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SUMMARY

Diet influences health and patterns of disease in
populations. How different diets do this and why out-
comes of diets vary between individuals are complex
and involve interaction with the gut microbiome.
A major challenge for predicting health outcomes
of the host-microbiome dynamic is reconciling the
effects of different aspects of diet (food composition
or intake rate) on the system. Here we show that
microbial community assembly is fundamentally
shaped by a dichotomy in bacterial strategies to ac-
cess nitrogen in the gut environment. Consequently,
the pattern of dietary protein intake constrains
the host-microbiome dynamic in ways that are
common to a very broad range of diet manipulation
strategies. These insights offer a mechanism for
the impact of high protein intake on metabolic
health and form the basis for a general theory of the
impact of different diet strategies on host-micro-
biome outcomes.

INTRODUCTION

Howdiet influences our health is a fundamental question for pub-

lic health and individual interventions. Diet is the product of avail-

able foods and feeding behavior. Experimental manipulations of

food composition or intake have repeatedly shown that changes

in animal physiology are concomitant with changes in gut micro-

biome, and transplant experiments show that the diet-selected

microbiome can have a causal contribution to these outcomes

(David et al., 2014; Ridaura et al., 2013; Wu et al., 2015).

However, the reproducibility of host outcomes in diet interven-

tion studies is sensitive to food composition and genetic back-

ground of the animal model. Even more challenging is that
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diet-selected microbiome composition is poorly reproducible

between studies, and cross-sectional studies in humans seldom

show clear associations between microbiome composition and

host health. This implies the host-microbiome symbiosis is a

metastable system capable of adopting different stable states.

Consequently, predicting microbiome outcomes of diet manipu-

lations, or defining the relative importance of diet and microbial

contribution to host outcomes, is very difficult (David et al.,

2014; Faith et al., 2013, 2014; Ridaura et al., 2013; Wu et al.,

2015).

Predictive models require greater understanding of which

dimensions of diet control emergent patterns of the gut

ecosystem. It is well established that differences in microbial

utilization of substrates in the diet have a significant impact on

community composition (Sonnenburg et al., 2010). However,

the effects of other aspects of diet composition on host animal

biology further define the competitive environment for microbes

in the intestinal tract. These diet-driven effects include behaviors

such as appetite or food preferences (Lee et al., 2008; Simpson

and Raubenheimer, 2005), and physiological responses such as

gastrointestinal motility (Kashyap et al., 2013), intestinal secre-

tions (Devkota et al., 2012), or inflammation (Lam et al., 2015;

Stecher et al., 2007). Furthermore, microbial metabolism influ-

ences the host’s sensing of the intestinal milieu and regulation

of these responses (Cani et al., 2013). Such an abundance of in-

teractions creates the potential for multiple feedbacks between

available foods and host and gut microbiome that constrain

emergent outcomes and will be important to understanding

metabolism at the whole-organism level (Ley et al., 2006a; Wu

et al., 2015).

A major challenge for modeling emergent diet-microbiome-

host outcomes is that the microbiome is both species rich

and has high levels of functional redundancy (Coyte et al.,

2015; Donaldson et al., 2016; Faith et al., 2013). Thus, where

the species (or OTU [operational taxonomic unit] surrogate)

forms the unit of community description there is an almost infin-

ite number of possible microbiome compositions that could

contribute to a particular outcome for the host. In principle,
ary 10, 2017 Crown Copyright ª 2016 Published by Elsevier Inc. 1

mailto:andrew.holmes@sydney.edu.au
mailto:stephen.simpson@sydney.edu.au
http://dx.doi.org/10.1016/j.cmet.2016.10.021


Please cite this article in press as: Holmes et al., Diet-Microbiome Interactions in Health Are Controlled by Intestinal Nitrogen Source Constraints, Cell
Metabolism (2016), http://dx.doi.org/10.1016/j.cmet.2016.10.021
this issue can be reduced by different approaches to classifica-

tion, whereby functionally similar species are lumped into higher

taxa or communities are described in terms of gene composi-

tion. For example, association with obesity has been reported

for the ratio of Bacteroidetes to Firmicutes (Ley et al., 2005,

2006b) or the metagenome gene count (Cotillard et al., 2013;

Le Chatelier et al., 2013). These studies indicate there are sys-

tematic patterns to how diet drives microbial impact on health.

However, this has not led to a general mechanistic explanation

of the drivers of the microbial ecosystem or clear taxonomic or

microbial gene signatures with predictive value for obesity out-

comes (Finucane et al., 2014; Zhao, 2013). The reasons for this

include (1) the low precision of higher taxon classification (the

high levels of functional variation confounds between-sample

comparisons), (2) limited ability to assign functions to genes in

metagenomes, and (3) limited understanding of the interactive

effects of environmental or genetic variation on system re-

sponses. Addressing questions oriented at emergent system

properties requires a new conceptual and experimental frame-

work for considering the nutritional determinants of the micro-

biome and the host response (Coyte et al., 2015). Here we

show how systematic exploration of nutritional resource dimen-

sions (Raubenheimer and Simpson, 2016) to describe bacterial

community composition in terms of what resources they require

(guilds) (Blondel, 2003) offers such a framework and identifies

intestinal nitrogen as a fundamental driver of host-microbiome

interactions in metabolism.

RESULTS

The Energy Density of Food Composition Has the
Strongest Association with Change in Microbial
Diversity
We systematically examined the impact of the compositional

distribution and intake dimensions of diet on microbial commu-

nity structure in the mouse. This was conducted in a framework

that enables comparison with the physiological response of the

animal. All diets were formulated from a fixed set of source com-

ponents to minimize variation due to differences in palatability,

digestibility, or bioactive properties of food components. The

amounts of these components in each food were systematically

varied to provide a total of 25 different diets encompassing ten

macronutrient distributions and three different energy densities

(Solon-Biet et al., 2014). Across the diet treatments, energy

intake as protein (Prot) ranged from 5% to 60%, carbohydrate

(Carb) from 20% to 75%, fat (Fat) from 20% to 75%, and energy

density (E) from 2 to 4 kcal/g (8, 13, or 17 kJ/g). Animals were

fed ad libitum. As a consequence of differences in diet energy

density and compensatory feeding in response to Prot and

Carb content, there was an approximately 2-fold range in energy

intake across the study. Mean total caloric intake for the mice

on the diets ranged from 24.98 to 54.03 kJ/day (Table S2; Sup-

plemental Experimental Procedures, available online).

The data on microbial community composition are derived

from pyrosequencing analysis of 16S rRNA amplicons from

cecal metagenomic DNA samples of 112 C57BL/6 male and fe-

male mice that were culled at 15 months (out of a total of 858

animals). Technical replicates with independent DNA extraction

from the same cecal samples were performed for ten mice.
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Across the dataset, the average number of reads per sample af-

ter quality filtering was 12,000. Within each of the 25 diet treat-

ment groups, the number of samples and reads ranged from 2

to 6 and 21,840 to 94,808, respectively (Figure 1A).

In human studies, collection of intake data is difficult and diet is

commonly described qualitatively. Here, when the quality of the

supplied food to the mice was considered with respect to the

four diet composition variables, then the strongest effects on mi-

crobial diversity were observed for energy density. Analysis of

alpha diversity across the diet treatments showed diversity

was highest with low energy density, as shown for the inverse

Simpson index (Figures 1B, S2A, and S2B). Diversity indices

were sensitive to the weighting given to relative abundance,

and taxonomic richness showed no significant differences at

all examined scales (Figure 2). Community compositional rela-

tionships between the diet treatment groups (beta diversity)

also showed a strong effect of diet energy density (Figures 1C

and S2C–S2F). Fitting environmental gradients to CA (corre-

spondence analysis) ordinations at different taxonomic scales

(both genus and family) showed the explanatory power was

greatest for dietary energy density (62.4%) and, to a lesser

extent, Fat and Carb content (Figure S3). This is consistent

with the enormous volume of studies showing diets with high

Fat content or high caloric intake are obesogenic and drive

strongmicrobial changes. In summary, if we simplify diet charac-

terization to the quality of supplied food in terms of its caloric

density and macronutrient distribution, then long-term effects

of diet composition on the gut microbiota are primarily related

to food energy density and reflect shifts in abundance distribu-

tion more strongly than taxonomic richness. The significance

for the animal is thus predicted to lie in change in relative

strength of microbial signals, rather than gain or loss of microbial

properties.

The Intake Rate of Prot and Carb Is the Major Driver of
Microbial Response
These associations to diet composition do not indicate that Fat

or total calories per se are important mechanistic drivers of mi-

crobial response. Animals regulate their food selections and

intake according to nutritional quality. Furthermore, not all food

components are equally accessible to the cecal or colonic mi-

crobiota. To parse the effects of diet composition into macronu-

trient intakes, we next looked at abundance changes of major

microbial taxa in response to daily energy intakes of Prot,

Carb, and Fat, considering both their main and interactive ef-

fects. Generalized additivemodels (GAMs) and thin-plate splines

were used to analyze and visualize the community response to

Prot, Carb, and Fat intakes using measures of diversity and rela-

tive abundance of major bacterial taxa. Surprisingly, the models

indicated that for all measures of community response, themajor

drivers of changewere Prot andCarb intake, while Fat intake had

a very minor role (Figures 3 and S4; Table S1). In the case of total

community measures, the inverse Simpson index decreased

with increased intake of Prot and Carb (Figures S2A and S2B).

In the case of taxon response, Prot and Carb intake were again

the major drivers, but two basic taxon response patterns were

seen (Figures 3 and S4; Table S1): an increase or a decrease in

relative abundance with Prot and with Carb intake. We termed

this a consumption-type response or limitation-type response,



Figure 1. The Energy Density of Diet Compositions Exerts Strong Effects on Microbial Diversity

(A) Microbial cecal community dataset viewed as a heatmap of rank abundance at the higher taxon level. A total of 112 mice were maintained on 25 different diet

formulations varying inmacronutrient distribution and density. Top text strip shows pooled number of sequence reads and number of individual mice for each diet

formulation. Bottom text strip shows diet formulations clustered in groups of similar energy density (e.g., Diet 2_60:20:20 is 2 kcal/g density with macronutrient

distribution of 60% Prot, 20% Carb, and 20% Fat). Side text strip shows the range of relative abundances for indicated taxonomic groups.

(B) Effect of diet energy density on microbial diversity defined by the inverse Simpson diversity index at three taxonomic scales (all samples of same energy

density were pooled).

(C) Principal coordinates analysis plot of unweighted UniFrac distances by diet energy density treatment groups.

See also Figures S1 and S2.
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respectively. There was a strong concordance between the di-

rection of changes in various aspects of host phenotype (e.g.,

body weight, body composition, and metabolic parameters)

and whether the various OTUs belonged to either the guild that

demonstrated a limitation-type response or the consumption-

type response (Table 1).

We next considered the reproducibility of phylogeny-based

classification as a metric for description of ecological patterns

across animal populations. Examples of response surfaces for

higher taxa that have a high relative abundance signal across

the dataset are shown in Figure 3 (Figures 3 and S4; Table

S1). For the Verrucomicrobia and Erysipelotrichia, each is pre-

dominantly comprised of OTUs assigned to one genus (Akker-

mansia and Allobaculum, respectively) and response surfaces

at class and genus scale are essentially the same. Conse-

quently, across all samples in the dataset the relative abundance

of these higher taxa is predicted be the result of a similar ecolog-

ical response. In contrast, the twomost abundant taxa in our da-

taset, the Bacteroidetes and Firmicutes, encompass very large

numbers of OTUs representing a wide spectrum of phylogenetic
distances and large number of genera. Although both had sur-

faces with high explanatory power (Table S1), the subtaxa of

these phyla showed distinct responses. This was most obvious

with the Firmicutes subtaxa, where Ruminococcaceae and

Lachnospiraceae showed limitation-type responses and Clostri-

diaceae and Erysipelotrichaceae showed consumption-type re-

sponses (Figure S4; Table S1). A consequence of this is that in

the gut community of animals with differing levels of Prot and

Carb intake, the competitive advantage for species within the

phylum Firmicutes also differs. It follows that in any one gut mi-

crobiome, the net change in Firmicutes abundance in response

to diet will be highly dependent on the starting species compo-

sition. Consequently, phylogenetically defined higher taxa such

as the Firmicutes and Bacteroidetes lack the biological precision

needed for effective modeling of diet responses across natural

animal populations where genetic and environmental hetero-

geneity underpin high variation in species composition. For

modeling purposes, there is a need to define higher taxa whose

response to ecological mechanisms will be consistent across all

populations.
Cell Metabolism 25, 1–12, January 10, 2017 3



Figure 2. Accumulation Curves and Renyi

Plots

(A) Accumulation curves (left panel) and Renyi

diversity profiles (right panel) for genus-level data

pooled by diet energy density (32–40 mice

per group). At this taxonomic scale, curves are

approaching saturation after five individuals

(approximately 50,000 reads). Shading indicates

95% confidence limits. Differences in diversity are

only seen when the weighting abundance (alpha)

becomes greater than 1 (corresponds to Shannon

index).

(B) Accumulation curves (left panel) and Renyi di-

versity profiles (right panel) for genus-level data

pooled by their macronutrient composition as%P/

%C/%F (2–16 per group). Differences in diversity

are only seen when comparing across the ex-

tremes of macronutrient distribution.
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Simple Mechanisms Underpin the Impact of Nutrient
Intake on Host-Microbiome Dynamics
In our dataset, although the relative abundance distribution

across nutrient intake space differed widely across bacterial

taxa, we only observed two main response patterns: increase,

or decrease in relative abundance with Prot and Carb intake.

Fat intake had little effect, either alone or in interaction. Notably,

in the case of Firmicutes, the parent taxon showed positive

response to Prot and Carb intake with few interactive effects,

despite several significant subtaxa showing the opposite

response. The lack of consistent response within phylogeneti-

cally defined groups shows that higher taxa defined in this way

lack the biological precision necessary for predictive models.

However, the strong recurrence of the same two response pat-

terns at all scales indicates a fundamental distinction in life his-

tory strategy for gut bacteria that is based around the host’s di-

etary Prot and Carb intake. This conclusion is consistent with our

observations on diversity. Diversity wasmore strongly shaped by

changes in relative abundance than species composition (Fig-

ure 2). The response surface for the inverse Simpson index

showed the major drivers of this were Prot and Carb intake (Fig-

ures 1B, S2A, and S2B). Finally, there is a wider range of genera

that increase in abundance with lower Prot and Carb intake (Fig-

ure S4; Table S1). On this basis, we propose that dietary impacts

on host-microbiome dynamics are underpinned by far simpler

ecological mechanisms than anticipated. The significance of

this is that the host can exert regulatory control on the microbial

contribution to its immune-metabolic functions though feeding

behavior.

A prediction of this model is that the dominant processes of

microbial community assembly and microbiome relationship to

emergent properties of the host will be more effectively captured

by exploiting the concept of trophic response guilds—sets of

taxa that show common response patterns to resource availabil-

ity—than by phylogenetic relationships (Blondel, 2003). Thus, we
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next considered what mechanisms might

underpin the distinction between the

two major trophic response guilds with

respect to Prot and Carb intakes. Those

taxa that show higher relative abundance
in low Prot and Carb intake regions of nutrient intake (e.g.,

Bacteroidetes, Verrucomicrobia, Lachnospiraceae, andRumino-

coccaceae) include many species with the ability to utilize host

proteoglycans such as mucin (Berry et al., 2013; Derrien et al.,

2008; Macfarlane et al., 2005). On the basis of model simula-

tions, we postulated that themechanism bywhich nutrient intake

may drive community change is alteration of the relative impor-

tance of dietary nutrients with endogenous host secretions as

a source of carbon and/or nitrogen to bacteria (Figure S5).

Importantly, this would provide a mechanism to explain micro-

biome response across dimensions of dietary composition

(nutrient profile) and intake pattern (both integrated total intake

or temporal pattern). Such a model is necessary to reconcile

microbial impact across diet strategies that manipulate intake

such as caloric restriction and time-restricted feeding or fasting

with those that emphasize composition such as healthy Fat or

Carb profiles.

Host Processes Control Microbiome Dynamics through
Regulation of Intestinal Nitrogen Availability to Bacteria
To test the generality of this hypothesis and further explore the

mechanism, a second experiment was performed in BALB/c

mice. Intake of Prot and Carb was manipulated by feeding

mice diets of comparable macronutrient distribution, but

different energy density. After 3 weeks on the diets, 13C15N-thre-

onine was injected into the tail vein (threonine is a major compo-

nent of mucin). After 24 hr, samples were taken for microbial

community analysis by pyrosequencing and determination of

bacterial uptake of carbon and nitrogen by nanoSIMS.

The diet-induced changes in total Bacteroidetes and Firmi-

cutes abundance across the two energy densities were consis-

tent with the previously observed limitation and consumption re-

sponses, respectively. Total abundance of Bacteroidetes was

higher in the 2 kcal/g diet and total abundance of Firmicutes

was higher in the 4 kcal/g diet (Figure S5C). Furthermore, there



Figure 3. Macronutrient Intake Drives Two Main Responses in Relative Abundance of Major Taxa

Major phyla are (A) Bacteroidetes and (B) Firmicutes. Example genera are (C) Akkermansia (Verrucomicrobia) and (D) Allobaculum (Erysipelotrichia). Three slices

of nutrient intake space are shown to visualize all three dimensions. Prot, Carb, and Fat intake are shown as kJ/day. The two-dimensional surface for each

combination of two macronutrients is shown at the median of the third macronutrient (indicated on x axis). Red, highest abundance; blue, lowest abundance.

See also Figure S3.
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were some differences in the dominant subtaxa seen in this

study, and again we observed some divergence in responses

by genera within the higher taxa. In these BALB/c animals, the

Bacteroidetes class was dominated by OTUs assigned to

Bacteroides, Barnesiella, and Parabacteroides, and Firmicutes
were dominated by Bacilli, rather thanClostridia. Within the Bac-

teroidetes, a limitation-type response was observed for Bacter-

oides and Parabacteroides, but Barnesiella showed the opposite

strategywith significantly higher relative abundance in the 4 kcal/

g diet treatment.
Cell Metabolism 25, 1–12, January 10, 2017 5



Table 1. Correlation between Gut Microbiota Classified According to ‘‘Limitation-type Response’’ versus ‘‘Consumption-type

Response’’ versus Host Phenotype and Circulating Amino Acids

Mouse Phenotype

Microbiome Body Weight Percent Fat Fat Mass Lean Mass BMD Glucose Cholesterol HDLc Leptin

Limitation-type Response

Bacteroidetes ** – * ** ** ** ** ** *

Deferribacteres – – – * * – – – –

Verrucomicrobia * ** ** * ** ** – – **

Lachnospiraceae – – – – ** – – – –

Ruminococcaceae * ** * – ** – – – –

Eubacteriaceae – * – – ** * – – –

Rikenellaceae ** – * ** ** * * ** –

Bacteroidaceae * – – * ** – * * –

Consumption-type Response

Firmicutes ## # ## ## ## ## # # ##

Clostridia ## – # ## ## # # # #

Clostridiaceae ## ## ## ## ## ## – # ##

Erysipelotrichia – – – – ## – – – #

Circulating Amino Acids

Microbiome Citrulline Ornithine Tryptophan Tyrosine Glycine

Limitation-type Response

Bacteroidetes ## – ## # –

Deferribacteres – – – – –

Verrucomicrobia ## ## – – –

Lachnospiraceae # # – – –

Ruminococcaceae – – – – #

Eubacteriaceae – # – – –

Rikenellaceae # # – # –

Bacteroidaceae ## # ## # –

Consumption-type Response

Firmicutes ** * * * –

Clostridia ** – * * –

Clostridiaceae ** ** – – *

Erysipelotrichia ** * – – *

Correlations determined by Pearson’s correlation coefficient: *p < 0.05 and **p < 0.01 for negative correlation, and #p < 0.05 and ##p < 0.01 for positive

correlation. Across this analysis, only outcomes where more than three taxa are significantly correlated are shown; bacillae could not be classified as

either limitation- or consumption-type response. BMD, bone mineral density; HDLc, high-density lipoprotein cholesterol. See also Table S1.
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Significant differences in the bacterial uptake of label between

the two diet treatments were observed in the nanoSIMS analysis.

For both 13C and 12C15N detection, a high proportion of total cells

in the 2 kcal/g treatment were labeledmore strongly than any cell

from the background control treatments (Figure 4). For 12C15N,

there was also higher labeling in the 4 kcal/g treatment relative

to background controls. Also, the 12C15N signal must reflect

cleavage of the 13C-15N bond in the labeled threonine and refor-

mation of a CN bond. In conjunction with the different distribu-

tions for these two ions across the diet treatments, this almost

certainly reflects different levels of bacterial use of the threo-

nine-derived nitrogen in biosynthetic pathways rather than

abiotic formation of the 12C15N ion during imaging. The extent

of labeling of cells was not normally distributed (Figure S5B),

and morphometric analysis revealed a strong correlation be-

tween cell width and labeling: thin cells were more strongly
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labeled under both diet treatments. Importantly, for gutmicrobes

in the low energy density diet treatment, both the labeling inten-

sity and the relative abundance of the thin morphotype cells

increased with respect to the thick morphotype (Figure 4). This

supports our interpretation that increased utilization of endoge-

nous nutrient sources (especially nitrogen) provides selective

advantage under low nutrient intake conditions. Although it is

not possible to identify these cells, we note that the sequence

data predict the major shift in the gut community was due to a

shift in the relative dominance of Parabacteroides (higher in

2 kcal/g diet) and Barnesiella (higher in 4 kcal/g diet), and thin

and thick cell morphology, respectively, is consistent with these

two genera.

To further test the extent to which ecosystem-level control on

community assembly could occur via nitrogen competition, we

developed an agent-based simulation (Figures 5, 6, and S6).



Figure 4. Bacterial Uptake of Intestinal Se-

cretions under Different Diets Determined

by nanoSIMS

(A–C) Images of 12C15N ion distribution in colon

microbes.

(A) Untreated control: mouse maintained on

4_21:63:16 diet with no labeled threonine injection.

(B) Mouse on 4_21:63:16 diet before intravenous

injection of 13C15N-threonine.

(C) Mouse on 2_14:57:29 diet before intravenous

injection of 13C15N-threonine.

(D and E) Box and whiskers plots showing isotope

ratio per cell for indicated mass species. The plot

indicates the median (horizontal line in box), the

middle 50% of values (box), and the minimum and

maximum values.

(F) Change in morphotype relative abundance un-

der diet regimes corresponds to the extent of uti-

lization of 15N. *p < 0.05; **p < 0.01.

See also Figure S4.
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Our modeling approach is based on partitioning the community

into six guilds whose cell replication rate is based on acquisition

of carbon and nitrogen from different dietary and endogenous

sources. Death rate is based on starvation or loss through defe-

cation. In each simulation, the community self-assembles from

a small starting population of all six guilds as the animal is ‘‘fed’’

a diet of defined macronutrient composition according to typical

day/night feeding patterns of mice. The carrying capacity of the

simulated gut and relative abundance of each guild stabilized

over 3–5 days of simulated time and are products of their compe-

tition for carbon and nitrogen from the dietary and endogenous

sources. Repeating simulations across a range of macronutrient

intakes generated datasets for construction of response sur-

faces. The simulation outputs for guild abundance are based on

the known intakes of 250 mice from this study. These show that

tension between dietary and endogenous sources of nitrogen

can drive shifts in global community composition. The extent of

this simulated community response is comparable to the exper-
Ce
imentally observed shifts in higher taxa.Of

particular importance is that in the region

of intake space observed to be associated

with cardiometabolic health (low Prot and

high Carb intake), the simulation predicts

nitrogen to be a limiting nutrient for four

of the six guilds, and in the region of intake

space where cardiometabolic health is

poorest, the simulation predicts nitrogen

limitation is lost (Figure 5). Finally, for a

number of genera, including Parabacter-

oides, GAMs constructed from the exper-

imental data show close correspondence

to theguildspredictedby their physiology.

This supports our hypothesis that host

manipulation of intestinal nitrogen avail-

ability has a key role in regulation of the

host-microbiome dynamic.

Intestinal inflammation is widely thought

to act as a key driver ofmicrobial dysbiosis
through a positive feedback loop involving poormicrobial support

of intestinal epithelial functions, increased permeability of the gut

epithelium, poor host regulation of the inflammatory response,

and an increase in inflammogenic microbial signals (Lam et al.,

2015). To evaluate the relationship between intestinal function

and microbiome, we measured circulating citrulline, which is an

amino acid produced only by enterocytes and proposed as a

biomarker of intestinal function (Peters et al., 2011; Breuillard

et al., 2015). There was a positive correlation between citrulline

and the abundance of OTUs that have a limitation-type response

and a negative correlation between citrulline and the abundance

of OTUs that have a consumption-type response (Table 1). This

is consistent with the concept that low Prot diets are associated

with increased intestinal function leading to an increase in avail-

able host-generated nitrogen to sustain microbiota with a limita-

tion-type response to diet. We have previously shown that mice

on low Prot, high Carb diets have larger intestines, caeca, and

colons (Sørensen et al., 2010).
ll Metabolism 25, 1–12, January 10, 2017 7



Figure 5. Simulated Microbiota Responses to Nutrient Intake and Mucin Abundance

(A) Trophic guilds comprising a simulated microbiota show distinct relative abundance responses to changing nutritional intake. Relative abundance response

landscapes within a nutritional intake space are shown as a matrix, with columns and rows describing each guild’s Prot and Carb substrates, respectively.

Relative abundances arising from each nutritional intake are determined at 3 weeks of simulated time. Landscapes are generated by fitting a generalized additive

model to 250 simulations; method is as described for the bacterial taxon abundance landscapes.

(B) Carbon or nitrogen limitation experienced by individual cells is predicted to vary with nutrient intake, trophic strategy, and competitive environment. In the

simulation, cell status is simulated by acquired carbon and nitrogen resources. The response surface models the proportion of cells (%) comprising each guild

that are nitrogen limited. Limitation is a function of both supply and competition with other guilds. Regions where the dominant limiting factor is nitrogen (values

above 50%) are shaded green and regions where the dominant limiting nutrient is carbon are shaded red (values below 50%).
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DISCUSSION

The health of an animal is dependent upon its ability to regulate

metabolism across a range of spatiotemporal scales. The avail-

ability of food and the activity of gut microorganisms are two

factors that profoundly influence systemic metabolism, but

are not under the direct control of animal systems. Given the nat-

ural variability of access to food for all animals, we postulate

that evolution of stable host-microbiome associations will have

been broadly shaped by the host ability to integrate feeding

behavior and microbiome performance with its immune and

metabolic functions. This is consistent with the view that in

many modern lifestyle diseases, the roles of diet and the gut

microbiome are linked. Here we show that the major diet impact

on the gut microbial ecosystem can be simplified to combined

Prot and Carb intake and that the alignment of Prot and Carb

intake with healthy aging is consistent with a critical role for nutri-

tional regulation of microbiome health via intestinal nitrogen

availability.

Our model predicts that at the community level, microbial use

of Carb resources will be tightly coupled to nitrogen availability

across disparate Carb profiles. Thus, while Carb profile shapes

microbial diversity through individual species substrate prefer-
8 Cell Metabolism 25, 1–12, January 10, 2017
ences (Koropatkin et al., 2012), dietary Prot levels and period-

icity of total caloric intake will consistently shape the outcomes

of competition for Carb substrates. The host ability to manipu-

late Prot and Carb intake patterns has thus shaped the evolution

of the beneficial relationship with its microbiome. A conse-

quence of this resource-based regulation is that the guild

concept, classification by resource access (as opposed to func-

tional properties), is an effective way to mechanistically model

the primary effect of diet on gut ecosystem functions, and

that substrate preferences can be viewed as a secondary layer

of diet response (albeit one giving strong signals). The response

surfaces provide an integrative framework for associating

change in the microbial ecosystem with host physiology and

emergent health.

Comparing microbial and physiological outcomes in the

four extreme regions of macronutrient intake space indicates

connections between intake patterns, microbial resource

use, and known mechanisms of microbial influence on health.

There is an emerging consensus that intestinal permeability,

mesenteric Fat, and inflammation are key drivers of metabolic

health outcomes (Cani et al., 2013; Lam et al., 2015; Wu et al.,

2015). Here, adiposity and immuno-metabolic health responded

differently to dietary macronutrient balance, and poor health



Figure 6. A Nutritional Ecology View of the

Host-Microbiome Dynamic and Major

Tipping Points Influenced by Intestinal Ni-

trogen Availability

(A) Each ball inside the space is the observed

nutrient intake of a mouse in this study in terms of

Prot, Carb, and Fat. The outward-facing surface

shows the three extremes of macronutrient distri-

butions that can occur under high caloric intake

diets, and the red-colored rear surface represents

the lower extreme of caloric intake. A funda-

mental ecological constraint on microbial access

to dietary Carb that passes beyond the small

intestine is competition for nitrogen. There is a

dichotomy in microbial strategies to meet this

constraint whereby either dietary or host nitrogen

sources are exploited. Mouse phenotypes with

improved metabolic health are associated with

microbiomes dominated by host-N strategy mi-

crobes and can be shifted by the ratio of micro-

bially accessible Carb to nitrogen in the food

(or during periods of fasting).

(B) Effect of restricted caloric intake on bacterial

load over time in simulated mice gut communities.

The average of 50 independent simulations of

mice with two different intake rates of a chow with

the same macronutrient distribution is shown.

The simulations start with 100 cells of each guild

at the commencement of the night-active phase.

The emergence of stable community composition

within 2 days and diet periodicity in bacterial load

seen here was typical for all simulated nutrient

intakes.

See also Figure S6.
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resulted where these drivers intersected (Solon-Biet et al., 2014).

Adiposity was primarily driven by total caloric intake (increased

in all three dimensions) but was exacerbated on diet composi-

tions with low Prot that promote compensatory feeding. How-

ever, the association of health with adiposity was influenced

by macronutrient distribution. Health was highest when caloric

intake was dominated by Carb; poor cardio-metabolic parame-

ters and shortened lifespan resulted when Prot or Fat dominated

intake. Mice in the region of highest Prot intake showed the attri-

butes of immunosenescence (Claesson et al., 2012), and Prot

intake far more strongly affected relative levels of CD4 and

CD8 lymphocytes than any other macronutrient, suggesting

high Prot diets will pre-dispose to altered immuno-regulatory

states (Le Couteur et al., 2015).

Reconciling these outcomes with the microbiome responses

gives a model for diet-host-microbiome interaction where
Ce
intake of Carb is associated with support

of microbial interactions that are bene-

ficial by reducing age-related inflam-

mation (Sonnenburg and Sonnenburg,

2014), but that the relative amount of

dietary Prot determines the extent to

which benefits to the host are realized.

In this model, a high-Fat diet deleteri-

ously impacts the host-microbiome dy-

namic through dilution of Prot and Carb
intake to the extent that it is insufficient to meet host (Prot) or

microbiome (Carb) nutritional demands. This is consistent with

the non-viability of the low-density versions of diets on this

axis and very weak microbial response to Fat intake. The dele-

terious impact of Prot in our model is via change in the nature of

microbes responding to Carb intake. Taxa with limitation-type

response surfaces include species known to contribute to

maintenance of intestinal barrier functions and immunoregula-

tion, through butyrate production (Donohoe et al., 2011) and

maturation of regulatory T cells (Atarashi et al., 2011; Mazma-

nian et al., 2008).

Our model also provides a mechanism to explain the range of

microbiome and host outcomes in diet-induced obesity that is

consistent with published observations on the change in ratio

of Bacteroidetes and Firmicutes (Ley et al., 2006b) and gene

counts (Le Chatelier et al., 2013). With the food components
ll Metabolism 25, 1–12, January 10, 2017 9
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used here, we found that consumption-type responses to diet

were overrepresented in the Firmicutes. This pattern predicts

Firmicutes abundance has a positive association with increased

caloric intake and negative association with caloric restriction

across a wide range of diets. Thus, although the ratio of Bacter-

oidetes to Firmicutes abundance varies widely between individ-

uals (Finucane et al., 2014; Wu et al., 2011) and has limited

value as a predictor of health status, the change in this ratio is

likely to reflect diet impact on weight change. Although we did

not measure gene counts, diversity is a strong predictor of

gene richness and was shown here to be higher under diet re-

gimes that select for limitation-type responses. Moreover, those

species that were observed to be overrepresented in the HGC

(high gene count) microbiomes (e.g., F. prausnitzi) (Le Chatelier

et al., 2013) belong to taxa that we observed to have a limita-

tion-type response.

In conclusion, our data indicate a key role for relative

availability of intestinal nitrogen sources in diet outcomes

and predict mechanisms through which host-microbiome

relationships can be shifted (Figure 6). Recognition of the

mechanistic roles of both dietary macronutrient profile and

intake rate leads to opportunities to greatly simplify how we

conceptualize the complex diet-host-microbiome dynamic for

the purposes of modeling. In the Supplemental Information,

we present an agent-based model for community assembly

based on this general theory for diet control. Systematic

simulations of assembly of hundreds of microbial commu-

nities on different diet regimes resulted in a spectrum of stable

community compositions comparable to that seen for our

experimental diet manipulations (Figure S5). Significantly, the

topologies of simulated response surfaces were very similar

to observed taxa and predict that nitrogen limitation is a

feature of the bacterial community in regions associated

with health. Thus, our experimental data and models show

that nitrogen source constraints on microbial competition for

Carb substrates exert sufficient control on community assem-

bly to shape host-microbiome interaction. This mechanism is

predicted to influence microbiome outcomes across a broad

range of diet interventions, including intake-based strategies,

such as caloric restriction or intermittent fasting (Mattson

et al., 2014), and composition-based strategies, such as high

Prot, high fiber, or prebiotic supplementation. We also predict

that it would play a role in pathology of diseases such as

gout associated with altered rates of excretion of nitrogenous

waste through the intestine. The challenges for diet interven-

tions now are to relate the microbiome impact more directly

to health outcomes and to begin to explore the interactive con-

tributions of different Carb, Prot, or Fat profiles with intake pat-

terns. This requires highly multi-factorial experiments whose

design will be facilitated by the agent-based model strategy

developed here.

EXPERIMENTAL PROCEDURES

Long-Term Nutrient Intake Experiment

A total of 858 mice (strain C57BL/6) were maintained on 25 diets of defined

composition and phenotyped at 15 months as described (Solon-Biet et al.,

2014) (Supplemental Experimental Procedures). All protocols were approved

by the Sydney Local Health District Animal Welfare Committee (Protocol No.

2009/003).
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A subset of animals were euthanized and dissected at �15 months for

detailed analysis of physiology and microbiota (n = 112; 2–6 animals per

diet treatment; Table S1). An additional five animals maintained on standard

chow (AIN3G: Specialty Feeds) were also analyzed. All individuals selected

for this analysis were from separate cages and samples were collected

between 10:00 a.m. and 12:00 p.m. to minimize possible circadian effects.

The entire intestinal tract was removed and cecum contents were collected

aseptically by pipette. Total metagenomic DNA was recovered using the

FastPrep DNA extraction kit and the microbial community sampled by 454

sequencing of the 30 end of the 16S ribosomal RNA (907–1492) using primers

specific for the domain bacteria (Lam et al., 2012). After quality filtering, the

average number of reads per sample was over 12,660. Sequence reads

were assigned to OTUs at 97% identity and then classified using QIIME (Ca-

poraso et al., 2010) or Mothur (Schloss et al., 2009). Unless otherwise stated,

figures represent analyses based on the QIIME analysis using the RDP clas-

sification. The dataset is summarized in the Supplemental Experimental Pro-

cedures and was broadly typical of mammalian gut microbiota with samples

dominated by members of a limited number of bacterial phyla (Donaldson

et al., 2016; Ley et al., 2006a).

Isotope Tracer Experiment

To assess the utilization of host-derived nutrients by gut bacteria on diets of

different energy density, eight female wild-type BALB/c mice (Mus musculus)

were placed on defined diets (two or three per cage). Three animals were tran-

sitioned to the low energy density diet (2 kcal/g and 14:57:29 P:C:F ratio) over a

period of 1 week, then maintained solely on that diet for a further 2 weeks. The

remaining animals were housed in a cage of two or three animals and fed high

energy density standard chow (4 kcal/g, 21:63:16 P:C:F ratio) for 3 weeks.

Custom diets were obtained from Specialty Feeds.

After 3 weeks, both cages of three mice were injected intravenously into the

tail vein with 2.1 mmol/g body weight L-threonine containing 98% 15N and 98%
13C (CortecNet). The remaining two high energy density-fed mice were non-

injected controls. Themice weremonitored over the next 36 hr, with fecal sam-

ples collected at 6 hr intervals. At 24 hr post-injection, two mice from each diet

set trio were culled and ascending colon contents were collected. All samples

were frozen at �20�C immediately following collection.

A total of 5 mg of each colon sample was homogenized and washed in 13

PBS buffer before cells were fixed in 4% paraformaldehyde. Fixed cells were

resuspended in 50% (v/v) ethanol:PBS and stored at�20�C until analysis. Im-

aging work was conducted at the Australian Microscopy and Microanalysis

Research Facility (AMMRF) at the University of Western Australia using the Ca-

meca NanoSIMS 50 (Cameca) or scanning electron microscopy using Zeiss

1555 VP-FESEM. A total of 10 mL fixed cells were spotted onto the center of

a 25.4 mm round silicon wafer support. Yeast control cells grown on normal

media were used as a control for background levels of isotopes. The chip

was then loaded into the NanoSIMS instrument and the electron multipliers

were positioned to collect 12C�, 13C�, 12C14N�, and 12C15N�. The isotopic

standard (yeast cells) was imaged first to calibrate the detector response

before moving on to the test samples. Squares 20–30 mm in size were imaged

until 80–100 cells had been imaged per test sample.

NanoSIMS image data were processed using the OpenMIMs plugin (http://

nano.bwh.harvard.edu/MIMSsoftware) for ImageJ (https://imagej.nih.gov/ij).

Hue/saturation/intensity (HSI) images were generated to visualize the isotope

ratios for all samples. Regions of interest (ROIs) were then selected by defining

each individual cell.

Agent-Based Simulation

Our simulation is based on the premise that microbial access to carbon and

nitrogen resources can be modeled at the level of host macronutrient intake.

We segregate the community of gut microbes into six ecologically distinct

groups (guilds), each representing a unique strategy for acquiring their carbon

and nitrogen, from distinct sources. Our modeling approach is summarized in

Figure S6. A key feature of the model is that bacterial resource requirements

are described in terms of just five sources: feed Prot, three types of feed

Carb, and host proteoglycan (mucin).

We investigatedmicrobial community responses to host nutritional intake by

simulating the known intakes of 250 separately caged mice (Solon-Biet et al.,

http://nano.bwh.harvard.edu/MIMSsoftware
http://nano.bwh.harvard.edu/MIMSsoftware
https://imagej.nih.gov/ij
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2014), constituting 250 unique points in an intake landscape. These are repre-

sented in the Prot and Carb dimensions in Figure S6C. The mouse diet formu-

lations were defined by systematically varying proportions of Fat, Prot, and

Carb, and then diluting these with cellulose to modulate host-accessible nutri-

ents. Prot comprised casein and methionine, and Carb comprised sucrose,

wheatstarch, and dextrinized cornstarch. The simulation is parameterized on

the basis that wheatstarch, dextrinized cornstarch, and sucrose represent

digestion-resistant, partially resistant, and digestible Carbs, respectively.

Although these designations are somewhat arbitrary, they allow us to investi-

gate the effects of distinct Carb profiles on microbial community composition.

Casein and methionine are grouped together in constituting simulated Prot.

Beyond its diluting effect on intake of other macronutrients, Fat is mechanisti-

cally inert in our simulation, for not enough is known of its nutritional availability

to microbes in the colon, and we have shown its influence on taxon-relative

abundance responses to be marginal relative to Carb and Prot. Based on

the observed daily average nutritional intakes of mice being unevenly split be-

tween night active (2/3) and day rest (1/3) (Jensen et al., 2013), 250 simulations

were run for 3weeks of simulated time, sufficient for the establishment of a sta-

ble microbial community (Figure 6B). At this point, the community composition

for each of the 250 simulated mice is ascertained in terms of relative abun-

dance of the six guilds (Figure S6D). Response landscapes describing each

guild’s change in relative abundance with nutritional intake are established

by fitting generalized additive models to the data.
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Figure S1, related to Figure 1A 
Reproducibility of the sequence analysis was assessed by looking at 10 technical 
replicates from 5 different diets (60:20:20, 14:29:57, 33:48:20, 14:57:29 and 42:29:29) 
and 3 energy density regimes (2, 3 and 4 kcal/g). Independent processing commenced 
with independent DNA extraction from the same cecal suspension. Scatter plot shows 
replicates against each for the major higher taxa. Above 5% relative abundance 
reproducibility was extremely high. The poor correlation for Bacteria:Other almost 
certainly reflects imprecision associated with the classification between the replicates 
rather than the sequence generation. 
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Figure S2, related to Figure 1B, C. 
(A-B) Inverse Simpsons Index plotted against P, C and F intakes using the Geometric 
Framework method for microbiome family (A) and genus (B). Statistical significance is 
shown in Table S1. 
(C-F) PCoA plots of Unweighted (C and E) and Weighted (D and F) UniFrac distances 
by diet treatment groups.  Samples in panels C and D are coded by macronutrient 
distribution and in panels E and F by energy density (red 2 kcal, green 3 kcal, blue 4 
kcal).  The major effect is energy density but there is also separation within the 4 kcal 
diets by nutrient distribution. This is most obvious in the weighted analysis where the 
five animals on standard chow cluster separately (light green circles in panel D) 
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Fig. S3, related to Figures 1, 3  
Unconstrained CA plot based on distribution of genera among the samples with the 
environmental gradients of diet composition fitted as a surface. 
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Figure S4 related to Figure 3. 
Geometric Framework surfaces showing relationship between macronutrient intake and 
OTU abundance for all abundant OTUs from gut microbiota. For each OTU, surfaces are 
shown for the relationship between P, C and F intake versus relative abundance. The two-
dimensional surface for each combination of two macronutrients is shown at the median 
of the third macronutrient. Red=highest abundance, Blue=lowest abundance. Statistical 
significance is shown in Table S1.    
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 Figure S5 related to Figure 4. 
(A) Model simulations of mucin-derived carbon (Cm) or Nitrogen (Nm) available to 
bacteria as a proportion of total nutrient intake and macronutrients. 
(B) Bar chart showing frequency of cell widths observed in a representative set of 163 
rod-shaped cells from mice on either a 4 kcal/g or 2 kcal/g energy density diet. Cells with 
width ≤ 0.8 µm were categorised as “thin” rods (green) while those with width ≥ 1.0 µm 
were classed as “wide” rods (red). Rods that were 0.9 µm in width were excluded from 
analysis as ambiguous. 
(C) Microbial diversity data from the threonine uptake experiment.  A) Box-plots of 
relative abundances (%) of bacterial classes in samples from BALB/c mice on a standard 
diet (4 kcal/g energy density) or low energy density diet (2 kcal/g) with significance 
calculated using the Jaccard distance method. Diet-associated shifts in relative 
abundances of bacterial classes were observed with Bacteroidia and Bacilli responding 
significantly to changes in dietary energy intake.   B)  Box-plots of relative abundances 
(%) of genera within the Bacteroidia class in samples from BALB/c mice on a standard 
diet (4 kcal/g energy density) or low energy density diet (2 kcal/g) with significance 
calculated using the Jaccard distance method. Differential response to reduced host 
energy intake in groups within the class Bacteroidia were observed, with increase in 
relative abundances of Bacteroides and Parabacteroides and decrease in Barnesiella 
relative abundance.  
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Figure S6 relating to Figure 5. 
Predicting community composition of microbes characterized through nutrient 
acquisition strategy in response to diet treatment. 
(A) The microbiome is conceptualized through microbe nutrient acquisition strategy, 
forming six trophic guilds. Each guild metabolizes a protein and carbohydrate substrate 
from which carbon and nitrogen, being the most readily limiting elements, are obtained.  
Both dietary and endogenous protein and carbohydrate sources are represented. We 
differentiate between digestion resistant and partially-digestion resistant dietary 
carbohydrate substrates. Guilds compete through overlapping substrate utilizations. 
Guild colour indicators are maintained throughout all figures.  
(B) The microbial community is simulated at the resolution of individual cells, which 
internalise carbon (C) and nitrogen (N) from their environment in accordance with guild 
membership. Internalised quantities of C and N decay with time, reflecting metabolic 
activity. Internalised C & N dictate a cell’s fate: nutrient rich cells divide imminently, and 
starved cells die. A one-dimensional simulated gut environment harbours bacteria, and 
secretes mucin at constant rate uniformly along its length. Dietary nutrient is input at the 
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proximal end, following host-absorption; all fat and fully-digestible carbohydrates are 
absorbed, whereas digestion resistant and partially digestion resistant carbohydrates and 
dietary protein are absorbed at rates saturating with increasing dietary intake. Its load in 
relation to the gut carrying capacity determines the rate of bacteria and unutilized digesta 
defecation. Regular peristalsis events shuffle bacteria. 
(C) 250 dietary intakes are independently simulated, defined by chow macronutrient 
distribution, energy density and average consumption of 250 cages of mice. Data are 
flattened along the fat axis. As fat is mechanistically inert in simulations, and protein & 
carbohydrate are primary drivers of community composition, subsequent figures show 
response landscapes plotted on protein & carbohydrate axes.  
(D) The microbial community composition resulting from dietary treatment can be 
predicted. Community compositions following 3 weeks on a fixed diet are depicted; each 
composition is averaged from 10-17 simulations in the regions indicated.  
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Table S2, related to Figure 1 

 
 
Diet treatment groups and average total energy intake for 112 mice in the 25 diet 
treatment groups. An additional 5 animals maintained on standard chow are not shown in 
this table. Two trends are evident, an increase in average energy intake per mouse with 
increased energy density of the diet (left to right) and increased average energy intake per 
mouse with decreasing proportion of protein in the diet (top to bottom). 
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Supplemental Experimental Procedures. 
Long term nutrient intake experiment. 
 
A total of 858 mice (strain C57Bl/6) were maintained on 25 diets of defined composition, 
and phenotyped at 15 months as described (Solon-Biet et al., 2014). Animals were 
recruited into the study in three cohorts and maintained on the diets ad libitum for their 
natural lifespan or until culling at 15 months. The diets comprised ten distinct 
macronutrient distributions supplied as protein (casein and methionine), carbohydrate 
(wheat starch, dextrinised corn starch, and sucrose) and fat (soya bean oil), each at up to 
3 different caloric densities (Solon-Biet et al., 2014). The density of nutrients was 
determined by bulking out the food pellets with indigestible cellulose to create versions at 
2, 3, and 4 kcal/g. All other ingredients were kept similar. Other ingredients include 
cellulose, a mineral mix (Ca, P, Mg, Na, C, K, S, Fe, Cu, I, Mn, Co, Zn, Mo, Se, Cd, Cr, 
Li, B, Ni and V) and a vitamin mix (vitamin A, D3, E, K, C, B1, B2, Niacin, B6, 
pantothenic acid, biotin, folic acid, inositol, B12 and choline) supplemented to the same 
levels as standard rodent chow AIN-93G (Specialty Foods, WA). Animals were housed 
in single sex groups of 3 per cage. Feed consumption was recorded per cage and 
transformed to estimate macronutrient and energy intake for individual animals (Table 
S2). Phenotype and amino acids were evaluated as described (Solon-Biet et al., 2014). 
 
Microbial community analyses. 
Bacterial community analyses were also conducted with fecal samples from BALB/c 
mice in the threonine tracer experiment. PCR for 16S rDNA and pyrosequencing were 
performed as described for the main data set. After initial processing, a total of 41 347 
reads were obtained, ranging from 6 099 to 8 197 reads per sample. Trimmed and 
processed sequences were assigned to bacterial taxonomy using RDP Classifier, a 
hierarchical taxa assignment tool based on RDP naive Bayesian rRNA Classifier. A 
confidence threshold of 80% was used, where sequences below the threshold were 
designated as “unclassified”. The same general pattern for increased ratio of 
Bacteroidetes to Firmicutes on low energy density diet was seen, and again some within-
phylum divergence of response was evident (Figure S5C).  However, in this experiment 
with younger, BALB/c mice, Clostridiaceae were of much lower abundance and a much 
higher proportion of Bacteroidetes and Bacilli was seen. This highlights that although the 
absolute relative abundance values of Bacteroidetes and Firmicutes have limited 
predictive value across different host or diet systems, the factors driving their response 
appear to be similar. 
 
High throughput sequence datasets are subject to both technical (reproducibility of 
sequence collection) and analytical (reproducibility of classification) variation.  The 
resulting low level of precision means there is often inconsistency between diversity data 
from different studies and their relationship to ecological parameters. To address 
technical reproducibility, a subset of samples from the main study was independently 
processed twice to assess technical reproducibility (Fig S1). To account for the potential 
effects of ‘classification noise’ on identification of ecological drivers the data set was 
processed and classified by three different approaches and analyses were conducted at 
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multiple taxonomic scales. Although differences were seen in the relative abundance of 
several groups at the family or genus level within the Firmicutes and Bacteroidetes the 
general community composition was similar across classification approaches. 
Significantly, the associations between different aspects of nutrient intake or diet 
composition and directions of compositional change were consistent across all 
classification approaches. We conclude that the identification of ecological drivers of the 
microbial community is robust. 
 
 
Diversity Assessment in relation to diet composition . 
We first addressed the question; Does diversity differ between communities exposed to 
different diet compositions? The diversity of biological communities encompasses 
multiple dimensions, including species richness and evenness. Furthermore the scale of 
biological resolution (or evolutionary distance) for classification, and the sampling effort 
can also impact observations of diversity. To account for these variables, accumulation 
curves and diversity analyses were constructed at genus, family and class scale.  
 
Across our data set the average reads per sample was 12,000 (Figure 1). When samples 
were combined into treatment groups defined by macronutrient composition (2-16 
independent samples per treatment group) or energy density (32 - 40 samples per 
treatment group) accumulation curves show that at taxonomic scales above the rank of 
genus saturated sampling is predicted for each treatment group (Figure 2).  
 
To explore which aspects of diversity were most sensitive to diet compositional variation 
we compared Rényi profiles for data sets clustered by energy density or nutrient 
distribution. The diversity series only showed significant separation between treatments 
for high values of α. This indicates that changes in evenness rather than species richness 
are the dominant response. Comparisons of analyses clustered by nutrient distribution or 
by energy density further showed that energy density is the dominant diet composition 
factor for alpha diversity when viewed at genus or family scale. At the class scale there 
was no significant difference observed for separations by energy density or for most 
nutrient distributions (data not shown). 
 
Beta diversity, or compositional differences between the diet treatment groups were 
examined using ordinations of datasets based on both correspondence and principal 
coordinates analyses. The main text shows an unweighted unifrac PCoA plot with the by 
energy density treatment for each sample labelled (Figure 1C).  Here for comparison we 
also show this ordination labelled by macronutrient profile and similar paired 
representation for the weighted unifrac PCoA plots (Figure S2C-F). In both ordinations 
separation of the samples from 4 kcal/g treatments is seen separations based on 
macronutrient distribution are much less well-defined. In the weighted unifrac analysis 
the % variation explained is higher. 
 
To further resolve the effects driving differences in the communities we also explored the 
relationship between environmental gradients and community composition using 
correspondence analyses based on the taxonomic categorizations. Again, there is a strong 
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separation of the two lowest energy samples (2 and 3 kcal/g) from the majority of the 
high energy density (4 kcal/g) samples. In Figure S3 the gradient surface is fitted on the 
basis of the samples’ locations in diet space and the taxon locations can be interpreted as 
the maximum occurrence in relation to the fitted environmental gradients of diet 
composition. The surface fitting is with generalised additive models (GAM) using thin-
plate splines. Despite many gradient variables having a p-value below 0.01 the fits were 
greatest in explanatory power for energy density (62.4%) and to a lesser extent fat 
(11.0%). Therefore, it may be concluded that the ordination of the samples more strongly 
follows the dietary treatments of energy density and fat than other parameters. 
 
Taxon responses in relation to nutrient intake. 
Owing to animal digestive and absorptive processes, not all ingested food is available to 
microbes. Furthermore, this will vary with the composition of the food and the intake 
pattern. This is an especially important consideration for ad libitum feeding studies, since 
animals self-regulate food intake to reach nutritional targets. 
 
These considerations mean that several factors with potential to influence competition for 
nutrients between members of the microbial community in the gut will vary inter-
dependently across the diet treatment groups. These include total dry matter and energy 
intakes, total amount of each macronutrient eaten (as Protein, Carbohydrate or Fat), and 
the ratio of macronutrients ingested. Accordingly, we have used nutritional geometry to 
disentangle these factors. Explanatory power was greatest for taxa that were frequently 
represented at levels greater than 1% relative abundance across the 25 diet treatment 
groups. Finer-scale taxa (individual OTUs) were generally of lower abundance and are 
not shown here.  However their response surfaces typically corresponded to one of the 
described response guilds as presented for the higher taxa in the main text. 
 
Modelling intestinal nitrogen availability. 
For microbial ecosystems, limiting nutrients are typically described in terms of sources of 
major bioelements such as carbon and nitrogen. To explore the relative availability of 
mucin nutrient sources to the microbial ecosystem, we constructed a simple model. The 
model assumes that dietary protein, are carbohydrate are both sources of Carbon, but that 
the only sources of Nitrogen are dietary protein and mucin. The model also assumes that 
the host extracts a proportion of dietary C and N before food reaches the colon. Across 
the range of modelled host extraction proportions (50-70% for Carbon and 65-95% for 
Nitrogen) the models of the relative availability of mucin-derived to diet-derived 
Nitrogen and Carbon show a broad increase in relative availability of mucin-derived 
nitrogen on low energy density diets (Figure S5). This is consistent with ability to access 
mucin-derived N (and to a lesser extent C) having the potential to provide competitive 
advantage to Bacteria under low nutrient intake conditions.  
 
Model simulation. 
Gutsim is an agent-based model of gut bacterial community dynamics described in terms 
of guild composition. The framework for this model and further interpretation of the 
simulations are described below. A Python implementation of the model is available on 
request. 
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Our simulation is based on the premise that microbial access to carbon and nitrogen 
resources can be modeled at the level of host macronutrient intake. It is well established 
that carbohydrate sources vary in the extent to which they resist digestion and absorption 
in the small intestine to become microbially available (Flint et al. 2008; Rogowski et al. 
2015).  Thus microbially available carbon will be sensitive to dietary carbohydrate 
profile. Although protein is also a carbon source, our data indicate that the major impact 
of protein intake is via nitrogen availability. We predict microbially available nitrogen 
will be relatively insensitive to dietary protein profile since excess absorbed nitrogen still 
becomes available to microbes through excretion into the small intestine (Kawasaki et al. 
2015). 
 
Figure S6 summarises our modelling approach. We use computational simulation to test 
the following: 
1) That the ability to monitor dynamics using the guild-based approach is similar to 
phylogenetic-based approaches of comparable taxonomic granularity; 
2) That simulated manipulations of response drivers for guilds generate similar patterns 
to those observed for real taxa assigned to the guilds in experimental manipulation; 
3) That the dominant nutritional selection pressure for community members will vary 
according to both microbe-dependent (life history strategy) and diet-dependent (food 
composition and intake) effects. 
 
Conceptualising the microbial community. 
We segregate the community of gut microbes into six ecologically distinct groups 
(guilds), each representing a unique strategy for acquiring their carbon (C) and nitrogen 
(N), from distinct sources (Figure S6A). This is comparable resolution to bacterial phyla 
(gut communities are typically dominated by just 6-10 types). The python 
implementation of these guilds is defined towards the end of the module 
gutsim/bacteria.py (supplementary materials). To explore the community dynamics 
resulting from this abstraction a number of operational assumptions were applied with 
regard to other aspects of the host-microbiome system. First is the assumption that all 
bacteria in a guild will respond similarly to a host’s nutritional intake, regardless of other 
aspects of within-guild diversity. For each guild, members utilize one carbohydrate 
source and one protein source to obtain carbon (C) and nitrogen (N). All other essential 
elements (e.g. P, S, O, H) are assumed to be available in non-limiting quantities. We 
consider both diet- and host-derived substrates, and spatio-temporal dynamics to model 
microbial fate, occupation and transit through the gastro-intestinal tract (GIT). We 
consider the total host intake to constitute fat, protein and carbohydrates with microbial 
access to these to further influenced by host processes. We simplify the carbohydrate 
profile as comprising digestible, digestion-resistant and partially-digestion resistant 
carbohydrates. Digestible carbohydrates and fat are unavailable to microbes (assumed to 
be entirely absorbed by the host). Dietary protein, digestion resistant and partially 
resistant carbohydrates; together with the glycan and protein components of mucin, form 
substrates available to colonic microbes. Pairwise combinations of these two proteins and 
three carbohydrates defines six guilds, which compete through their overlapping substrate 
utilization. Through these abstractions of colonic nutrient availability we can investigate 
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how the balance of C and N flow from either endogenous or exogenous sources shapes 
the microbial community.  
Diet-derived microbial growth substrates include digestion resistant and partially 
digestion resistant carbohydrates, and protein.  Host-derived microbial growth substrates 
include the glycan and protein components of mucin. 
 
Modelling a bacterial cell’s state. 
 Our simulation is agent-based, and we represent each individual bacterium as a 
unique and explicit entity inhabiting a specific location in the simulated GIT space 
(Figure S6B). A bacterial cell acquires C and N by internalising substrates from its 
environment in accordance with its guild’s nutrient acquisition strategy. A cell’s fate is 
determined by its quantities of internalised C and N. Cellular function requires a ratio of 
5.2C:1N be maintained (Vrede et al. 2002), excess of either element beyond this ratio 
confers no benefit. Hence, either C or N status can limit the function and viability of each 
individual cell (Figure 6B). A cell will not internalise additional quantities of the non-
limiting nutrient. As a cell’s internalised quantity of C & N increases, so too does its 
probability of division. Conversely, cells that are relatively nutrient starved face a higher 
probability of death. Death and division rates as a function of limiting nutrient are 
implemented at the top of the module bacteria.py (supplementary materials). 
 
Representation of the gut environment. 
 We have estimated the proportion of daily nutrient intake that the host absorbs 
(Silvester et al. 1995), which asymptotically approaches a saturating maximum quantity 
as daily intake increases. Non-host-sequestered nutrient is available to microbes. Microbe 
locations in the simulated gut determine the substrate profiles they have access to, the 
profiles resulting from nutrient input and the history of microbial activity. Dietary 
nutrients enter at the proximal end, and both unused substrate and bacteria are excreted at 
the terminal end. Mucin secretion rates have been estimated from literature (MacFarlane 
et al. 2005; Bansil et al. 2006; Ermund et al. 2013). Mucin is secreted at a constant rate, 
evenly spread along the length of the gut. Secretion rate does not change with diet, a 
necessary assumption in absence of more information. Peristalsis waves shuffle bacteria 
and nutrients as they traverse the gut (Roberts et al. 2007). An upper limit on the gut’s 
microbe carrying capacity has been estimated, and if exceeded is enforced by increasing 
the defecation rate. The different aspects of the nutrient supply and gut motility dynamics 
are implemented in the modules experiment.py (mucin secretion rate), feed-regimen.py 
(temporal dynamics of all components) and mouse.py/Mouse.execute (spatial distribution 
of bacteria and nutrients in colon). 
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