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Modeling and simulation (M&S) techniques provide a platform for knowledge integration and hypothesis testing to gain
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preclinical mechanistic modeling.
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AGENT-BASED MODELS: INTRODUCTION AND

APPLICATIONS

The model-based drug discovery and development paradigm

is gaining traction in the pharmaceutical industry. There has

been a near constant flow of new terms introduced into the

literature1 in an attempt to capture this phenomenon:

“MBDD,”2 “model-facilitated” or “model-informed drug devel-

opment,”3 “Quantitative and Systems Pharmacology,”4 and

“pharmacometrics.” Large pharmaceutical companies have

begun to review, quantify, and report the successes derived

from the adoption of a model-based strategy, providing a

thorough description of its implementation and impact.5–7

The US Food and Drug Administration (FDA) recently uti-

lized mechanistic model-based methodologies to design a

postmarketing clinical trial8; serving as a clear demonstration

of the increasing confidence in and adoption of model-based

techniques in pharmacology.
Many of the methodologies utilized to support the deploy-

ment of M&S strategies are recurrent across companies,

forming a key component of the “learn and confirm” drug

discovery and development paradigm.9 Such methodologies

typically include, among others, pharmacokinetics and

pharmacodynamics modeling (PK/PD), statistical design

methods, and signaling network reconstruction methods.

Such techniques can be applied to various stages of the

drug development process, with the capacity to inform

experimental design, “go/no-go” decisions, preclinical devel-

opment, and portfolio prioritization.
Wider adoption of M & S in novel therapeutic design

requires the development of techniques capable of assess-

ing whether a putative target will yield a desired disease

outcome.10 Capturing heterogeneous biological systems

with phenomena occurring across distinct time and length

scales in a single model is a challenging yet frequent

requirement in target evaluation and selection.
ABM is used sparingly in a pharmaceutical context. How-

ever, it is equipped to address the issue of putative target

evaluation, and ultimately, to provide a means of consolidat-

ing existing mechanistic understanding into a platform for

hypothesis testing and decision support. The use of ABM is

increasing within the basic, social, and ecological sciences,

providing novel insights into complex systems and engi-

neering challenges.11

This tutorial focuses on providing an overview of the

ABM methodology within a systems pharmacology context.

ABM is an M&S technique characterized by emphasis on

understanding how population-level behaviors emerge from

the aggregate interactions of individuals, both with the envi-

ronment and each other.12 ABMs are composed of individ-

ual entities, known as agents; each agent exists in a well-

defined state, determined by the agent’s attributes and

location at a specific point in time. A transition into an alter-

native state is governed by a predetermined rule-set

designed to capture the agent’s interactions with other

agents or the environment. Using these rules, agents calcu-

late how to respond to features and stimuli within their local

environment. The aggregate effects of these individual deci-

sions lead to the emergence of system-wide patterns and

behaviors that are not explicitly programmed or intuitively

understood from the rules alone. In designing ABMs,

hypotheses can be developed as to how individual compo-

nents or pathways contribute to tissue- or organism-level

effects: hypotheses that may be examined further with

experimental or clinical studies.13

In the following sections we draw on examples from both

the basic sciences and the pharmaceutical development

process to illustrate how an ABM approach can provide

value in the context of preclinical target evaluation. Specifi-

cally, we focus on three key areas where ABMs are advan-

tageous to other M&S techniques: the ability to serve as a

platform for knowledge integration (Application 1), to incor-

porate heterogeneity (Application 2), and to model phenom-

ena occurring across different temporal and spatial scales,

often through incorporating other modeling techniques in a

process known as hybridization (Application 3). The appli-

cation of these strengths is further highlighted in our case

study, which demonstrates how an ABM approach is used
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to systematically analyze two intervention strategies in the
autoimmune disease, experimental autoimmune encephalo-
myelitis (EAE). As the case study progresses, we identify
key design and implementation issues associated with the
agent-based approach, as well as engineering-inspired
techniques and design principles available to tackle these
issues. The supplementary information provides links to
additional ABM tools (Table S1), resources and tutorials
(Table S2) including hands-on examples for the interested
reader.

ABM Application 1: a platform for knowledge

integration, hypothesis testing and experimental

design in studies of acquired immunity
As preclinical R&D programs progress, there is a need to

translate knowledge between multiple researchers from var-

ious disciplines and, despite increasing knowledge, target-

able mechanisms are always to some extent incompletely

understood. A number of articles have highlighted the diffi-

culties associated with embedding information in equation-

based techniques and suggest that the conceptual models

developed to understand a biological system may not be

fully represented in the resultant equations.14–17

Adopting an ABM approach permits the consolidation of

existing information into a software platform capable of rapid

hypothesis testing and provides a means of identifying key

features of a mechanistic target.16 An ABM approach is

advantageous as a knowledge-integration platform because:

(i) An ABM has the ability to capture phenomena occurring

across spatiotemporal scales; (ii) the highly visual output of

ABMs affords an effective medium for communication within

interdisciplinary teams who may not be au fait with advanced

mathematical notation18; and (iii) an ABM permits the emer-

gence of phenomena from low-level assumptions (discussed

further in “Agent Rules”) offering a unique means of identify-

ing knowledge gaps.13 When high-level properties of an

ABM do not emerge as anticipated this provides evidence

that the hypothesis on which the model is built is false.
The ability of ABM to provide a platform for knowledge

integration, hypothesis testing, and experimental design has

been used to study a key mechanistic target in vaccinology:

the germinal center.19 The germinal center is a transient

microenvironment where B cells enter a state of accelerated

evolution to form a robust humoral immune response against

a single pathogen.20 Based on constraints obtained from the

literature, Meyer-Hermann et al.21 exploited the emergent

property of ABMs to test the veracity of different hypotheses

regarding B-cell selection. In that study, the authors com-

pared models developed for each proposed theory and were

able to reject those failing to reproduce experimentally

observed kinetics.21 This ABM was further developed to

incorporate the effects of Toll-like receptor 4 (TLR4) signaling

on the germinal center and inform experimental studies.22 In

silico simulation was used to develop novel hypotheses and

to identify critical timepoints and conditions to test in vivo.

This combined experimental and theoretical approach

yielded a novel mechanistic insight into the impact of TLR4

signaling on the production of high-affinity antibodies.

ABM Application 2: a tool to understand the molecular
mechanisms contributing to patient variability
The use of M&S techniques to inform clinical trial design
can demonstrably reduce the number of required studies
and maximize the probability of success, as evidenced by
several successful evaluations reviewed in the literature.3

However, patient heterogeneity can arise from genetic,
molecular, and tissue levels of organization, thus making
the anticipation of patient-specific responses challenging.

Top-down data-driven approaches, typically used to find
patterns in existing datasets, provide value in addressing
the issue of patient heterogeneity by stratifying patients on
the basis of efficacy biomarkers, but often fail to provide
mechanistic explanations for the disease-associated pat-
terns that are discovered. Deriving a mechanistic under-
standing of how heterogeneity can arise in biological
systems on a fundamental level provides a better under-
standing of why one patient will respond differently to
another. Equation-based models such as ordinary differen-
tial equations, which typically provide averaged approxima-
tions of interactions occurring in well-mixed space, can
incorporate heterogeneity to some extent through parame-
ter perturbation. However, as system complexity increases,
modeling cellular heterogeneity may necessitate the dupli-
cation of large portions of model structure for each distinct
cell population in situations where parameter adjustment
alone is insufficient.

The ability to describe individual molecules, cells, or
patients provides a useful means of describing the underly-
ing mechanisms, in addition to stochastic events, which
contribute to heterogeneity. The ability of ABM to perform
“patient-specific” in silico studies has been described in a
hypothetical proof-of-principle study, which simulated clini-
cal trials of anti-cytokine therapy.23 In this study, key mech-
anisms relating to dynamics of the innate immune response
in the context of systemic inflammatory response syndrome
and multiple organ failure were described using an ABM
approach. The resulting simulation of treatment regimes
produced outcomes qualitatively similar to those reported in
the literature, with none of the simulated therapies showing
a statistically significant improvement in mortality rates.
This simple model did not stratify patient subsets; however,
it did provide insight into the robustness of innate immune
system responses to varying therapeutic interventions, and
shows how negative results yielded from quantitative sys-
tems pharmacology studies can inform key decisions in tar-
get evaluation.

ABMs have since been used to stratify patients on the
basis of mechanistic understanding of spinal cord and vocal
fold pathologies. An ABM approach undertaken by Solo-
vyev et al.24 combined data regarding blood flow, skin
injury, inflammation, and ulcer formation to study the pro-
pensity of spinal cord injury (SCI) patients to undergo ulcer
formation. The simulation predicted a higher propensity for
ulcer formation in SCI patients, thus identifying a high-risk
patient subset.24 A similar approach was undertaken to
develop personalized treatment strategies in the context of
vocal fold injury, where a high degree of patient variability
can make it difficult to predict patient-specific disease pro-
gression and treatment responses. Li et al.25 used an ABM
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approach to consolidate existing information of inflamma-
tory mediators and used this information to determine opti-
mized treatment strategies.

ABM Application 3: harnessing spatiotemporal
resolution to probe mechanistic targets occurring
across distinct space and timescales
While systems pharmacology approaches have been suc-
cessfully applied to tackle key issues in oncology, for
instance, with the use of an integrative systems approach
to quantify anticancer drug synergy in imatinib-resistant
chronic myeloid leukemia,26 clinical trials in oncology still
have the highest failure rate in comparison to other thera-
peutic areas.27 In complex processes such as tumor forma-
tion, probing targetable mechanisms can be difficult owing
to variability arising on multiple scales; cancerous cells
adapt at genetic and molecular scales to survive in ever-
changing environments, altering cellular phenotypes and
therefore treatment efficacy, as documented in studies of
the hypoxic environment in tumor centers.28–30 From a sys-
tems pharmacology perspective, there is a need to develop
techniques capable of capturing mechanisms occurring
across different time- and length-scales that affect disease
prognosis and patient response to treatment.31

Ordinary differential equations, which abstract interac-
tions occurring in physical space through the use of contact
frequency terms, are suitable in many cases to model bio-
logical systems, and can be transformed into partial differ-
ential equations to incorporate space explicitly. However,
when the biological system of interest is large and complex,
it can be difficult to apply these techniques to describe both
spatial variation and capture stochastic processes.32

ABMs, owing to their explicit representation of space and
ability to capture events occurring across multiple scales,
can capture phenomena occurring on distinct spatiotempo-
ral scales, resulting in what are typically referred to as mul-
tiscale models.33 A common method for developing
multiscale models is through the hybridization of an ABM
with other techniques to simultaneously represent time and
length scales at higher or lower orders of magnitude.

Athale and Deisboeck34 developed an ABM to examine
the effects of a molecular switch (controlled via epidermal
growth factor receptor (EGFR) signaling) on tumor spatial
dynamics in the brain. The model predicted that this switch
could affect tumor expansion, leading to the development
of novel hypotheses on the posttranslational regulation of
protein expression. A particularly interesting feature of this
model is the explicit modeling of feedback effects from
single-cell decisions on overall tumor-growth dynamics.

A hybrid agent-based approach incorporating PK/PD
modeling approaches was developed to explore the dynam-
ics of tumor growth, infusion, and penetration of the biore-
ductive drug tirapazamine (TPZ).35 In that study, a PK/PD
methodology was applied to model factors such as hydro-
gen ion production, nutrient distribution, and drug concen-
tration, while an agent-based methodology was used to
model each individual cell over space and time, capturing
interactions between cells and with the tumor microenviron-
ment. Combining both types of modeling approach enabled
determination that the drug was incapable of reaching the

edge of the hypoxic region of the tumor, partially due to

consumption of the drug as it diffused into the tumor. This

example of hybrid ABM-PK/PD model highlights the ability

of ABM to integrate different modeling techniques, over-

coming the respective limitations associated with using

either modeling approach in isolation.

CASE STUDY: PROBING THE EFFICACY OF TWO

PUTATIVE TREATMENT STRATEGIES IN AN IN SILICO

MODEL OF AUTOIMMUNE ENCEPHALOMYELITIS

In complex multifactorial pathologies, such as multiple scle-

rosis, numerous mechanisms may ameliorate disease.

Lead target identification and optimization requires a sys-

tematic screening of these mechanisms. In this section we

describe how the ABM-specific strengths described above

make this modeling approach suitable for exploring two

putative intervention strategies in an experimental animal

model of multiple sclerosis. We will then utilize this model

as a case study for designing and developing an ABM in

later sections of this tutorial.
Multiple sclerosis is a neurological disorder in which mye-

lin, a substance that coats the neurons of the central nerv-

ous system (CNS) to ensure efficient propagation of neural

signaling, is inappropriately targeted by the immune sys-

tem. The resultant damage leads to a wide range of symp-

toms occurring across a spectrum of severity.
Much of the current understanding of multiple sclerosis

pathogenesis has been obtained from animal models of the

disease such as EAE.36 This well-established experimental

model has yielded mechanistic insights into monophasic,

relapsing-remitting, or chronic forms of the disorder. Impor-

tantly, a murine EAE model has shown that disease is in part

mediated through the action of encephalitogenic CD4Th1

cells.37 Furthermore, the killing of encephalitogenic CD4Th1

cells in a coordinated effort from regulatory CD41 and CD81

T cells mediates recovery from disease.38,39 This led to the

proposal that inhibition of T-cell receptor signaling using a

monoclonal antibody against CD3 might target encephalito-

genic T cells, thereby either preventing EAE or expediting its

recovery. Anti-CD3 therapy was first used to treat transplant

rejection (muromonab) and is currently being investigated for

the treatment of other autoimmune conditions.
In addition, the importance of the spleen in recovery from

EAE has been highlighted in rats: in contrast to the acute

symptoms of control animals, splenectomized rats dis-

played symptoms of chronic disease following EAE induc-

tion.40 To consolidate experimental findings gained from

animal EAE models and to systematically investigate how

splenectomy or anti-CD3 treatment could affect the pro-

gression of EAE, an agent-based model (ARTIMMUS) was

developed.41 In the following sections we will use ARTIM-

MUS to introduce the key components of an ABM, illustrate

how to develop an ABM using a principled design approach,

and show how such an approach has the potential to inform

key decision-making processes in the drug development

process.
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Key components of an ABM
An ABM contains four main components: 1) agents; 2) the

environment within which the agents exist; 3) a rule-set gov-

erning relationships and means of interaction between

agents and their environment; and 4) the timescale over

which the simulation is executed. The system’s overall

behavior emerges from the collective interactions of these

components over time. These key components and terminol-

ogy relating to ABM are illustrated in Figure 1 and Table 1.

Agents. The agents of an ABM are autonomous, self-

directed entities that are designed to represent individual

biological components. Each agent is associated with a set

of states in which it may exist, and which define its behav-

ior; this is referred to as a finite-state machine. Some

states are mutually exclusive, while others are orthogonal
(simultaneous states), allowing finite state machines to cap-
ture complex biological behaviors. Importantly, an agent
only has local information available at a given moment in
time. Decisions and behaviors therefore arise due to factors
in an agent’s local neighborhood, or through interactions
with neighboring agents.

We now consider modeling a key cell type from our case
study, the microglia, as a state machine using the Unified
Modeling Language (UML), a set of diagrammatic tools for
designing software-based systems. Figure 2 depicts the
states in which a microglia may exist. Microglial cells exist in
immature and mature states. While immature, they are more
phagocytic than when mature. Both immature and mature
microglia are able to express MHC-II molecules. Microglia do

Figure 1 Structure of an ABM: Agents (shown as blue and orange spheres) are individual entities capable of maintaining their associ-
ated attributes with respect to their local environment and governing rules. The environment in which an agent exists provides a con-
text for their interactions. The aggregate behaviors of the agents can then lead to the emergence of complex patterns and behaviors.
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not exist indefinitely, and expire after some period of time

(depicted as a ringed black circle in Figure 2), indicating that

the component is destroyed.

Agent rules. An agent uses a predefined rule-set to assess its

internal state in response to factors in the agent’s local environ-

ment or neighborhood. Should an agent be in a situation where

the requirement of a rule is met, whether due to a change in the

agent’s attributes or within a set location in the environment, the

state of that agent is changed. An agent’s rule set can range

from simple Boolean statements operating over the agent’s

attributes, to more sophisticated mechanisms that relate agent

inputs and outputs such as differential equations16 and meta-

bolic models.17 Agent rules also offer a means of introducing

stochasticity through probabilistic events, allowing for an

approximation of behaviors in nondeterministic systems.
In our case study we see an example of a rules governing

microglia behavior (Figure 2). The transition of a microglia

from a highly phagocytic state to one of reduced phagocytic

capacity depends on the cell undergoing maturation. Matura-

tion occurs some time into their lifespan, represented by

k(maturation), but may also be induced through perception

of a sufficient concentration of type 1 cytokine. Perception of

sufficient concentration of type 1 cytokine induces tumor

necrosis factor alpha (TNF-a) secretion in microglia.

Agent environment. ABMs are usually spatially resolved,

with agents occupying specific locations in space rather than

existing in a well-mixed continuum. Space in an ABM is anal-

ogous to the physical spatial environments within which bio-

logical entities are contained and interact, enabling complex

biological structures to be captured within the model. ABMs

can contain multiple different spatial environments, typically

referred to as compartments, and can allow agents to move

between them. In ARTIMMUS a microglia may only reside in

the CNS compartment while other agents such as T cells

may migrate between different compartments.

Timescales and granularity. Time is typically calculated

within an ABM by dividing the total time over which the bio-

logical system is being simulated into discrete time-steps.

At each time-step, an agent must determine how to

respond to factors in its environment, with respect to its

associated rule-set and current state. In ARTIMMUS each

agent must determine how to respond to external stimuli on

the basis of its current state and governing rule-set every

10 minutes. Thus, the agent may show different responses

to the rule-set throughout the course of the simulation. In

addition, ABMs can incorporate phenomena occurring at

different timescales. Population-level ordinary or partial dif-

ferential equations can be used to represent soluble factors

or small-scale molecules, and these can be solved on a

per-agent basis within an ABM.54 Modeling these small-

scale factors through population approaches instead of as

explicit agents can save considerable computational power.

Furthermore, such multiscale modeling reduces the compu-

tational expense incurred if the highest resolution timescale

were to be used for each phenomenon

Constructing an ABM. As with any systems pharmacology

approach, ABMs are not without their limitations. ABMs are

designed to directly capture attributes and states of individual

components; population counts and rates of change emerge

during simulation execution rather than being explicitly speci-

fied. Accordingly, ABMs can be difficult to describe suc-

cinctly, and they may require more data to develop, and

significant software engineering expertise to implement. For

reasons discussed in “Calibrating ABM” and “Exploring Sim-

ulation Behavior,” an ABM must be executed multiple times

to obtain representative outputs and to ensure robust devel-

opment and confidence in results.42,43 As such, ABM devel-

opment can require significant time and computational

infrastructure. Throughout this section we describe how the

key components from the previous section are developed

into an ABM by dividing the process into three key stages:

design, implementation, and validation. We illustrate how

some ABM-associated issues can be mitigated through the

application of well-established engineering practices, and

detail the approaches used in the design of ARTIMMUS.

Table 1 Table of ABM terminology

Entity An independent element of the model, such as a

cell or protein.

Finite state machine A finite state machine consists of a set of states,

which may include substates, some of which

are orthogonal (simultaneous states). A finite

state machine may exist in only one state for

each orthogonal group at a time.

Agent An autonomous, self-directed representation of

an entity, operating as a finite-state machine.

Space Computational representation of the physical spa-

tial compartments within which agents are

contained.

Environment Features in space, which provide a context for

agent interactions and behaviors, may contain

distributions of molecular concentrations that

both influence and can be influenced by agent

behavior.

Neighborhood The local environment in which an agent exists,

often described as the agents adjacent to, or

in contact with a specific agent.

Neighbor An agent that exists within the neighborhood of

another agent.

Model A nonexecutable description of a system, which

may be described in an abstract manner, or for

a platform-specific implementation as a

simulation.

Simulation An executable implementation of a model

specification.

Step An iteration in time of a discrete-event simulation.

Hybridization Using a combination of modeling techniques to

capture aspects of the system at different

scales in a tractable manner, to overcome the

limitations associated with using each tech-

nique in isolation.

Multiscale A model combining processes occurring at differ-

ent orders of magnitude of time and length.

Richness The detail contained within an agent, environment

or model; comprising internal representations

of properties such as cell-surface protein lev-

els, gene expression, etc.
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Stage 1: designing an ABM
Principled design frameworks as standardized protocols for

ABM development. The adoption of standardized software

practices is a necessary step in ensuring that biomedical

software is readable, scalable, and usable.44,45 Principled

design frameworks that aim to enforce a robust model

development methodology facilitate these goals. Grimm

et al.46 proposed a “three-block” standard protocol for

describing ABMs termed ODD (overview, design concepts,

and details). The three blocks are subdivided into seven

stages: Purpose, State variables and scales, Process over-

view and scheduling, Design concepts, Initialization, Input,

and Submodels. A framework for the development of com-

plex systems models, independent of either domain or

modeling techniques, termed the CoSMoS (Complex Sys-

tem Modeling and Simulation) process, has since evolved

comprising an iterative process of model refinement and

implementation.47

Irrespective of the specific protocol, a principled design

framework must provide a focus on the underlying research

question and current biological understanding. This is par-

ticularly relevant when one considers that drug develop-

ment relies heavily on the quality of published preclinical

data27; however, studies conducted by Amgen (Thousand

Oaks, CA), with a view to confirming published results

important to their R&D efforts, could only reproduce similar

findings in 11% of cases.27 If an ABM is to be used as a

means of knowledge integration, then the inclusion, or

omission, of specific data used to inform a model should be

appropriately justified. An argumentation structure can

ensure that the thought processes behind model composi-

tion and design decisions are transparent and readily avail-

able for scientific scrutiny.48 Such an approach takes

inspiration from critical systems engineering, e.g., aircraft

design, where key decisions are presented as arguments

over evidence.48

Figure 2 Microglia modeled as agents using the UML. The modeling of microglia in ARTIMMUS. Microglia exist only in the CNS. The
only MHC:peptide complex that they present is MHC-II:MBP. This presentation requires the phagocytosis of a neuron and is probabilis-
tic. A small proportion of microglia expresses MBP immediately, represented by k(basal expression). This is to reflect the fact that the
physiological turnover of neurons (which is not in itself represented in the domain model) will result in their phagocytosis by microglia
and the presentation of MHC-II:MBP complexes. Microglia exist in immature and mature states. While immature they are more phago-
cytic than when mature. Maturation occurs some time into their lifespan, represented by k(maturation), but may also be induced
through perception of a sufficient concentration of type 1 cytokine. Perception of sufficient concentration of type 1 cytokine induces
TNF-a secretion in microglia. Both immature and mature microglia are able to express MHC-II molecules. Microglia do not exist indefi-
nitely, and expire after some period of time, represented by k(expire). Figure adopted from Read et al.40
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Although there is currently no clear consensus on a

standardized protocol for developing ABMs, key features

remain consistent across most methodologies: (i) designing

an ABM, (ii) implementing an ABM, and (iii) validating an

ABM. These processes can be further subdivided, using

existing CoSMoS terminology47 as follows: (1) defining a

research context; (2) developing a nonexecutable model of

the underlying biological system: the domain model; (3)

developing a simulation specification: the platform model;

(4) implementing a simulation: the simulation model; (5) cal-

ibration and analysis of the simulation, and (6) simulation

validation. In the following sections we further describe

these steps and show how they have been applied to the

development of ARTIMMUS.

Defining a research context. The design and implementa-

tion decisions made when constructing an ABM are influ-

enced by the overarching scientific objectives of the work,

and simulation results are interpreted in this context. As

such an ABM should not be considered a “general purpose”

description of a system. By extension, an ABM should not

be used outside of its original scope, or within a different

research context, without considering whether the existing

abstract representation of the system is still fit-for-purpose.
It is important to determine whether an ABM approach is

the appropriate technique to apply for a given problem. As

highlighted under “Constructing an ABM,” above, the tech-

nique is not without limitations and therefore the modeling

approach that is most suited to the research question

should be applied. A basic scheme for selecting a bottom-

up modeling approach is presented in Figure 3.

Developing a domain model. The initial stage of ABM

development should scope the extent of the biological sys-

tem to be captured. This entails creating a “domain model,”

a nonexecutable model focusing purely on biological con-

cerns, disregarding any consideration of how the biology

will actually be implemented and simulated. The domain

model should describe the states, relationships, and meth-

ods of interaction (the rule-set) for the biological entities

being captured. The ARTIMMUS domain model describes

the cell types to be captured, how their interactions influ-

ence one another’s behavior, and the environment in which

they exist, but does not specify how they are to be

implemented.

Developing a platform model. The next stage in construct-

ing an ABM is to delineate how the domain model is to be

implemented, an artifact we term the platform model. This

is achieved by abstracting biological processes into mathe-

matical constructs to move from the domain model towards

a simulation. There are numerous ways in which a domain

model might be implemented as a piece of software, the

platform model represents the software specification that

principled software engineering frameworks advocate creat-

ing, as inappropriate decisions and abstractions can render

the simulation an inadequate reflection of the biology.

Key Components of ARTIMMUS

Agents
CD4Th1 and CD4Th2 cells, CD4Treg and CD8Treg cells,
microglia, dendritic cells, and neurons were identified as hav-
ing critical roles in the emergence of EAE are included in
ARTIMMUS as agents. Figure 4 provides an abstract depic-
tion of the major cell types involved in EAE autoimmunity and
its associated recovery.

Agent Rules
Following in silico immunization, agents respond to features in
their local environment based on low-level rules informed by the
relevant literature as specified in SUPPLEMENTARY FIGURE 1
of Read et al.41 An example is provided in Figure 2 to illustrate
this.

Environment
An agent may exist in one of five spatial compartments: the
CNS, the draining cervical lymph node (CLN), the spleen, a
secondary lymphoid organ (SLO), specifically a peripheral
lymph node and a connecting circulatory system. This infor-
mation is summarized diagrammatically in Figure 5.

Time
The simulation starts with immunization and typically runs for
60 days postimmunization. Time is discretized into 10-minute
steps.
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Figure 3 The capacity for various types of model to capture spatial
resolution and cellular heterogeneity: When determining the appro-
priate modeling technique to employ it is important to consider the
spatiotemporal scales relevant to the system and the heterogeneity
of the entities of interest. Ordinary Differential Equations (ODEs)
and Physiologically Based Pharmacokinetic (PBPK) models cannot
capture systems with explicit spatial resolution (although compart-
mentalized systems are possible), relying on the abstract notion of
well-mixed space. Partial Differential Equations (PDEs), and thereby,
coupled systems of ODEs, are capable of spatial resolution, but to
capture heterogeneous cellular phenotypes is often intractable.
State-based modeling approaches enable heterogeneous pheno-
types among cell populations but cannot in themselves capture
spatial resolution (although they can model multiple, spatially discon-
nected compartments). ABMs incorporate state-based systems in
spatial environments; as such, ABMs can capture both heterogene-
ous cell populations with an explicit notion of space and time.
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The biological concepts captured in the domain model
are translated into a software specification, and the archi-

tecture and organization of the simulation software are
designed. It is important that any explicit reference to emer-

gent system-level properties that might be captured in the
domain model, used to indicate how these properties

emerge from the interactions of the biological components,
are omitted from the platform model. Such properties

Figure 4 Capturing the emergent phenomena of EAE: An expected behaviors diagram sets the research context of the ABM. This is
achieved by depicting the phenomena observed in the murine EAE model, and the behaviors manifesting from cellular interactions
hypothesized to be responsible for them. Figure adopted from Read et al.41

Figure 5 Spatial compartments within ARTIMMUS: The spatial compartments of the domain model, and the manner in which cells
may migrate between them. Figure adopted from Read et al.41
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should emerge in the simulation, thereby validating it as a

suitable abstraction of the biology. Figure 4 depicts how

broad system-level behaviors in ARTIMMUS are hypothe-

sized to emerge from effects that cell populations exert on

one another, but was not used in implementing ARTIM-

MUS; Figure 2 was used, depicting the dynamics of an

individual microglia.
A further key consideration for a platform model is how

users will interact with the simulation. Graphical User Inter-

faces are useful for assessing whether the code and indi-

vidual agents perform as expected at any given moment in

time, and offer an intuitive understanding of what is hap-

pening in the simulation.

Stage 2: implementing an ABM
Simulation Model. The simulation model represents a

computer code implementation of the platform model of

Stage 1. Code development can be time-consuming and

require specific software engineering expertise; thus, to

expedite matters an increasing number of toolkits and ABM-

specific software libraries have become available. These

offer programmers a high level of control in development

while providing commonly required functionality and data-

structures. A list of commonly used development tools is pro-

vided in Table S1.
During simulation implementation, state transitions

detailed in the specification are typically expressed using

control (“if – then”) statements using a programming lan-

guage. Languages of the Object Oriented programming

(OOP) paradigm such as JAVA50 have proven a popular

and natural means of implementing ABM.51 OOPs define

classes, which are templates for program components and

describe how they interact. A class is instantiated to obtain

an object and its associated individual state. Each object is

responsible for storing and maintaining its own data, while

classes provide functions to strictly control how modifica-

tions are made to object data, promoting logical and well-

structured code.
At each discrete time-step of the simulation (refer to

“Timescales and Granularity”) factors in the agent’s envi-

ronment may change, prompting an agent to respond

accordingly. Care must be taken to determine the order in

which agents are processed, as this could introduce bias.

In many instances a randomized schedule is implemented

to ensure that one agent’s decisions are not prioritized over

another’s.

Calibration. A simulation will contain a number of parame-

ters that control the mathematical constructs used to repre-

sent the agents. As these constructs may not translate

directly to the biological system, it is often not possible to

obtain an exact experimental value for a simulation parame-

ter. Additionally, through the process of abstraction, a

parameter controlling one mathematical construct may be

accounting for additional factors, which occur in the biologi-

cal system but have been omitted from the model. For

example, ARTIMMUS’s “type 1 cytokine” abstracts the func-

tion of several cytokines that promote a type-1, cytotoxic

adaptive immune response, such as interferon gamma

(IFN-c), interleukin 2 (IL-2), and lymphotoxin alpha (LT-a).

The calibration process identifies simulation parameter val-
ues that best align the simulation’s behavior with that
observed in the experimental system.

Calibration is an important step, as it establishes the base-
line behavior of the simulation, to which the results of future in
silico investigations are compared. Procedures to fit simulation
results to biologically derived responses have been described
in a study of the life cycle of Mycoplasma genitalium.53 In brief,
the authors fitted their whole cell computational model to data-
sets spanning metabolomic, transcriptomic, and proteomic

Designing ARTIMMUS

Employing a Principled Design Framework
The CoSMoS framework was employed to develop ARTIM-
MUS in a principled manner.47

Defining a Research Context
ARTIMMUS was developed to consolidate the current mecha-
nistic understanding of the murine EAE model and the result-
ant simulation was designed to systematically probe two
intervention strategies: splenectomy and anti-CD3 treatment.

Choosing the Correct Technique
Similar research contexts have been addressed successfully
using a differential equation approach by Fousteri et al.,49

who utilized the type 1 diabetes (T1D) PhysioLab platform,
developed to reproduce T1D pathophysiology in the NOD
mouse, to make predictions of the impact of timing of the
application of nasal insulin to prevent the onset of T1D by
simulating features of untreated pathogenesis and disease
outcomes for multiple interventions. In the case of ARTIM-
MUS, however, an ABM approach was warranted due to the
heterogeneity of cell populations, the need to account for phe-
nomena occurring on distinct time scales, and features in the
cellular environments hypothesized as being important con-
tributors to EAE.

Developing a Domain Model
As specified by CoSMoS, the purpose of a domain model is
to consolidate current understanding of the biological system
with no consideration to how the model might be imple-
mented. Key phenomena and cell types, the dynamics of
each cell type, and how their actions integrate to constitute
onset and recovery from EAE were explicitly documented in a
series of diagrams based on an extended version of the
UML.16,43 This model was developed with extensive input
from experimental collaborators to ensure that the domain
model is an adequate representation of the murine EAE
model.

Developing a Platform Model
With the domain model upon which the model will be based
agreed, the next series of UML-based diagrams concerns
their implementation as a simulation (referred to as the plat-
form model in this tutorial). The model details the implementa-
tion of the structures, behaviors, and interactions identified in
the domain model in a way that naturally translates to simula-
tion platform technologies using the UML. ARTIMMUS
employs a 2D lattice-grid for spatial representation in each
compartment and these compartments are networked, allow-
ing cells to leave one compartment and to enter another.
Within these lattice grids an agent may move to any of the
eight grid spaces surrounding the one in which it currently
resides, or it may remain stationary. Between each grid space
cytokines and soluble factors represented as concentrations
that are subject to decay and diffusion.
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information. The resulting parameter values were then vali-
dated by determining how well independent experimental
datasets were reproduced for multiple cellular functions. How-
ever, the effective calibration of complex ABM is an open
research area, often requiring the use of sophisticated heuris-
tic optimization technologies.53

Stage 3: validating an ABM
Mitigating uncertainty introduced by implementation. Heter-
ogeneity and stochasticity are key benefits of an agent-
based approach, and as with biological systems, repeat
experiments can lead to differing results. This variation is
termed “aleatory uncertainty” (AU).55 Multiple simulation
executions must be performed to ensure that the results
collected are representative of a simulation experiment, and
not simply random variation. Empirical methods exist to
establish the relationship between the number of simulation
replicates and the effect of stochasticity on aggregated or
averaged results,42,43,56 but these can be computationally
costly to perform. They operate by contrasting samples of
simulation responses obtained under the same experimen-
tal conditions, thereby estimating the influence of stochastic
variation on the distribution of simulation results.

Exploring simulation behavior. Prior to using a simulation
for in silico experimentation, it is important to appreciate
how sensitive it is to perturbations in parameters. Such an
analysis can be performed through application of sensitivity
analysis (SA) techniques.57 Through a systematic explora-
tion of the parameter space, simulation inputs that have an
influential effect on simulation behavior are identified and
quantified, aiding the biological interpretation of simulation
results; simulations that critically depend on estimated
parameter values should be treated more cautiously.

SA techniques are split into two categories: local and
global analysis. Local analysis techniques examine how
robust the simulation is to a perturbation of a single param-
eter value. However, local SA techniques cannot reveal
compound effects where one parameter’s influence is
dependent on the value of another. Such effects may be
elucidated using global analysis techniques that perturb
multiple parameters simultaneously. For complex models
containing a large number of parameters, tractability of the
parameter search space is an important consideration. Sta-
tistical techniques need to be applied that provide an effi-
cient exploration of the parameter space. Two global

analysis parameter sampling techniques, LHC (Latin-Hyper-
cube) and eFAST (Extended Fourier Amplitude Sampling
Test),42 have been successfully applied to the analysis of
biological ABMs58 to determine parameter sensitivity as
other parameters are varied.

In addition to highlighting simulation sensitivity to particu-
lar parameters, SA techniques can identify key simulated
biological pathways.42 In the context of preclinical mecha-
nistic modeling, SA techniques can help highlight where a
single or combination strategy is required. Marino et al.59

developed a novel SA approach that explored simulation
behaviors, examining how the number of T cells leaving the
lymph node affects the bacterial load present in the lung.
Uniquely, this approach demonstrates that inputs into SA
need not be simulation parameters, but may be emergent
properties within the simulation. Separately, SA techniques
were also used by Ray et al.60 to explore a key component
of Mycobacterium tuberculosis infection: granuloma forma-
tion. Granulomas are aggregates of immune cells that can
determine host response to infection. Previous experimen-
tal work highlighted how cytokine TNF-a plays a key role in
the formation and maintenance of these structures, but the
dynamics of this system were difficult to discern using
solely experimental techniques. Through the use of ABM,
Ray et al. isolated and examined five separate functions of
TNF-a, a separation not possible experimentally. They pre-
dicted that multiple TNF-a activities and macrophage acti-
vation are key contributors to the control of infection within
a granuloma.

Experimental validation. While the emergence of expected
or observed biological phenomena is one indication that the
ABM is an adequate representation of the biological system
it captures, it is also important, where possible, that ABM
undergo experimental validation.

This is illustrated by Peirce and colleagues61 in a model
of therapeutic adipose-derived stromal cell (ASC) trafficking
during ischemia. The model design is supported by the
simulator’s ability to appropriately reproduce important
aspects of ischemia and trafficking behavior. Subsequent
simulations revealing the necessity for an unknown
selectin-binding molecule to achieve ASC extravasation
prompted further in vitro experimentation, which confirmed
that a subpopulation of ASCs slowly rolled on immobilized
P-selectin further validating the simulations predictions
while gaining novel biological insights.

Using ARTIMMUS to inform intervention strategies
for EAE
Calibration and sensitivity analysis data suggested that
ARTIMMUS constitutes an appropriate representation of
murine EAE. Consequently, two interventions were investi-
gated: anti-CD3 treatment and splenectomy. We summarize
them in this section.

Splenectomy intervention. To simulate a splenectomy in
ARTIMMUS, the entire spleen spatial compartment and its
contents (including cells) are removed from the simulation,
which prevents cells from entering or leaving it. This facilitated
an analysis of the role that the spleen has in EAE onset and
recovery. It was shown that the spleen is a major site of T

Implementing ARTIMMUS

Simulation
The simulation was implemented in the JAVA programming lan-
guage and compatible MASON simulation framework.47 Each
cell type identified in Stage 1 was implemented as a Class,
based on its state machine diagram (e.g., Figure 2).

Calibration
ARTIMMUS was calibrated against two experiments54: the
physiological recovery of mice induced into EAE, and labored
recovery following abrogation of CD8Treg capacity to apop-
tose encephalitogenic CD4Th1 cells.
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regulatory cells (Treg) priming and that splenectomy signifi-

cantly reduces CD41 and CD81 Treg population sizes, lead-
ing to a reduced capacity to completely abrogate
encephalitogenic CD4Th1 populations, which can lead to their
reexpansion.41 Splenectomized groups suffered a higher mor-
tality rate and had a greater tendency towards relapsing clini-

cal disease.

Anti-CD3 therapeutic intervention. As a T-cell-mediated

autoimmune disease, EAE is potentially treatable using
anti-CD3 antibodies. Such an intervention, with varying effi-
cacies, can be simulated through ARTIMMUS’s agent-
based technology. A probabilistic test is performed when-
ever cognate T cell and antigen binding (in the form of a

peptide bound to an MHC molecule) is attempted. In a
treatment simulation, an intervention is represented through
higher probabilities of preventing this binding taking place.
In a control simulation the lack of intervention is repre-
sented with an efficacy of 0% (i.e., with zero probability of

peptide-to-MHC binding prevention).
ARTIMMUS was used to simulate different anti-CD3 anti-

body dosing regimens administered at the time of encepha-
litogenic T-cell expansion (day 4), or with the onset of
clinical symptoms (day 15). In silico analyses of putative
treatment regimens showed that anti-CD3 monoclonal anti-

body (mAb) treatment is not uniformly beneficial in treating
EAE. Regardless of administration time, only treatments
leading to 80% inhibition of CD3 signaling or greater were
effective in reducing the duration of clinical episodes, and
preventing clinical relapses. This finding was consistent
with clinical trials of anti-CD3 intervention in new-onset type

1 diabetes, where large cumulative doses were required for
maintaining beta-cell function62,63 and where phase III trials
using low doses failed to meet their primary endpoints.63

Here we show previously unpublished data from the origi-
nal ARTIMMUS anti-CD3 intervention experiment, examin-
ing how neuronal death relates to varying intervention
efficacies. While efficacies of 80% and less can reduce the
peak rates of neuronal death, neuronal destruction persists
for longer periods of time (Figure 6b). The cumulative
number of neurons destroyed exceeds control levels for effi-
cacies of 80% and less (Figure 6b). These results highlight
how interventions that indiscriminately target T cells must
be carefully considered, as they can interfere not only with
target autoimmune T cells, but the regulatory T-cell popula-
tions that suppress them.

DISCUSSION

Agent-based modeling is a method for constructing compu-
tational models focusing on distinct components, their envi-
ronment, and their interactions, as governed by a set of
experimentally derived rules. ABMs can be used to model
complex biological systems in which the behavior of hetero-
geneous individual components, stochastic events, and/or
spatiotemporal considerations are important.24

As with any quantitative systems pharmacology ap-
proach, the ability to integrate knowledge is a key feature
of ABMs. The systematic organization of data across
scales of interest and different disciplines is nontrivial. The
ABM paradigm lends itself well to knowledge integration
due to its intrinsically modular organization, ability to cap-
ture phenomena occurring on distinct spatiotemporal scales
simultaneously, and a highly visual output. The lack of
established analytical techniques used in the analyses of
equation-based systems is often perceived as a shortcom-
ing of ABM. However, it is possible to measure and analyze
the visual output of ABM in the same manner as wet-lab
systems,15 as demonstrated in Butler et al.,64 with the
development of a tool-chain for enabling existing ABMs to
produce emulations of flow cytometry, immunohistochemis-
try, and gene expression microarrays. An existing simula-
tion of lymphoid organogenesis was modified to produce
flow cytometry data, permitting analysis with standard soft-
ware tools, such that in silico and experimental data can be
treated and presented in an identical manner. It was dem-
onstrated that such approaches can lead to early indica-
tions of model predictions, and intuitively demonstrate
these in a biological manner.64

Systematically integrating knowledge into a mechanisti-
cally coherent output is an important driver for rational exper-
imental design. The capacity to integrate spatial and
temporal aspects can facilitate a better understanding of in
vitro and in vivo systems, as demonstrated by Walker et al.65

That study demonstrated that the calcium-dependent pattern
of wound closure observed for an in vitro assay could be
quantitatively reproduced in silico using simple rule-based
dynamics. Furthermore, differences between in silico and in
vitro models led to predictions for a role in wound-induced
signaling events in urothelial cell cultures, showing the bene-
fits of an iterative modeling and experimental work cycle.

Another key feature of the ABM approach is the ability to
capture heterogeneity, such as that of patient populations.

Validating ARTIMMUS

Mitigating Uncertainty
An aleatory uncertainty analysis42 revealed that 500 simula-
tion replicates were needed for each experiment to reduce
the influence of aleatory uncertainty.

Robustness Analyses
A form of local sensitivity analysis, which reveals how far
each individual parameter may be perturbed from calibrated
baseline values before scientifically significant deviations in
simulation behavior occur, was performed.54 The analysis
revealed that the majority of calibrated parameters were
robust to perturbations.

Global Sensitivity Analysis
The importance of various simulation components and path-
ways was assessed through application of a global sensitivity
analysis.55 Latin Hypercube Sampling was employed to effi-
ciently sample parameter space, and partial rank correlation
coefficients were calculated to determine how parametric vari-
ation correlated with changes in simulation behavior.60 The
analyses lead to a number of insights into the system. For
example, the relatively low influence of parameters pertaining
to the killing of encephalitogenic CD4Th1 cells by regulatory
CD8 T cells suggested a considerable redundancy in this reg-
ulatory pathway’s ability to ameliorate autoimmune behavior.
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Figure 6 In silico anti-CD3 treatment result in a lower rate of neuronal death, but a higher number of total neurons killed for some effi-
cacies greater than 80%: (a) EAE was induced at day 0 followed by administration of anti-CD3 at day 4. (b) The number of neurons
killed per hour. (c) Cumulative count of neurons killed for varying efficacies of anti-CD3 treatment. 100% efficacy blocks all TCR:MHC-
peptide bindings, 50% blocks half of all binding events, and 0% represents the control. Figure adopted from Read et al.41
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The combination of bottom-up modeling approaches with

top-down data-driven approaches, such as bioinformatics

analyses of high-throughput genomic data, could present an

interesting approach for developing personalized medicine

strategies. For example, molecular signatures in the form of

biomarker panels could be used as model inputs for subse-

quent in silico simulation of stratified patient populations.66

Throughout the tutorial we have discussed the differences

between ABM and other modeling techniques. It is important

to note, however, that modeling paradigms are not mutually

exclusive, and the combination of ABM with other

approaches can facilitate the integration of data across dif-

ferent temporal and/or spatial scales. This allows a single

model to examine how processes such as molecular diffu-

sion, occurring over a timescale of milliseconds, can affect

cellular motility occurring over minutes and hours. ABMs

enable phenomena to be captured at the appropriate scale

through independent discretization of each scale of interest.
In this tutorial we have highlighted the challenges associ-

ated with an agent-based approach, but reason that such

issues can be largely mitigated through the application of

well-established software engineering practices. A number of

principled approaches to simulation development and appli-

cations are emerging with the aim of ensuring that simulation

results are appropriately interpreted.28,36,38,56 Achieving a

general consensus on a standardized development frame-

work can facilitate model communication, and therefore sim-

ulation reproducibility, peer-review, and repurposing; this

therefore should be a fundamental goal in the development

of ABM techniques in a systems pharmacology context.

CoSMoS, the principled design framework used in the devel-

opment of ARTIMMUS, for example, shares many key fea-

tures with the methods for physiological model qualification

in drug discovery proposed by Friedrich and Savic.67

employing concepts from engineering, statistics, complex

systems modeling and related fields to address questions of

relevance, dealing with uncertainty, dealing with variability,

and matching test data in a principled manner.58

A key challenge facing the wide acceptance of principled

design frameworks is the generation of appropriate model

documentation that is clear to an interdisciplinary team, yet

concise enough to be practicable.68 However, by following

existing software engineering principles models can be
expressed in discipline-independent structures and lan-
guage using visual notations. Visual notations can ensure
that the design process is (i) easy for nonspecialists to
interpret (provided they are familiar with the syntax),
(ii) explicit (i.e., can be interpreted objectively, not subjec-
tively), and (iii) accessible. These notations can also be
used to provide an argument that the ABM and resultant
simulator are a fit-for-purpose representation of the underly-
ing biological domain of interest.69 Aside from formal math-
ematical notations,70 a number of well-established notations
exist and are addressed in Table S1.

The case study in modeling EAE has highlighted how
principled simulation development techniques can give rise
to well-engineered simulations, and establishes the link
between simulation and the original biological system. We
have demonstrated the range of interventions that can be
simulated through ABM, from removal of an entire spatial
compartment to fine-grained manipulations of cell-signaling
pathways. Furthermore, the effects of interventions across
a heterogeneous and stochastic biological system can be
probed: the EAE simulation was used to examine how the
range of disease progressions experienced varied with
intervention efficacy, be it relatively mild or terminal.41

The agent-based approach, when applied appropriately
and in a principled manner, offers unique advantages in the
study of highly complex biological systems. Taken together,
the studies referred to in this tutorial highlight how ABM
has been used to gain novel insights and give an indication
into how the approach will be useful for future studies in
systems pharmacology.
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Computational Resources Required for ARTIMMUS Develop-
ment and Exploration
A single execution of ARTIMMUS takes several minutes,
depending on the experiment being performed and the
machine on which it is executing. Assuming 1 minute per exe-
cution, 500 simulation runs would require 8 hours of computa-
tional time. The global sensitivity analysis described above
used 500 samples of parameter space, and for each sample
500 simulation executions are performed. Hence, this analysis
required 173 days of computation time. Given the computa-
tional resources required, experiments with ARTIMMUS were
conducted on a computational cluster, a network of machines
dedicated to performing large-scale computation. The cluster
could process 120 simulation executions in parallel, vastly
reducing the time required to carry out experimentation, with
most experiments performed within 24 hours.
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