

Faculty of Medicine and Health, The

University of Sydney, Sydney, New South

Wales, Australia

8The Westmead Initiative, The University of

Sydney, Sydney, New South Wales, Australia

9Sydney Nano, The University of Sydney,

Sydney, New South Wales, Australia

Correspondence

Thomas Myles Ashhurst, Charles Perkins

Centre, The University of Sydney,

Camperdown, NSW 2050.

Email: thomas.ashhurst@sydney.edu.au

Funding information

Marie Bashir Institute for Infectious Disease

and Biosecurity; Merridew Foundation;

National Health and Medical Research Council

(NH&MRC), Grant/Award Number: 1088242;

Marie Bashir Institute, University of Sydney

Abstract

As the size and complexity of high-dimensional (HD) cytometry data continue to

expand, comprehensive, scalable, and methodical computational analysis approaches

are essential. Yet, contemporary clustering and dimensionality reduction tools alone

are insufficient to analyze or reproduce analyses across large numbers of samples,

batches, or experiments. Moreover, approaches that allow for the integration of data

across batches or experiments are not well incorporated into computational toolkits

to allow for streamlined workflows. Here we present Spectre, an R package that

enables comprehensive end-to-end integration and analysis of HD cytometry data

from different batches or experiments. Spectre streamlines the analytical stages of

raw data pre-processing, batch alignment, data integration, clustering, dimensionality

reduction, visualization, and population labelling, as well as quantitative and statistical

analysis. Critically, the fundamental data structures used within Spectre, along with

the implementation of machine learning classifiers, allow for the scalable analysis of

very large HD datasets, generated by flow cytometry, mass cytometry, or spectral

cytometry. Using open and flexible data structures, Spectre can also be used to ana-

lyze data generated by single-cell RNA sequencing or HD imaging technologies, such

as Imaging Mass Cytometry. The simple, clear, and modular design of analysis

workflows allow these tools to be used by bioinformaticians and laboratory scientists

alike. Spectre is available as an R package or Docker container. R code is available on

Github (https://github.com/immunedynamics/spectre).

K E YWORD S

clustering, computational analysis, dimensionality reduction, FlowSOM, high-dimensional
cytometry, mass cytometry, spectral cytometry, t-SNE, UMAP

Thomas Myles Ashhurst, Felix Marsh-Wakefield, and Givanna Haryono Putri contributed equally to this work

Received: 25 October 2020 Revised: 1 April 2021 Accepted: 6 April 2021

DOI: 10.1002/cyto.a.24350

Cytometry. 2021;1–17. wileyonlinelibrary.com/journal/cytoa © 2021 International Society for Advancement of Cytometry. 1

https://orcid.org/0000-0001-7269-7773
https://orcid.org/0000-0002-6839-7628
https://orcid.org/0000-0002-1481-4780
https://orcid.org/0000-0002-0505-0344
https://orcid.org/0000-0002-3877-9772
mailto:thomas.ashhurst@sydney.edu.au
https://github.com/immunedynamics/spectre
http://wileyonlinelibrary.com/journal/cytoa
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcyto.a.24350&domain=pdf&date_stamp=2021-04-26

1 | INTRODUCTION

1.1 | High-dimensional analysis tools

High-dimensional (HD) cytometry plays an important role in the study

of immunology, infectious diseases, autoimmunity, hematology, and

cancer biology, elucidating critical mediators of immunity and disease at

a single-cell level. Advances in single-cell cytometry systems (including

flow, spectral, and mass cytometry) have enabled the simultaneous

analysis of over 40 proteins [1–4] in a single panel, resulting in vast, and

complex datasets. A large portion of the analysis still utilizes manual gat-

ing, which is the sequential and often arduous process of identifying

cells, based on the expression of one or two cellular markers at a time.

While this allows for user-guided examination of the dataset, it is intrac-

table when mapping out the vast variety of cell phenotypes that may be

present in HD datasets, and may introduce selective bias through a sub-

jective and sequential bifurcating inclusion/exclusion of markers [5].

This is in part due to the number of gates required to fully parse the

dataset. As such, a variety of computational approaches have been

adopted by the cytometry community to help analyze HD datasets,

including automated gating [6], clustering (such as PhenoGraph [7],

FlowSOM [8], X-Shift [9]), dimensionality reduction (such as t-SNE [10,

11], UMAP [12]), trajectory inference (such as Wanderlust [1], Wish-

bone [13]), and automated cell classification [14–16]. Many of these

tools have been brought together into ‘toolboxes’, providing either

code- or GUI-based analysis workflows, such as Cytofkit [17], CITRUS

[18], CATALYST [19], Cytofworkflow [20], or diffcyt [21]. These tool-

boxes add to an environment of computational tools that drive compu-

tational cytometry analysis, such as the Cytoverse environment,

including ggCyto [22] and OpenCyto [23].

In parallel, similar tools have also been developed in other fields,

such as a wide variety of analysis approaches for single-cell RNA

sequencing (scRNAseq; Seurat [24, 25], SingleCellExperiment (SCE)

[26], Monocle [27]). These have been developed to address similar dif-

ficulties in analysis, with developments in one field sometimes

assisting another, such as the graph-based clustering from

Phenograph [7] informing the design of clustering in Seurat [24].

Overall, these tools allow for automated and data-driven data

processing that may be performed in an unsupervised (requiring no

human supervision) or semi-supervised manner, requiring some

human decision-making.

1.2 | Limitations of existing algorithms and toolkits

Despite the advantages offered by these computationally-driven

approaches, a number of challenges persist, including slow operation

speeds, difficulty in scaling to large datasets, and insufficient reproduc-

ibility of analysis results across independent experiments. As such, the

use of such tools is often limited to relatively small datasets from single

experiments. In particular, many scRNAseq specific tools, while suited

to processing datasets with a large number of features (markers), do not

necessarily scale well to dataset volumes that include tens to hundreds

of millions of cells, as the volume of data may exceed the memory

capacity of the computer being used for analysis, and/or the processing

may carry excessively long run times [28]. In scRNAseq, independent

datasets of this volume are not common outside of cell atlas-type pro-

jects [29], but cytometry frequently generates datasets of this size. In

addition, these data-driven approaches are highly sensitive to the influ-

ence of batch effects, a phenomenon in which cells of the same pheno-

type differ in their signal intensity across multiple experimental batches.

Batch effects are an artifact of time and context, in which experimental

conditions and/or instrumental performance inadvertently influence the

measured signal intensity. Left uncorrected, computational algorithms

may falsely identify differences (or similarities) based on processing

batch, rather than biologically relevant (and correct) differences

between samples or experimental groups. Hence, having the ability to

control for and differentiate batch effects from biological effect is criti-

cal. While a variety of approaches exist for scRNAseq data [24, 25, 30–

32], approaches designed for cytometry data are less well developed.

While there exist several approaches to align data from different

batches, many of these align samples individually against each other in

the context of standardized clinical profiling [33], potentially removing

important biological variations between samples. In contrast, recent

approaches calculate batch adjustments using reference controls: ali-

quots of a control sample run with each batch. The resultant conver-

sions can then be applied to all samples in the batch, preserving

biologically relevant differences [34]. Because some batch effects can

differentially impact select cell lineages [35], further techniques (such as

CytoNorm) extend this reference-based approach to apply adjustments

in a cluster-specific manner [35]. This is a developing area and a number

of other approaches have also been proposed, using a variety of

methods to remove technical variance [14, 36], some inspired by

approaches in scRNAseq.

While a number of clustering, dimensionality reduction, and batch

alignment approaches exist, many of these are not directly integrated

with each other – and many implementations require specific dataset

formats, limiting the flexibility and interoperability of these tools. Spe-

cifically, tools that are developed in different fields (e.g., cytometry or

scRNAseq) are often provided as stand-alone packages that operate

on custom data formats (e.g., flowFrames [37], SCE objects, Seurat

objects, etc.). The dependency of individual tools on custom data for-

mats also makes it non-trivial to apply computational tools from a

broader data science and machine learning field that are not specifi-

cally designed for cytometry (and thus have no knowledge of the cus-

tom data format) but are of significant advantage in existing analysis

pipelines. A streamlined solution that can operate on large datasets at

speed and integrate tools across fields in a modular fashion would be

of significant advantage to the cytometry community.

1.3 | Spectre for analysis of large and complex HD
cytometry datasets

To address these challenges, we developed Spectre, a computational

toolkit in R that facilitates rapid and flexible analysis of large and

2 ASHHURST ET AL.

complex cytometry datasets. This toolkit expands on the “Cytometry

Analysis Pipeline for large and compleX datasets” (CAPX) workflow

that we have published previously for deep profiling of hematopoietic

datasets [38]. Through specific function and workflow design, we

demonstrate intuitive, modular, and high-speed workflows for data

pre-processing (such as scaling/transformation), clustering, dimension-

ality reduction, plotting, as well as quantitative statistical analyses.

Additionally, we incorporate an effective method for integrating data

across multiple batches or experiments by extending the functionality

of CytoNorm [35] batch alignment algorithm. Furthermore, we pro-

vide a means to transfer labels from reference datasets onto new

datasets using machine learning classification algorithms, allowing for

reproducible analytical workflows across multiple experiments. An

extension of this process allows for the analysis of very large datasets,

where the size of the dataset may exceed the memory capacity of the

computer being used. Analysis with Spectre has been applied to flow,

spectral, and mass cytometry datasets, consisting of tens to hundreds

of millions of cells, in areas such as immune profiling in COVID-19

[39]. Additionally, Spectre has been applied to scRNAseq data and HD

imaging data (such as Imaging Mass Cytometry, IMC). Spectre is avail-

able as an R package or Docker container from Github (https://github.

com/immunedynamics/spectre).

Here we demonstrate the utility of the package by analyzing cells

isolated from murine bone marrow (BM), spleen, and central nervous

system (CNS) following inoculation with West Nile virus (WNV), mea-

sured by HD flow, spectral, or mass cytometry (CyTOF). Because of

the significant cellular dynamics that occur in multiple tissues in

response to infection with WNV, this provides an ideal model for

demonstrating analysis workflows using Spectre.

2 | METHODS

Figure 1 illustrates an overview of analysis tools available in Spectre,

and Supplementary Table 1 provides a summary comparison between

Spectre and other existing packages (including CATALYST and

Cytofkit).

2.1 | Sample preparation and acquisition

Ethical approval for the experimental use of mice was obtained from

the Animal Ethics Committee at the University of Sydney. Briefly,

mice were anesthetized with 250–300 μL of Avertin anesthetic via an

intraperitoneal injection, and then inoculated intranasally (i.n.) with

10 μL of PBS or a lethal dose of WNV in sterile PBS (6 � 104 plaque-

forming units [PFU]). After 1–7 days post infection (p.i.), mice received

350 μL of Avertin anesthetic, followed by vena cava section and left

ventricular cardiac perfusion with 10–30 mL of ice-cold PBS. Spleen,

BM, and CNS tissue were then extracted and prepared for flow/

spectral [40] or mass cytometry [38] as previously described. Labeled

samples were acquired on a 5-laser BD LSR-II, a 10-laser custom BD

LSR-II, a 5-laser Cytek Aurora, or a Fluidigm Helios. Initial cleanup

gating and compensation was performed using FlowJo v10.7, where

single live leukocytes were then exported as CSV (scale value) or FCS

files. We recommend cleaning data (e.g., compensation and live cell

gating) with other software such as DIVA or FlowJo, and/or per-

forming automated quality control processes (such as with flowAI

[41]) prior to using Spectre.

2.2 | Data management in R via data.table

Data management and operations within Spectre were performed

using the data.table format, an extension of R's base data.frame, pro-

vided by the data.table package [42]. This table-like structure orga-

nizes cells (rows) against cellular features or metadata (columns). This

simple The advantage of the data.table is in high-speed processing,

manipulation (subsetting, filtering, etc.), and plotting of large datasets,

as well as fast reading/writing of large CSV files. While CSV files are

the preferred file format in this context, Spectre also supports reading

and writing FCS files through the use of flowCore [37], where the data

are then converted from an FCS file into a flowFrame, and then into a

data.table.

2.3 | Data pre-processing and transformation

In Spectre, the entire dataset to be analyzed is condensed into a single

data.table (Figure 1(A)). Each row (cell) contains cellular expression

data and metadata pertaining to the file, sample, group, and batch,

stored in separate columns. Metadata for each of the columns

(e.g., alternative cellular marker names, etc.,) in the data.table can be

stored separately, if required. In order to reduce the contribution of

background to measured signal, and to convert cytometry data into a

linear space, we facilitated ArcSinh transformation of data using the

do.asinh function in Spectre, as well as Logicle transformation ([43])

using the do.logicle function. This function allows a transformation co-

factor to be specified for all columns (typical in mass cytometry) or for

individual columns (typical in flow or spectral cytometry). The

resulting transformed values are added to the dataset as new col-

umns. This addition of new values, rather than replacement of original

values, enables greater data retention and transparency. Additionally,

an optional pre-processing step for re-scaling values to a new numeri-

cal range (such as a 0 and 1) is provided in the do.rescale function, sim-

ilarly adding new columns containing the re-scaled values.

2.4 | Batch alignment and integration

To facilitate batch alignment in Spectre, we developed a wrapper for

CytoNorm [35] using the prep.cytonorm, train.cytonorm, and run.

cytonorm functions (Figure 1(B)). CytoNorm utilizes reference samples

(aliquots of a control sample run with each batch) to determine batch-

derived technical differences and calculates a quantile conversion

model to align data from each of these batches. This

ASHHURST ET AL. 3

https://github.com/immunedynamics/spectre
https://github.com/immunedynamics/spectre

conversion model is then applied to samples in each batch, removing

technical variation while preserving biologically relevant differences.

The CytoNorm functions operate on a data.table, and allow for refer-

ence and target data to be easily specified in a dataset containing a

mixture of batches. Quantile conversions for the entire dataset, or

conversions for individual clusters, can then be calculated, resulting in

a new set of “aligned” features that are compatible across the

batches. Since raw, ArcSinh transformed, and aligned data are pre-

served in the data.table, transparency of these analytical processes is

maintained throughout the analytical process. We also implemented

alignment processes from CytofBatchAdjust [34] in the run.align func-

tion, but this has not been explored in this manuscript.

2.5 | Clustering of cells/events

Clustering was implemented using the run.flowsom function, which

acts as a wrapper around the FlowSOM function (available as

“FlowSOM” from Bioconductor [44]), which organizes acquired

events (i.e., cells) into clusters using a self-organizing map (SOM), and

F IGURE 1 Spectre analysis overview. An overview of Spectre's analysis workflow. (A) Data preparation steps including sample, group, and
batch annotation, in addition to ArcSinh transformation. (B) Batch alignment using CytoNorm. (C) Clustering and dimensionality reduction, along
with marker expression plotting and expression heatmaps. (D) Quantification and statistical analysis through z-score/fold-change heatmaps and
grouped dot plots. (E) Application of Spectre's analysis workflow to data generated by different technologies, including analyzing a split murine
spleen sample by flow cytometry, spectral cytometry, and mass cytometry. Also shown are unrelated PBMC data analyzed by single-cell RNA
sequencing (scRNAseq) acquired from 10X genomics, via the Seurat webpage (https://satijalab.org/seurat/v3.2/pbmc3k_tutorial.html) and
imaging data generated by Imaging Mass Cytometry (IMC)

4 ASHHURST ET AL.

https://satijalab.org/seurat/v3.2/pbmc3k_tutorial.html

then groups these clusters together into “metaclusters” (Figure 1(C)).

The function accepts a data.table and set of column names for generat-

ing clusters as input. Once clustering is performed, run.flowsom returns

the data.table with new columns containing the cluster and metacluster

IDs for each cell. Spectre's run.flowsom provides two options for speci-

fying a target number of metaclusters. By default, FlowSOM will deter-

mine the number of metaclusters to generate by performing consensus

hierarchical clustering on the clusters using a range of different met-

acluster numbers. It then computes the variance in each metacluster

number and determines the point in which the variances suddenly

decrease at a gentler rate (the elbow point), which is regarded as the

optimal number of metaclusters for the dataset. We refer the reader to

the FlowSOM publication for more details on how the optimum number

is chosen [8]. Alternatively, users can manually specify a target number

of metaclusters (which is recommended over automatic determination)

or choose not to generate metaclusters at all. In addition to the ability

to choose the number of metaclusters to create, the user is also able to

change the SOM grid size (xdim and ydim parameters), the seed used to

generate clusters and metaclusters for reproducibility.

2.6 | Dimensionality reduction

Non-linear dimensionality reduction (DR) was implemented in Spectre

using the run.tsne, run.fitsne, or run.umap functions, which are wrap-

pers around t-SNE (available as “rtsne” from CRAN [45]), FIt-SNE [46]

(available from https://github.com/KlugerLab/FIt-SNE), and UMAP

(available as umap from CRAN [47]), respectively (Figure 1(C)). All

functions accept a data.table and set of column names for DR as input,

and return the data.table with new columns containing tSNE, FIt-SNE,

or UMAP coordinates for each cell. We also provide a function for

running Principal Component Analysis (PCA), a linear DR approach,

using the run.pca function, acting as a wrapper around prcomp (avail-

able in the “stats” package from CRAN [48]). The input data for run.

pca can either be individual cells (to find cell markers that contribute

to the variance), or individual samples/patients with summary data

(such as median fluorescence intensity [MFI], cell counts or propor-

tions). The output of run.pca is similar to run.tsne, run.fitsne, and run.

umap, though additional outputs can be generated, including scree

and contribution plots for detailed assessment of the source of vari-

ance in the dataset.

2.7 | Plotting and visualization

Plotting of cellular data was implemented in the make.color.plot func-

tion, serving as a wrapper around ggplot2 [49] (Figure 1(C)). The

dataset, and desired columns to use as X and Y axis are taken as input.

By default, each plotted cell is colored by relative plot density. Where

desired, each cell can be colored by the level of expression of a speci-

fied marker (column), or color by some factor (e.g., cluster, sample, or

group etc). To reduce the effect of outlier datapoints on the color

scale, minimum and maximum thresholds are applied by default as

0.01 (1st percentile) and 0.995 (99.5th percentile), respectively, so

that datapoints with values below or above these thresholds are col-

ored at the minimum or maximum, respectively. These can be modi-

fied where required. In cases where a subset of the dataset is being

plotted (e.g., separate samples or groups, etc.) the limits of the X, Y,

and color parameters can be set by the complete dataset, allowing for

the plots to be compared directly. By default, plots will automatically

be saved to the current working directory, allowing for the rapid gen-

eration of plots. This plotting functionality is extended in the make.

multi.plot function, which arranges multiple plots consisting of set of

colored plots (e.g., for examining marker expression) or set of sample

group divisions (e.g., for comparing changes between groups).

2.8 | Aggregation and summary data

A number of analysis steps require the aggregation or summary of data,

either by sample, by cluster, or by both. To facilitate this, we

implemented two functions – do.aggregate and create.sumtable. The do.

aggregate function takes advantage of the fast aggregation function of

data.table, providing the mean or median level of expression of each

marker per cluster/population. This is helpful for plotting expression

heatmaps, allowing for the interpretation of cluster/population identi-

ties. For every population in each sample, the create.sumtable function

will calculate the percentage of each population as a percentage of cells

in each sample (as well as cell counts for each population per sample if

a total count of cells per sample is provided). Additionally, for all speci-

fied cellular markers, the median expression level, as well as the per-

centage of each population that expresses the marker are calculated for

each population in every sample. This summarized data.table (in the for-

mat of samples (rows) versus features (columns)) can then be used for

quantitative and statistical analysis, either in the same workflow, or can

be saved to disk as a CSV file for analysis in a separate pipeline.

2.9 | Heatmaps

To facilitate the generation of heatmaps for examining marker expres-

sion on populations, or for comparing populations across samples, we

implemented “make.pheatmap” as a wrapper around the pheatmap

function from pheatmap [50] (Figure 1(C)). In make.pheatmap, the user

must specify the dataset, the column that contains values to be used as

the heatmap rows (e.g., sample or cluster identity), and the columns to

be plotted as heatmap columns. This can be used to examine expression

of marker (columns) on each cluster (rows), or can be used on z-score

transformed data plotting immune features (columns) versus samples

(rows), to reveal data variance for each cellular feature being measured.

2.10 | Group and volcano plots

To facilitate quantitative and statistical analysis, we implemented

functions to create graphs (make.autograph) (Figure 1(D)) and volcano

ASHHURST ET AL. 5

https://github.com/KlugerLab/FIt-SNE

plots (make.volcano.plot). Graphs are constructed using the ggplot2 R

package, and integrate pairwise statistical comparisons between

groups using functionality from the ggpubr R package [51]. Pairwise

comparisons between pairs of groups are performed using either Wil-

cox test (equivalent to a Mann–Whitney test), or a t-test. Overall

group variance is assessed using a Kruskal–Wallis test, or a one-way

ANOVA. Volcano plots were generated using the EnchancedVolcano

package from Bioconductor [52], and customized to work seamlessly

with data.table data structures. Initially the relative-fold change of

values in each immune parameter between two groups are calculated,

along with the p-value of that change. Each immune parameter can

then be plotted as fold change versus p-value, allowing for a rapid

assessment of changes with strong and significant effects between

groups.

2.11 | Classification

Classification provides the means to transfer the annotation of a

dataset to another dataset. In instances where cells have been anno-

tated (e.g.,, with the cellular population they belong to) in one dataset,

these labels can be automatically applied to cells in separate

dataset, without having to repeat the entire analysis process. These

instances might occur when seeking to replicate an analysis approach

in a new dataset, if a dataset is acquired over time (such as time-

course experiments), or if limited computational resources restrict the

size of the dataset that can be analyzed. Spectre facilitates classifica-

tion via the run.knn.classifier function. It runs a k-nearest neighbor

(kNN) classification algorithm provided by the FNN package [53]. For

ease of explanation, from here on, the term “labeled dataset” and

“unlabeled dataset” will be used to refer to datasets in which the cells

have and have not been assigned annotations, respectively. The

phrase “labeled cells” and “unlabeled cells” will refer to cells in labeled

and unlabeled datasets, respectively.

For each unlabeled cell, kNN identifies the k labeled cell(s) which

lie the closest to it. The value of k can be any positive value, dictating

the number of neighbors. We call these cells “nearest neighbors.” The
classifier then determines the most common annotation among

the nearest neighbors, and assign that annotation to the unlabeled

cell. kNN classifier resolves an unlabeled cell's nearest neighbors by

computing the distance (euclidean) between it and all the cells in the

labeled dataset. To ensure that all markers contribute equally to

the distance calculation, and that both labeled and unlabeled dataset

assume the same range of values, both the run.knn.classifier and train.

knn.classifier (discussed below) functions re-scale both datasets to

value range of between 0 and 1 at the beginning of the function.

The performance of a kNN algorithm is sensitive to the value k,

the number of nearest neighbors considered when determining the

annotation to assign to an unlabeled cell. A k value which classifies

one dataset well may not do so on another dataset. To determining

suitable k value, Spectre provides the train.knn.classifier function to

assist in evaluation. The train.knn.classifier function assess the perfor-

mance of a range of k values by evaluating each of it on the labeled

dataset. To do this, the labeled dataset will need to be split into two

portions. 1 portion (testing data) will be annotated by the kNN classi-

fier (actual annotation for this portion will be hidden from the

classifier), while the other portion will be used as the reference data

to do the annotation (training data). Upon splitting the labeled dataset,

the function will then choose a k value (from a range given by user),

and instruct the kNN classifier to annotate the testing data using that

k value. It will then compute the proportion of testing data which

annotations assigned by kNN match the actual annotations (accuracy

score). After testing all the k values, the function will collate the accu-

racy scores and return them to the user.

When splitting the labeled dataset into training and testing data,

train.knn.classifier uses either train-test split or n-fold cross-validation

(via caret R package [54]) approach. The first randomly split the

labeled dataset into two equal halves while the latter split it into

n portions, allocating one portion as testing data and the remaining as

training data. Unlike the train-test split which uses the same training

and testing data for all k values, n-fold cross-validation technique

trains each k value n times, each using different portion(s) for training

and testing data. While n-fold cross-validation technique more com-

prehensively tests the performance of the kNN classifier, it requires

significantly more time to run. For this reason, we recommend the use

n-fold cross-validation only for when there is very little labeled data

available. The parameter method in the train.knn.classifier function

determines the approach used for splitting the data, and is where the

train-test split approach is default. We note that for n-fold cross-vali-

dation, the accuracy score for each k value is the average accuracy

score across all combinations of training and testing data.

3 | RESULTS

3.1 | Spectre facilitates comprehensive
end-to-end integration and analysis of
large HD cytometry datasets

Spectre was developed to facilitate rapid and flexible analysis of large

and complex cytometry datasets across multiple batches or experi-

ments. Specifically, Spectre facilitates data pre-processing (Figure 1(A)),

alignment of data from multiple batches/experiments (Figure 1(B)),

clustering (Figure 1(C)), dimensionality reduction and visualization

(Figure 1(C)), manual or automated population classification and label-

ling (Figure 1(C)), as well as extensive plotting and graphing options

for qualitative and quantitative statistical analyses (Figure 1(D)). Key

to this process is strategic selection, implementation, and customiza-

tion of high-performance computational tools; and the development

of wrapper functions around these tools, enabling them to operate on

and produce the same data format for input and output, respectively.

This allows for multiple analysis and plotting/graphing tools to be

seamlessly woven together into single analysis workflows, where

functions can be used throughout the stages of the workflow, drasti-

cally increasing ease of use. Moreover, this modularity and flexibility

allows these workflows to be adapted to meet different experimental

6 ASHHURST ET AL.

requirements or analytical approaches. Spectre can be used on data

generated by a variety of single-cell technologies, including flow,

spectral, and mass cytometry (Figure 1(E)). In addition, following some

additional pre-processing, Spectre can also be used for the analysis of

data generated by scRNAseq or HD imaging technologies such as

IMC (Figure 1(E)). In the case of scRNAseq, users may wish to convert

data from formats like Seurat or SCE in a simple table format using

data.table, allowing them to take advantage of specific clustering,

processing, plotting, or other analysis processes, using Spectre as well

as other generic analysis of plotting tools (some examples provided in

Supplementary Figure 1). To facilitate this, we created a function to

extract all information from Seurat, SCE, or flowFrame object and

structure it as a data.table, using create.dt.

3.2 | Data management and pre-processing

Critical to our approach is the use of the data.table data structure and

operations, in place of prevalent FCS/flowFrame objects or other data

structures. The data.table format is an enhancement of base R's data.

frame, a table-like structure commonly used to store data. This

enhancement allows for fast and efficient aggregation and manipula-

tion of data through the use of concise flexible syntax and low-level

parallelism [42] (Supplementary Figure 2). Using Spectre, all samples

in the analysis are merged into a single data.table, with relevant sam-

ple, group, and batch information stored in separate columns. As a

result, each row contains all the information relevant for a particular

cell, making data manipulation and filtering with data.table simple

and fast.

A key initial step in computational analysis is the transformation

of cellular expression data. Biologically meaningful results are most

easily interpreted through plotting cellular expression on a logarithmic

scale. Because of potentially misleading visual artifacts for signals at

the low end of the logarithmic scale, the logicle/bi-exponential scale

was developed, where the high end of the scale is logarithmic and the

low end of the scale is converted into a linear scale, and the scale then

returns to logarithmic at values below the linear component (Supple-

mentary Figure 3(A)) [43, 55]. Critically, this allows for the compres-

sion of low-end data points with high spreading error,

autofluorescence, or noise into a linear space around zero, which can

be tailored for the requirements of each channel (Supplementary

Figure 3(B)). For computational analysis to meaningfully manage bio-

logical data, a similar compression of low-end data needs to be per-

formed. In cytometry, this is commonly performed using the ArcSinh

(http://mathworld.wolfram.com/InverseHyperbolicSine.html) trans-

formation [56]. The data values are transformed into a format that

can be viewed on a linear scale, where compression of low-end values

is determined using a specified co-factor to determine the extent of

compression around zero (Supplementary Figures 3(B) and 4).

Using Spectre, ArcSinh transformation was applied to data from

each channel/marker individually, using different co-factors, allowing

for highly customizable data transformations. For flow, spectral, and

mass cytometry data, we tested various co-factor values across

multiple channels (Supplementary Figures 5 and 6). Overall, we found

that a co-factor of 5–15, was suitable for all mass cytometry channels.

However, in our experience, we found a range between 100 and

10,000 to be suitable for different channels in conventional or spec-

tral flow cytometry data.

We developed a function for re-scaling each marker in the ArcSinh-

transformed data to range between two new values, usually 0 and

1 (Supplementary Figure 7). This may prevent markers with extremely

high expression levels from exerting greater influence over clustering

and DR results, when compared to other markers (Supplementary

Figure 8). This is implemented in the do.rescale function. Although we

have demonstrated the utility of the do.rescale function in Supplemen-

tary Figure 7, this was not used for the rest of the data presented in this

paper. Additionally, we emphasize that it is not mandatory to use this

function when pre-processing data, and data scaled externally (such as

with FlowJo) can still be used with any of Spectre's functions. If using

do.rescale, we recommend applying it prior to data alignment, cluster-

ing, and DR for maximum benefit. We also provided a clipping function

do.clip that will convert all values above or below a specified value to

that value, which maybe helpful in the management of outliers. For

example, changing all values below 0, to 0 (Supplementary Figure 7).

3.3 | Integrating data from multiple batches or
experiments into a single feature space

When samples are prepared, stained or run in multiple batches, tech-

nical batch-effects can occur, usually consisting of shifts in signal

intensity in one or more markers. Because of this, data clustered

together with uncorrected batch effects may separate samples based

on the batch they belong to, a confounding factor that substantially

hinders aggregated analysis of datasets from multiple batches or

experiments. To provide a comprehensive and adaptable batch align-

ment and data integration approach, we expanded on the functional-

ity of CytoNorm within Spectre. Users specify reference control

samples that Spectre uses to determine the alignment conversions.

Typically, these are aliquots of a single “healthy” patient sample that

are run with each batch of samples. These reference samples should

span the full range of the data seeking to be aligned. Where marker

expression data is absent on the reference controls (e.g., absence of

activation markers on cells from healthy donors), alignment is not fea-

sible, but the original expression data for those markers can still be

analyzed. In cases where multiple aliquots of a single control sample

are not available, multiple control samples of the same type

(e.g., healthy mouse BM) that are run with each batch can be used as

the next best. Finally, it is also possible to use all samples from each

batch as ‘reference’ controls, taking the entire range of marker

expression from each batch into account. However, these later

approaches should be used with caution, as any biological differences

between the samples used for reference will be interpreted as techni-

cal variation due to batch effects. To execute this alignment process

in Spectre, user-indicated reference samples are extracted from the

combined data.table (Figure 2(A)) and clustered using FlowSOM. For

ASHHURST ET AL. 7

http://mathworld.wolfram.com/InverseHyperbolicSine.html

8 ASHHURST ET AL.

each resulting metacluster, quantile conversion coefficients between

each batch for each marker are calculated (Figure 2(B)). Cells from the

full dataset are then mapped to the FlowSOM grid, and each cell is

assigned to its nearest metacluster (Figure 2(C)). Quantile conversion

is then applied to the cells in each metacluster, unifying cells from

each batch into a single feature space, while preserving biological dif-

ferences between experimental groups (Figure 2(C)).

To verify the robustness of this process, we applied batch align-

ment to a set of mock- or WNV-infected BM samples, where synthetic

data manipulations were introduced in a population-specific manner to

half the samples, to mimic population-specific batch effects. One

healthy BM sample from each “batch” were selected as a reference

controls, aggregated together, and plotted using UMAP, revealing sub-

sets of neutrophils, eosinophils, monocytes, B cells, T/NK cells, and pro-

genitors. Batch-specific differences in their distributions were evident in

the UMAP plots (Figure 2(D)). When FlowSOM was run, consistent

populations from each batch were captured within the same met-

acluster, despite the presence of batch effects. As such, metacluster-

specific alignment with CytoNorm was able to adequately integrate the

cells from each population into a unified dataset (Figure 2(E)).

To test this process on datasets with more substantial batch-effects,

we applied batch alignment to two sets of mock- or WNV-infected BM

samples, prepared and acquired months apart, using slightly different

panels. After matching column names between the two datasets, the dis-

parity of these two datasets was apparent upon plotting with UMAP

(Figure 2(F)). In this scenario, the batch effects were so significant that

cells from the same population in each batch did not map to the same

metacluster, thus preventing alignment. To address this, we initially per-

formed a “coarse” alignment by mapping all cells from each batch into a

single metacluster and performing quantile alignment on the entire

dataset. This corrected the majority of batch effects, though some

metacluster-specific effects were still evident (Figure 2(G), inset). Never-

theless, the resulting data was sufficiently aligned so that populations

from each batch could now be mapped into consistent metaclusters

(Figure 2(G)), allowing for a more fine-tuned alignment (Figure 2(H)) that

corrected residual metacluster-specific batch effects (Figure 2(H), inset)

and unified the dataset into a single feature space.

3.4 | Clustering and dimensionality reduction
strategies

A critical analytical step in HD cytometry is the comprehensive identi-

fication of cellular populations, including those that are well-

established and those that are yet to be characterized. This is particu-

larly relevant when comparing between experimental groups

(e.g., diseased patients compared to healthy controls). Clustering and

dimensionality reduction are powerful techniques for identifying cell

populations and contrasting them between groups. Clustering tools

collect phenotypically similar cells into groups (clusters) in a data-

driven fashion (i.e., cells are grouped together based on the similarity

of their marker expression). The output of many clustering approaches

are plotted as a collection of nodes, where each node represents a

cluster that contains a number of cells. These nodes are typically con-

nected by a form of minimum spanning tree (MST) [8] and colored by

mean or median marker expression of the cells within each cluster.

However, verifying the phenotypic heterogeneity (or homogeneity) of

cells captured within a cluster is difficult when looking at the data at

the cluster level. An alternative approach is to compress cellular data

onto two dimensions using non-linear dimensionality reduction tools

such as t-SNE [10, 11], FIt-SNE [46], and UMAP [12], and to visualize

these on a scatter plot, coloring each cell by marker expression level

or cluster/metacluster ID.

Spectre supports clustering and DR by providing a wrapper func-

tion for FlowSOM, Phenograph, t-SNE, Fit-SNE, and UMAP. These

functions accept and return data in the data.table format. Whilst cluster-

ing tools such as FlowSOM scale well to large datasets [57], some DR

approaches can incur lengthy computing times, excessive memory

usage, and significant crowding effects that inhibit their utility (Supple-

mentary Figure 9(A)). Whilst some improvements to runtime (Flt-SNE

[46], Supplementary Figure 9(B)) and plot crowding (opt-SNE [58]) have

been made, scalability and plot crowding limitations persist. As DR tools

are primarily used to visualize cellular data and clustering results, we

propose plotting only a subset of the clustered data, which addresses

scalability and retains legibility. By using proportional subsampling from

each sample, the relative number of cells from each cluster in each sam-

ple can be preserved in a smaller dataset, allowing for interpretable

analysis via DR. Putative cellular populations among the clusters can

then be identified, and annotated in both the subsampled DR dataset,

as well as the whole clustered dataset. The whole annotated dataset

can subsequently be used in downstream quantification and statistical

analysis. However, we note that it is possible for rare cell populations to

be obscured when visualizing data in this manner, and that it is impor-

tant to specify sample size which maintain some balance between rare

and common cell populations. Additionally, Specre's do.subsample func-

tion permits users to specify different sample size for every discrete cat-

egory in the data (cell populations, group, batch, sample, clusters), thus

allowing disproportionate subsampling.

F IGURE 2 Batch alignment using CytoNorm. Batch alignment process using CytoNorm. (A) Reference samples acquired with each batch are

extracted from the data.table, and (B) clustered using FlowSOM. Metacluster-specific quantile conversion models are then calculated. (C) Cells
from all samples/batches are mapped to the FlowSOM grid, and assigned to their nearest metacluster. Cells are then aligned using the
metacluster-specific quantile conversion models (D) Two sets of BM samples with synthetic batch effects introduced in a population-specific
manner. (E) CytoNorm alignment was performed using a metacluster-specific alignment process (fine alignment). (F) Two sets of BM samples
generated with slightly different panels, but targeting the same cellular markers, resulting in significant batch effects. (G) CytoNorm is initially
performed on the whole dataset (coarse alignment) by mapping the entire dataset into a single metacluster, where H) subsequent FlowSOM
clustering allowed for further metacluster-specific alignment (fine alignment)

ASHHURST ET AL. 9

To demonstrate this strategy, we applied clustering and DR to a

dataset of brain cells from mock- or WNV-infected mice (Figure 3(A)).

The whole dataset was clustered using FlowSOM (Figure 3(B)), and

the clustered data were proportionally subsampled for plotting with

UMAP (Figure 3(C)). In this case, the number of cells extracted from

each sample were in proportion to the total cells recovered from each

brain, ensuring that DR plots accurately reflected sample composition

(Figure 3(D)). By examining expression heatmaps (Figure 3(E)) and

colored DR plots (Figure 3(F)) we manually determined cluster popula-

tion identities, and these annotations were applied to both the

subsampled and full datasets.

The choice of markers used to inform the generation of clusters/

DR results is dependent on the overall goal of analysis. Cellular

markers may be broadly categorized into two groups: static (stably

expressed) or dynamic (changing expression). Typically, statically

expressed markers are helpful for identifying consistent cell types

F IGURE 3 Clustering and dimensionality reduction using Spectre. (A) A dataset of cells isolated from mock- or WNV-infected CNS were used
to demonstrate clustering and DR in Spectre. (B) FlowSOM clustering was performed on the full dataset, which was C) then subsampled and
plotted using UMAP. “Infil. Macrophages” refers to infiltrating macrophages, as distinct from resident macrophages (microglia). (D) Parsing the
dataset by each experimental group reveals substantial changes to immune populations. (E–F) An examination of marker expression on each
cluster allows for a user-determined annotation into biological relevant cell types. (G) Analysis using PCA allows for visualization of the data
variance, and (H) the relative contribution of markers to the first two principal components

10 ASHHURST ET AL.

(e.g., T cells, B cells, etc.), whereas dynamic markers are helpful for iden-

tifying reactive cellular states (e.g., activated, resting, etc.). When seek-

ing to discover novel cellular populations or states, incorporating all

cellular markers may be of benefit, as both stable cell types and dynamic

cellular states will be captured in separate clusters. However, a more

selective approach may also be desired, such as using statically

expressed markers to capture known populations within clusters, and

then examining those stable populations for dynamic changes in activa-

tion status. Along with domain-specific knowledge about the expression

patterns of various markers, it is possible to identify markers that con-

tribute most to the level of variance across a given dataset. To do this

we can using PCA, (Figure 3(G)–(H)) to determine the relative contribu-

tion of each cellular marker to the overall variance of the dataset.

3.5 | Multi-level immune profiling

Many populations of interest, such as hematopoietic stem cells (HSC)

in the BM, are of very low frequency within individual samples. As

such, representation of these rare subsets may be extremely sparse

on DR plots, relative to more abundant populations. Moreover, more

nuanced clustering and analyses of such populations are often

desired, but the global data structures provided by more abundant

subsets of cells may dominate the analysis. To address this, we

extended our analysis approach to enable the exploration of data at

multiple levels. Upon clustering the complete dataset, clusters

representing rare or novel populations can be isolated and re-

clustered independent of other populations and thereafter annotated

in greater detail. Expanding on this approach, multiple lineages can be

split and profiled independently, then re-merged, retaining detailed

cluster annotations for combined plotting and quantitative analysis.

This process is conceptually similar to hierarchical approaches such as

hierarchical-SNE (h-SNE, [59]), but accommodates a more bespoke

tailoring of the analytical process.

To demonstrate this, we examined a dataset of BM HSCs gener-

ated by mass cytometry. Clusters containing HSC and progenitors

(denoted by CD117 expression) (Figure 4(A)) were extracted from the

full dataset, and subjected to independent clustering and DR (Figure 4

(B)). This independent analysis allowed for a more detailed assessment

of low frequency subsets (Figure 4(C)) that were not easily assessed in

the plots from the full dataset.

3.6 | Automated cellular classification and label
transfer between aligned datasets

A crucial application of computational analysis is discovery – defining

novel subsets and/or investigating experimental changes in novel sub-

sets or states in new diseases, tissues, or experimental conditions.

Analytical approaches to this often depend heavily on unsupervised

techniques, such as clustering and DR. Such analyses culminate in an

annotated datasets in which each cell is manually assigned a

F IGURE 4 Multi-level analysis for profiling of rare populations. (A) A UMAP plot (left) where clusters representing stem cell and progenitor
subsets were identified via CD117 expression. Through cross-referencing against FlowSOM clusters (right), these cells were (B) subjected to new
clustering, subsampling, and plotting using UMAP. (C) Expression color plots reveal low frequency cellular subsets that were difficult to otherwise
detect on the full UMAP plot

ASHHURST ET AL. 11

population label by the user. Alternatively, other studies seek to apply

a more repetitive analytical process, using semi-supervised tools, such

as automatic gating, to replicate a method of population identification

over a large number of samples. While effective, many of these tools

rely on some form of gating strategy and forgo the use of any

unsupervised techniques to expedite gating, thereby limiting the pos-

sible identification of new or complex/overlapping populations. In

contrast, machine learning-based approaches provide the opportunity

for automated transfer of cellular labels from an annotated dataset to

a novel dataset, following alignment of the datasets into a single fea-

ture space (as demonstrated in Figure 2). To facilitate this, we pro-

vided functions within Spectre to train and run classifiers, a type of

machine learning approach designed to predict the class of given data

points. As opposed to clustering, which groups cells together based

on marker expression, classifiers assign cells a label based on “train-
ing” data. This training data could be previously gated, clustered, or

annotated and is used by the classifier to determine how given fea-

tures (marker expression) relates to a class (cluster or cell phenotype).

Inspired in part by Seurat's mutual nearest neighbors approach

for data integration [24, 25], we reasoned that a simple nearest neigh-

bors approach could facilitate rapid label transfer between datasets. In

Spectre, we implemented a kNN classifier, which classifies unlabeled

cells based on the label of their k nearest neighbor within the training

dataset. To determine the accuracy of the kNN classifier, we evalu-

ated the classifier on a labeled dataset containing 169,004 cells using

train-test split – one half retained cellular labels and served as the

training dataset, and the other half had their cellular labels hidden,

and served as the testing dataset (Supplementary Figure 10(A–C)).

We investigated k value between 1 and 30, and found kNN's accuracy

in general to be excellent (>98.5%), peaking at 98.97% when k = 9,

and slowly decreasing thereafter (Supplementary Figure 10(D)).

To demonstrate the kNN classification process in an experimental

context, we aligned two datasets of BM cells using CytoNorm (shown

in Figure 2(D)–(E)), where the first dataset (batch A) contained labeled

cells, and the second dataset (batch B) did not (Figure 5(A)). Following

alignment, the data was split into the labeled and unlabeled datasets

F IGURE 5 Cellular classification and label transfer. (A) A dataset of two batches of BM cells, following alignment with CytoNorm. One batch
contains annotated clusters, and the other does not. (B) The dataset is split into each batch (labeled and unlabeled), and a kNN classifier trained
on the labeled dataset with k = 1. (C) The kNN classifier was then applied to the unlabeled dataset, (D) resulting in an accurate transfer of cellular
labels between datasets

12 ASHHURST ET AL.

(Figure 5(B)), where the kNN classifier was trained on the labeled cells

(batch A) and applied to unlabeled cells (batch B) with k = 1 (Figure 5

(C)). When we compared the predicted cellular labels to manually

annotated cellular labels, we found the classifier was able to accu-

rately transfer cellular labels between the two datasets (Figure 5(D)).

Merging of the two datasets resulted in a fully annotated dataset

(Figure 5(E)).

3.7 | Quantitative and statistical analysis

The endpoint of most analytical workflows is to make quantitative

and statistical comparisons between experimental groups. Many

components in this workflow can be automated to simplify the

processing steps and reduce the time taken to generate relevant

statistics and plots. To facilitate this, we have developed a series of

functions to summarize a dataset rapidly at either the cluster or cel-

lular population level, resulting in a series of summary tables. For

each population in each sample, these tables summarize the propor-

tion of cells, total cell counts, marker expression levels, and propor-

tion of cells that are ‘positive’ for each cellular marker, which can

then be used to generate quantitative plots. The generation of

grouped scatter or violin plots (Figure 6(A)) provide a simple

method to assess changes of a single feature (e.g., number of infil-

trating macrophages per brain) between experimental groups,

including grouped or pairwise statistical comparisons. However,

more global statistical analyses are often desired. The generation of

z-score heatmaps (Figure 6(B)) provide an overview of relative

changes between samples, with optional clustering on samples

(rows) or features (columns) based on similarity. Additionally, the

result of pairwise comparisons between groups can be indicated for

each heatmap column, revealing statistical significance

for uncorrected or false discovery rate (FDR)-corrected p-values.

Furthermore, PCA plots (Figure 6(C)) and volcano plots (Figure 6(D))

provide a further global view of how these immune features differ-

entiate samples within the experimental context.

4 | DISCUSSION

4.1 | Challenges in cytometric analysis

The rapid increase in the complexity and size of cytometry data has

made traditional analysis by manual gating untenable. This has led to a

myriad of computationally-driven analysis approaches (automated gat-

ing, clustering, DR, and classification) being developed. However,

these approaches come with limitations, in particular the lack of inter-

operability between them. Computational-based analysis tools are

often developed as standalone packages which operate on specific

data formats, making it difficult to combine them in a single analysis

pipeline. As a solution, we developed Spectre: an adaptable and easy-

to-use package for analyzing HD cytometry data. Spectre enhances

existing computational tools through strategic implementation and

customization of high-performance tools, and provision of wrapper

functions to simplify and improve their flexibility and interoperability.

This package expands on many of the key aspects of the CAPX

workflow [38] that has previously been utilized in a number of studies

[60–64].

4.2 | As the foundation for data in Spectre, data.
table allows for easy handling of large datasets

Many cytometry or single-cell analysis tools operate on custom data

formats, such as the flowFrame [37], (SCE) [26], or Seurat objects

[24]. Each custom data format may contain numerous elements, made

up of both base R and custom data formats. Typically, primary cellular

expression data is stored in a table or matrix, and separate elements

contain metadata for each cell (cell number, sample, group, etc.,) or

feature (marker names, parameters names, voltages, gene numbers,

etc). Importantly, manipulated data (such as ArcSinh and logicle trans-

formations or normalization) may be contained within the primary

data table/matrix, or structured separately. The complexity of these

custom formats, and the significant differences in structure between

them, results in difficulties in converting one data format to another.

While custom data formats may be convertible into other formats,

including conversion to one of R's base data formats, these conver-

sions are non-trivial, and often result in the loss of important meta-

data. Of note, cytometry data is typically structured with rows

representing cells, and columns representing cellular features, though

this is transposed in scRNAseq data.

The foundation of Spectre is built upon the data.table package,

which enhances R's base data.frame format. The efficiency of data.

table in performing basic data manipulation operations, such as filter-

ing, ordering, importing, and exporting, makes it suitable for

processing large HD cytometry datasets. While there are R packages

which operate on data.frame formats (e.g., dplyr [65]), our simple

benchmarking measurements show data.table to be faster when han-

dling large datasets (Supplementary Figure 1). The simple tabular for-

mat allows for interoperability between Spectre, basic R functions,

and other functions from cytometry or single-cell-specific packages,

by storing all the relevant information for each cell in a single, high-

performance table. Here, columns desired for use with each function

can be easily specified, and new columns that are added as a result of

analysis are easily identifiable through the use of regular expression

patterns (such as “CD4_asinh,” “CD4_aligned,” etc.). Column meta-

data in this context is less relevant for processing and analysis, but

can still be imported and managed with the main data should the user

choose to do so. By designing all our functions to operate on this sim-

ple data.table structure, we remove the requirements for users to con-

vert their data into specific formats for different functions, greatly

improving usability.

Functions in Spectre that perform data transformation, batch

alignment, clustering, and DR append results as separate columns to

the main dataset. In the rare occasion where results require more

memory than what is physically available (e.g., when processing a very

ASHHURST ET AL. 13

large dataset), users may periodically export the existing results to a

CSV file using either Spectre's write.files function or data.table's fwrite

function, discard columns which are not immediately required, and

import them back in using data.table's fread function when required.

This will free up more memory resource for subsequent experiment

without incurring any loss in flexibility and transparency.

F IGURE 6 Quantification and statistical analysis. Quantitative and statistical analysis of CNS samples. (A) Grouped dot plots with underlying
violin plots indicating the relative cells per sample for each population in the dataset. Pairwise statistical analysis for non-parametric data was
performed using a Mann–Whitney/Wilcox test, where p < 0.05 was considered significant. Importantly, data for each plot were not adjusted for
multiple comparisons. (B) The z-score for each column of data was calculated, and plotted using the make.pheatmap function. Each row
represents a sample, and each column represents a measured immune feature. Rows and columns were clustered using Euclidean distance.
Pairwise comparisons between experimental groups were calculated using a Mann Whitney/Wilcox test, and the significance results plotted as
significant (p < 0.05) or non-significant (p > 0.05) for each column. To adjust for multiple comparisons, p-value results were corrected using a FDR
correction, and results plotted as significant (p < 0.05) or non-significant (p > 0.05) for each column. (C) PCA results show the distribution of each
sample, and (D) volcano plots show the relative fold-change increase or decrease of each immune feature (X axis), and the inverse p-value of each
change (Y axis)

14 ASHHURST ET AL.

4.3 | Usage flexibility

We have demonstrated the use of Spectre through various workflows.

While they each illustrate an approach to analysis, they are flexible in

such a way that functions can be run in any order, and can be replaced

with others (including those that are not built into Spectre). For

instance, it is possible to run a DR tool on the dataset before cluster-

ing, or replace Spectre's run kNN classifier function with another

function (like a Decision Tree classifier [66]). For the latter, an addi-

tional step may be required to convert the data.table to another for-

mat that is accepted by the function. This is trivial for functions which

operate on R basic data structure-like matrix, and involve only calling

a transform function (e.g., as.matrix) built-in to data.table. For func-

tions which work on custom data structure such as SCE, flowFrame,

or Seurat object, each package contains helpful functions for creating

these objects from input data, usually a table with additional metadata

entries. Some tools may also require users to include only rows/col-

umns which are relevant. This can easily be done using functions

built-into the data.table package. We refer readers to data.table's

extensive documentation on their Github page (https://github.com/

Rdatatable/data.table) on how to perform those operations.

Additionally, most of Spectre's functions are designed such that

they do not rely on each other to operate. A function may simply be

executed on its own without having to run others beforehand. Some

functions require data to be in a particular layout with appropriate cal-

culations (e.g., calculating MFI across samples for heatmap creation

with make.pheatmap), but this can be achieved either with (using

write.sumtables) or without (using other functions or manual creation)

Spectre. In addition, Spectre's functions are equipped with parameters

that allow users to customize how they operate. The majority of these

parameters come with a set of default values that are based on the

original implementation of the tools. The capacity to run Spectre's

functions with either default or custom parameter values make Spec-

tre both simple and customizable .

4.4 | Docker for accessibility

Spectre provides wrapper functions to many existing computational

tools, and thus require users to install the corresponding R packages

before using them. Inadvertently, this creates a cycle of package

dependencies as these packages often rely on other existing R pack-

ages. Managing such dependencies has proven to be a challenge even

to advanced analysts, as there exists a myriad of ways to install,

remove, and update packages (e.g., CRAN, Bioconductor [67],

devtools [68]). Moreover, some packages rely on users to have other

softwares (e.g., Xcode in Mac, Rtools in Windows) or compilers avail-

able on their computer. This may pose as a major hurdle for those

who are not familiar with R. To address this, we made Spectre avail-

able as a Docker image. The image is a prepared environment loaded

with RStudio for users to interact with R code (write and run) and all

the libraries required by Spectre. By downloading the Docker image

and launching it as a self-contained computing environment, users will

be able to run their analysis without going through the complicated

setup process. While Docker introduces an additional layer between

user's physical computing resources and the analytical tools, previous

work by IBM indicates the performance degradation to be negligi-

ble [69].

In addition to making it easier for potential users to use Spectre,

Spectre's Docker image can also improve flexibility and transparency.

Instead of exporting and uploading every intermediate step in their

analyses, users can now simply perform their analysis in the Docker

container running Spectre's Docker image, and thereafter export them

out as Docker image and upload them in a public repository for future

investigators to download and either replicate or extend those ana-

lyses. The Docker image will store all data, variables, functions, and R

packages used in the analyses unless explicitly removed.

4.5 | Versatility of application

The structure of all forms of cytometry data, including flow, spectral

or mass, are inherently similar: each row is an individual cell, whilst

each column is an individual marker or feature measured on those

cells. The values in such a table indicate the signal intensity for each

individual marker within the panel on each cell. Thus, Spectre can be

used on datasets generated by both flow (including spectral) and mass

cytometry, following compensation (or spectral unmixing), and initial

cleanup gating. As a result, Spectre can also be used on other forms of

cellular data, such single-cell RNA seq data, following some additional

pre-processing steps. Additionally, Spectre can be used to analyze HD

imaging data, such as that generated by IMC, once cellular segmenta-

tion has been performed.

ACKNOWLEDGMENTS

This work was supported by a grant from the Marie Bashir Institute for

Infectious Disease and Biosecurity, The University of Sydney. This work

was supported in part by NH&MRC Project grant 1088242 and grant

from the Merridew Foundation to N.J.C.K. Authors T.M.A. and F.M-W.

are supported by the International Society for the Advancement of

Cytometry (ISAC) Marylou Ingram Scholars program. G.H.P. was

supported by the Australian Government Research Training Program

(RTP) Scholarship. A.G.S. is supported by the Australian Government

RTP Scholarship and The University of Sydney Postgraduate Merit

Award. We would like to acknowledge the contribution of our col-

leagues who inspired the design and implementation of Spectre.

AUTHOR CONTRIBUTIONS

Thomas Ashhurst: Conceptualization; data curation; formal analysis;

funding acquisition; investigation; methodology; project administra-

tion; resources; software; supervision; validation; visualization;

writing-original draft; writing-review & editing. Felix Marsh-Wake-

field: Conceptualization; data curation; formal analysis; investigation;

methodology; software; validation; visualization; writing-original draft;

writing-review & editing. Givanna Putri: Conceptualization; formal

analysis; investigation; methodology; software; validation;

ASHHURST ET AL. 15

https://github.com/Rdatatable/data.table)
https://github.com/Rdatatable/data.table)

visualization; writing-original draft; writing-review & editing. Alanna

Spiteri: Investigation; methodology; visualization. Diana Shinko: Data

curation; investigation; methodology; resources; visualization. Mark

Read: Conceptualization; methodology; supervision; validation;

writing-review & editing. Adrian Smith: Conceptualization; methodol-

ogy; resources; supervision. Nicholas King: Conceptualization; funding

acquisition; resources; supervision; writing-review & editing.

DATA AVAILABILITY

Spectre code and demonstration data used in this paper are available

at https://github.com/immunedynamics/spectre.

ORCID

Thomas Myles Ashhurst https://orcid.org/0000-0001-7269-7773

Felix Marsh-Wakefield https://orcid.org/0000-0002-6839-7628

Mark Norman Read https://orcid.org/0000-0002-1481-4780

Adrian Lloyd Smith https://orcid.org/0000-0002-0505-0344

Nicholas Jonathan Cole King https://orcid.org/0000-0002-3877-

9772

REFERENCES

1. Bendall SC, Davis KL, Amir EAD, Tadmor MD, Simonds EF, Chen TJ,

et al. Single-cell trajectory detection uncovers progression and regula-

tory coordination in human B cell development. Cell. 2014;157(3):

714–25.
2. Park LM, Lannigan J, Jaimes MC. OMIP-069: forty-color full spectrum

flow cytometry panel for deep Immunophenotyping of major cell sub-

sets in human peripheral blood. Cytometry A. 2020;97(10):1044–51.
3. Mair F, Prlic M. OMIP-044: 28-color immunophenotyping of the

human dendritic cell compartment. Cytometry A. 2018;93(4):402–5.
4. Nettey L, Giles AJ, Chattopadhyay PK. OMIP-050: a

28-color/30-parameter fluorescence flow cytometry panel to enu-

merate and characterize cells expressing a wide Array of immune

checkpoint molecules. Cytometry A. 2018;93(11):1094–6.
5. Mair F, Hartmann FJ, Mrdjen D, Tosevski V, Krieg C, Becher B. The

end of gating? An introduction to automated analysis of high dimen-

sional cytometry data. Eur J Immunol. 2016;46(1):34–43.
6. Brinkman RR. Improving the rigor and reproducibility of flow

cytometry-based clinical research and trials through automated data

analysis. Cytometry A. 2020;97(2):107–12.
7. Levine JH, Simonds EF, Bendall SC, Davis KL, Amir EAD, Tadmor MD,

et al. Data-driven phenotypic dissection of AML reveals progenitor-

like cells that correlate with prognosis. Cell. 2015;162(1):184–97.
8. Van Gassen S, Callebaut B, Van Helden MJ, Lambrecht BN, Dem-

eester P, Dhaene T, et al. FlowSOM: using self-organizing maps for

visualization and interpretation of cytometry data. Cytometry A.

2015;87(7):636–45.
9. Samusik N, Good Z, Spitzer MH, Davis KL, Nolan GP. Automated

mapping of phenotype space with single-cell data. Nat Methods.

2016;13(6):493–6.
10. van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mac

Learn Res. 2008;9:2579–605.
11. van der Maaten L. Accelerating t-SNE using tree-based algorithms.

J Mac Learn Res. 2014;15:3221–45.
12. McInnes L, Healy J, James Melville J. UMAP: uniform manifold

approximation and projection for dimension reduction; 2018. arXiv,

2018: p. 1802.03426.

13. Setty M, Tadmor MD, Reich-Zeliger S, Angel O, Salame TM, Kathail P,

et al. Wishbone identifies bifurcating developmental trajectories from

single-cell data. Nat Biotechnol. 2016;34(6):637–45.

14. Li H, Shaham U, Stanton KP, Yao Y, Montgomery RR, Kluger Y. Gating

mass cytometry data by deep learning. Bioinformatics. 2017;33(21):

3423–30.
15. Chen Y, Lakshmikanth T, Mikes J, Brodin P. Single-cell classification

using learned cell phenotypes. 2020. bioRxiv 2020.07.22.216002.

16. Kaushik A, Dunham D, He Z, Manohar M, Desai M, Nadeau K,

Less SA. CyAnno: a semi-automated approach for cell type annota-

tion of mass cytometry datasets; 2020. bioRxiv. 2020.08.

28.272559.

17. Chen H, Lau MC, Wong MT, Newell EW, Poidinger M, Chen J.

Cytofkit: a bioconductor package for an integrated mass Cytometry

data analysis pipeline. PLoS Comput Biol. 2016;12(9):e1005112.

18. Bruggner RV, Bodenmiller B, Dill DL, Tibshirani RJ, Nolan GP. Auto-

mated identification of stratifying signatures in cellular subpopula-

tions. Proc Natl Acad Sci USA. 2014;111(26):E2770–7.
19. Chevrier S, Crowell HL, Zanotelli VRT, Engler S, Robinson MD,

Bodenmiller B. Compensation of signal spillover in suspension and

imaging mass Cytometry. Cell Syst. 2018;6(5):612–20.e5.
20. Nowicka M, Krieg C, Crowell HL, Weber LM, Hartmann FJ,

Guglietta S, et al. CyTOF workflow: differential discovery in high-

throughput high-dimensional cytometry datasets. F1000Res. 2017;

6:748.

21. Weber LM, Nowicka M, Soneson C, Robinson MD. Diffcyt: differen-

tial discovery in high-dimensional cytometry via high-resolution clus-

tering. Commun Biol. 2019;2:183.

22. Van P, Jiang W, Gottardo R, Finak G. ggCyto: next generation open-

source visualization software for cytometry. Bioinformatics. 2018;34

(22):3951–3.
23. Finak G, Frelinger J, Jiang W, Newell EW, Ramey J, Davis MM, et al.

OpenCyto: an open source infrastructure for scalable, robust, repro-

ducible, and automated, end-to-end flow cytometry data analysis.

PLoS Comput Biol. 2014;10(8):e1003806.

24. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating

single-cell transcriptomic data across different conditions, technolo-

gies, and species. Nat Biotechnol. 2018;36(5):411–20.
25. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM

III, et al. Comprehensive integration of single-cell data. Cell. 2019;177

(7):1888–902.e21.
26. Amezquita RA, Lun ATL, Becht E, Carey VJ, Carpp LN, Geistlinger L,

et al. Orchestrating single-cell analysis with bioconductor. Nat

Methods. 2020;17(2):137–45.
27. Zeng C, Mulas F, Sui Y, Guan T, Miller N, Tan Y, et al. Pseudotemporal

ordering of single cells reveals metabolic control of postnatal beta cell

proliferation. Cell Metab. 2017;25(5):1160–75.e11.
28. Tran HTN, Ang KS, Chevrier M, Zhang X, Lee NYS, Goh M, et al. A

benchmark of batch-effect correction methods for single-cell RNA

sequencing data. Genome Biol. 2020;21(1):12.

29. Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, et al.

The human cell atlas. Elife. 2017;6:e27041.

30. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al.

Fast, sensitive and accurate integration of single-cell data with har-

mony. Nat Methods. 2019;16(12):1289–96.
31. Hao Y, Hao S, Andersen-Nissen E, Mauck III WM, Zheng S, et al. Inte-

grated analysis of multimodal single-cell data. 2020.

bioRxiv.2020.10.12.335331.

32. Lin Y, Ghazanfar S, Wang KYX, Gagnon-Bartsch JA, Lo KK, Su X, et al.

scMerge leverages factor analysis, stable expression, and

pseudoreplication to merge multiple single-cell RNA-seq datasets.

Proc Natl Acad Sci USA. 2019;116(20):9775–84.
33. Hahne F, Khodabakhshi AH, Bashashati A, Wong CJ, Gascoyne RD,

Weng AP, et al. Per-channel basis normalization methods for flow

cytometry data. Cytometry A. 2010;77(2):121–31.
34. Schuyler RP, Jackson C, Garcia-Perez JE, Baxter RM, Ogolla S,

Rochford R, et al. Minimizing batch effects in mass Cytometry data.

Front Immunol. 2019;10:2367.

16 ASHHURST ET AL.

https://github.com/immunedynamics/spectre
https://orcid.org/0000-0001-7269-7773
https://orcid.org/0000-0001-7269-7773
https://orcid.org/0000-0002-6839-7628
https://orcid.org/0000-0002-6839-7628
https://orcid.org/0000-0002-1481-4780
https://orcid.org/0000-0002-1481-4780
https://orcid.org/0000-0002-0505-0344
https://orcid.org/0000-0002-0505-0344
https://orcid.org/0000-0002-3877-9772
https://orcid.org/0000-0002-3877-9772
https://orcid.org/0000-0002-3877-9772

35. Van Gassen S, Gaudilliere B, Angst MS, Saeys Y, Aghaeepour N.

CytoNorm: a normalization algorithm for Cytometry data. Cytometry

A. 2020;97(3):268–78.
36. Trussart M, Teh CE, Tan T, Leong L, Gray DHD, Speed TP. Removing

unwanted variation with CytofRUV to integrate multiple CyTOF

datasets. Elife. 2020;9:e59630.

37. Hahne F, LeMeur N, Brinkman RR, Ellis B, Haaland P, Sarkar D, et al.

flowCore: a bioconductor package for high throughput flow cyto-

metry. BMC Bioinformatics. 2009;10:106.

38. Ashhurst TM, Cox DA, Smith AL, King NJC. Analysis of the murine

bone marrow hematopoietic system using mass and flow Cytometry.

Methods Mol Biol. 2019;1989:159–92.
39. Koutsakos M, Rowntree LC, Hensen L, Chua BY, van de Sandt CE,

Habel JR, et al. Integrated immune dynamics define correlates of

COVID-19 severity and antibody responses. Cell Rep Med. 2021;2:

100208.

40. Niewold P, Ashhurst TM, Smith AL, King NJC. Evaluating spectral

cytometry for immune profiling in viral disease. Cytometry A. 2020;

97:1165–79.
41. Monaco G, Chen H, Poidinger M, Chen J, de Magalh~aes JP, Larbi A.

flowAI: automatic and interactive anomaly discerning tools for flow

cytometry data. Bioinformatics. 2016;32(16):2473–80.
42. Dowle M, Srinivasan A. data.table: extension of data.frame. R package

version 1.13.0; 2020. https://CRAN.R-project.org/package=data.

table.

43. Parks DR, Roederer M, Moore WA. A new "Logicle" display method

avoids deceptive effects of logarithmic scaling for low signals and

compensated data. Cytometry A. 2006;69(6):541–51.
44. Van Gassen S, Callebaut B, Saeys Y. FlowSOM: using self-

organizing maps for visualization and interpretation of cytometry

data; 2020. http://bioconductor.org/packages/release/bioc/html/

FlowSOM.html.

45. Krijthe JH. Rtsne: T-distributed stochastic neighbor embedding using

a barnes-hut implementation; 2015. https://github.com/jkrijthe/

Rtsne.

46. Linderman GC, Rachh M, Hoskins JG, Steinerberger S, Kluger Y. Fast

interpolation-based t-SNE for improved visualization of single-cell

RNA-seq data. Nat Methods. 2019;16(3):243–5.
47. Konopka T. umap: uniform manifold approximation and projection. R

package version 0.2.5.0; 2020. https://CRAN.R-project.org/

package=umap.

48. Team RC. R: a language and environment for statistical computing;

2020. https://www.R-project.org/.

49. Wickham H. ggplot2: elegant graphics for data analysis. New York:

Springer-Verlag; 2016. https://ggplot2.tidyverse.org.

50. Kolde R. pheatmap: pretty heatmaps. R package version 1.0.12; 2019.

https://CRAN.R-project.org/package=pheatmap.

51. Kassambara A. ggpubr: 'ggplot2' based publication ready plots. R

package version 0.4.0; 2020. https://CRAN.R-project.org/package=

ggpubr.

52. Blighe K, Rana S, Lewis M. EnhancedVolcano: publication-ready vol-

cano plots with enhanced colouring and labeling. R package version

1.6.0; 2020. https://github.com/kevinblighe/EnhancedVolcano.

53. Beygelzimer A, Kakadet S, Langford J, Arya S, Mount D, Li S. FNN:

fast nearest neighbor search algorithms and applications. R package

version 1.1.3; 2019. https://CRAN.R-project.org/package=FNN.

54. Kuhn M. caret: classification and regression training. R package ver-

sion 6.0–86; 2020. https://CRAN.R-project.org/package=caret.

55. Moore WA, Parks DR. Update for the logicle data scale including

operational code implementations. Cytometry A. 2012;81(4):273–7.
56. Bendall SC, Simonds EF, Qiu P, Amir EAD, Krutzik PO, Finck R, et al.

Single-cell mass cytometry of differential immune and drug responses

across a human hematopoietic continuum. Science. 2011;332(6030):

687–96.
57. Weber LM, Robinson MD. Comparison of clustering methods for

high-dimensional single-cell flow and mass cytometry data. Cyto-

metry A. 2016;89(12):1084–96.
58. Belkina AC, Ciccolella CO, Anno R, Halpert R, Spidlen J, Snyder-

Cappione JE. Automated optimized parameters for T-distributed sto-

chastic neighbor embedding improve visualization and analysis of

large datasets. Nat Commun. 2019;10(1):5415.

59. van Unen V, Höllt T, Pezzotti N, Li N, Reinders MJT, Eisemann E, et al.

Visual analysis of mass cytometry data by hierarchical stochastic neigh-

bour embedding reveals rare cell types. Nat Commun. 2017;8(1):1740.

60. Vuckovic S, Bryant CE, Lau KHA, Yang S, Favaloro J, McGuire HM,

et al. Inverse relationship between oligoclonal expanded CD69- TTE

and CD69+ TTE cells in bone marrow of multiple myeloma patients.

Blood Adv. 2020;4(19):4593–604.
61. Marsh-Wakefield F, Ashhurst T, Trend S, McGuire H, Juillard P,

Zinger A, et al. IgG3 (+) B cells are associated with the development

of multiple sclerosis. Clin Transl Immunology. 2020;9(5):e01133.

62. Marsh-Wakefield F, Kruzins A, McGuire HM, Yang S, Bryant C,

Fazekas de St. Groth B, et al. Mass Cytometry discovers two discrete

subsets of CD39(�)Treg which discriminate MGUS from multiple

myeloma. Front Immunol. 2019;10:1596.

63. Shinko D, McGuire HM, Diakos CI, Pavlakis N, Clarke SJ, Byrne SN,

et al. Mass Cytometry reveals a sustained reduction in CD16(+) natu-

ral killer cells following chemotherapy in colorectal cancer patients.

Front Immunol. 2019;10:2584.

64. Hayashida E, Ling ZL, Ashhurst TM, Viengkhou B, Jung SR,

Songkhunawej P, et al. Zika virus encephalitis in immunocompetent

mice is dominated by innate immune cells and does not require T or B

cells. J Neuroinflammation. 2019;16(1):177.

65. Wickham H, François R, Henry L, Müller K. dplyr: a grammar of data

manipulation. R package version 0.8.5; 2020. https://CRAN.R-

project.org/package=dplyr.

66. Belson WA. Matching and prediction on the principle of biological

classification. J R Stat Soc Ser C Appl Stat. 1959;8(2):65–75.
67. Morgan M. BiocManager: access the bioconductor project package

repository. R package version 1.30.10; 2019. https://CRAN.R-

project.org/package=BiocManager.

68. Wickham H, Hester J, Chang W. devtools: tools to make developing

R packages easier. R package version 2.3.0; 2020. https://CRAN.R-

project.org/package=devtools.

69. Felter W,Ferreira A, Rajamony R, Rubio J. An updated performance

comparison of virtual machines and Linux containers. 2015 IEEE

International Symposium on Performance Analysis of Systems and

Software (ISPASS); 2015. p. 171–172.
70. Mersmann O. Microbenchmark: accurate timing functions. R package

version 1.4–7. CRAN; 2019.

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: Ashhurst TM, Marsh-Wakefield F,

Putri GH, et al. Integration, exploration, and analysis of high-

dimensional single-cell cytometry data using Spectre.

Cytometry. 2021;1–17. https://doi.org/10.1002/cyto.a.24350

ASHHURST ET AL. 17

https://cran.r-project.org/package=data.table
https://cran.r-project.org/package=data.table
http://bioconductor.org/packages/release/bioc/html/FlowSOM.html
http://bioconductor.org/packages/release/bioc/html/FlowSOM.html
https://github.com/jkrijthe/Rtsne
https://github.com/jkrijthe/Rtsne
https://cran.r-project.org/package=umap
https://cran.r-project.org/package=umap
https://www.r-project.org/
https://ggplot2.tidyverse.org
https://cran.r-project.org/package=pheatmap
https://cran.r-project.org/package=ggpubr
https://cran.r-project.org/package=ggpubr
https://github.com/kevinblighe/EnhancedVolcano
https://cran.r-project.org/package=FNN
https://cran.r-project.org/package=caret
https://cran.r-project.org/package=dplyr
https://cran.r-project.org/package=dplyr
https://cran.r-project.org/package=BiocManager
https://cran.r-project.org/package=BiocManager
https://cran.r-project.org/package=devtools
https://cran.r-project.org/package=devtools
https://doi.org/10.1002/cyto.a.24350

	Integration, exploration, and analysis of high-dimensional single-cell cytometry data using Spectre
	1 INTRODUCTION
	1.1 High-dimensional analysis tools
	1.2 Limitations of existing algorithms and toolkits
	1.3 Spectre for analysis of large and complex HD cytometry datasets

	2 METHODS
	2.1 Sample preparation and acquisition
	2.2 Data management in R via data.table
	2.3 Data pre-processing and transformation
	2.4 Batch alignment and integration
	2.5 Clustering of cells/events
	2.6 Dimensionality reduction
	2.7 Plotting and visualization
	2.8 Aggregation and summary data
	2.9 Heatmaps
	2.10 Group and volcano plots
	2.11 Classification

	3 RESULTS
	3.1 Spectre facilitates comprehensive end-to-end integration and analysis of large HD cytometry datasets
	3.2 Data management and pre-processing
	3.3 Integrating data from multiple batches or experiments into a single feature space
	3.4 Clustering and dimensionality reduction strategies
	3.5 Multi-level immune profiling
	3.6 Automated cellular classification and label transfer between aligned datasets
	3.7 Quantitative and statistical analysis

	4 DISCUSSION
	4.1 Challenges in cytometric analysis
	4.2 As the foundation for data in Spectre, data.table allows for easy handling of large datasets
	4.3 Usage flexibility
	4.4 Docker for accessibility
	4.5 Versatility of application

	ACKNOWLEDGMENTS
	 AUTHOR CONTRIBUTIONS
	 DATA AVAILABILITY
	REFERENCES

