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Abstract

Swarming has been observed in various biological systems from collective animal
movements to immune cells. In the cellular context, swarming is driven by the secretion
of chemotactic factors. Despite the critical role of chemotactic swarming few methods to
robustly identify and quantify this phenomenon exist. Here we present a novel method
for the analysis of time series of positional data generated from realisations of
agent-based processes. We convert the positional data for each individual time point to
a function measuring agent aggregation around a given area of interest, hence generating
a functional time series. The functional time series, and a more easily visualised
swarming metric of agent aggregation derived from these functions, provide useful
information regarding the evolution of the underlying process over time. We extend our
method to build upon the modelling of collective motility using drift-diffusion partial
differential equations (PDEs). Using a functional linear model we are able to use the
functional time series to estimate the drift and diffusivity terms associated with the
underlying PDE. By producing an accurate estimate for the drift coefficient, we can
infer the strength and range of attraction or repulsion exerted on agents, as in
chemotaxis. Our approach relies solely on using agent positional data. The spatial
distribution of diffusing chemokines is not required, nor do individual agents need to be
tracked over time. We demonstrate our approach using random walk simulations of
chemotaxis and experiments investigating cytotoxic T cells interacting with tumouroids.

1 Introduction1

Chemotaxis refers to directed cell movement driven by individual cellular responses to a2

biochemical gradient. Chemotaxis is a critical driver of an array of physiological3

processes; it plays a crucial role in embryonic development, directing migratory4

behaviour of cells in growing tissues [1], formation of new capillaries to sites of5

ischaemia via angiogenesis [2], and orchestrates cell dynamics in wound healing [3, 4]. In6

addition, the self-amplifying clustering of immune cells driven by chemotaxis, which we7

term chemotactic swarming, has been observed during responses to injury where8

neutrophils swarm to sites of inflammation and recently in cytotoxic T cells interacting9

with tumour cells [5–7]. These concepts are emerging as highly relevant in the10
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engineering field of swarm robotics, where the spatial coordination of a collective of11

autonomous vehicles is concerned.12

Developments in live-cell imaging techniques increasingly allow for precise13

localisation of individual cells over time [8–11]. As such, a significant amount of imaging14

data capturing cell motility is becoming available. Probing this data to detect the15

presence of chemotactic swarming presents a unique challenge, due to the fact that16

visualising chemoattractant gradients in conjunction with cell movements is very17

difficult, particularly without disturbing the underlying dynamics. Whilst individual18

cell tracking can be used to analyse chemotaxis, tracking individual cells requires a high19

sampling rate (with associated photo-toxicity), a smaller field of view than would20

otherwise be available, a low cell density so that consecutive positions of cells are21

non-ambiguous, and imaging capacity that is capable of imaging in 3D if the cells are22

not confined to a 2D substrate [10,12–14]. New statistical approaches need to be23

developed to detect and characterise chemotactic swarming using cell position data24

alone.25

In this paper we set out a method for detecting and characterising the chemotaxis of26

agents towards a known area of interest, e.g. a tumour. We first present a general27

framework for the analysis of aggregation of agents for any type of agent-based28

processes, independent of the underlying rules governing individual agent movements.29

To do this, we adapt existing spatial statistical approaches to analyse the positional30

data generated by an agent-based process. Our methodology involves adapting Ripley’s31

K function from spatial statistics, [15–18], to analyse the distribution of agents around32

the given area of interest. We refer to these adapted functions as focal K functions.33

Similarly to the analysis of static spatial data, these focal K functions can be used to34

analyse the spatial aggregation of agents around an area of interest. We then use these35

functions to produce a scalar metric of agent aggregation, the time series of which36

provides an easily visualised measure of agent aggregation over time.37

We next provide a statistical method for the analysis of the drift and diffusivity38

governing agent movement under the assumption that the evolution of the agent39

population is well approximated by the Fokker-Planck equation. The Fokker-Planck40

equation is an advection-diffusion type partial differential equation (PDE) that allows41

for spatial and temporal dependence with respect to drift and diffusivity terms [19–21].42

Our statistical approach utilises a novel combination of spatial statistics and functional43

data analysis. The empirical estimates for focal K functions generated from an44

agent-based process form a functional time series. By modelling the evolution of focal45

K function using functional linear models we are able to estimate the drift and46

diffusivity of the approximating Fokker-Planck equation. Our approach is generalised to47

deal with both time-invariant and time-dependent drift and diffusivity. Our approach,48

using a simple functional linear model and providing the capacity to produce estimates49

for drift and diffusion dependent on both space and time, is in contrast to other50

techniques for fitting microscopic dynamics to PDEs [22–30].51

The Fokker-Planck equation is commonly used to model collective cell movement52

and chemotaxis. Keller-Segel models of chemotaxis, popular and well studied continuum53

models for chemotaxis, utilise coupled Fokker-Planck type equations for cell position54

and chemokine concentration [21,31–33]. Developing techniques to fit Keller-Segel55

models to experimental data is an active area of research [34]. Fokker-Planck type56

equations have been shown to provide close approximations to the evolution of cell57

density among agent-based models of cell movement [35–44].58

We develop our methodology for motile agents in two dimensions, but we expect59

that our methodology can be easily extended to 1D and 3D processes. Our formulation60

of this approach for 2D analysis is motivated by T cell-tumour experiments detailed in a61

later section.62

2/22



We provide an open source implementation of our tool in R [45], along with code for63

producing and analysing the presented simulations and experiments, available at64

https://github.com/JackHywood/Chemotacticswarming.65

2 Agent-based processes with clustering66

We consider systems of agents (e.g. cells, animals, robots) that change their position67

over time and analyse their arrangements within some observation region, denoted by R.68

With a particular focus on chemotactic swarming we are interested in establishing69

whether agents are attracted or repulsed from some central region of interest, B, which70

lies in R. For any given time t, the realisation of the dynamic agent-based process71

results in a spatial point pattern within R. Let X(t) be the spatial co-ordinate data for72

agents at a given time t, such that X(t) = {x1, x2, ..., xn(t)}, with xj being the spatial73

co-ordinates of the jth agent, and n(t) being the total number of agents observed within74

the observation region R at time t. Likewise, let the time points at which observations75

of an agent-based process occur be given as T = {t1, t2, ..., tN}, with N giving the total76

number of time points observed.77

For simplicity we here consider the case where the number of agents within R does78

not change with time, i.e. n(t) = n is constant. In particular, agents cannot cross the79

boundary of R. We consider cases in which n(t) varies with time in later sections.80

We continue by considering the following idealised spatial geometry for such81

agent-based processes. For simplicity we continue by working in 2D with the82

assumption that R is circular with radius rR, and also that B is a circle with radius rB ,83

with B occurring at the centre of R. We also assume that the distribution of agents in84

R is isotropic, i.e. that agents are distributed uniformly with respect to direction from85

the centre of R. We note that this framework allows for the case in which B is a point,86

i.e. setting rB = 0.87

Using polar coordinates and assuming distribution of agents within R is isotropic, we
define the density of agents as

λ(r, t) = lim
|ds|→0

E[Y (ds, t)]

|ds|
, 0 ≤ r ≤ rR (1)

with ds defining a small annulus with inner radius r from the centre of R, |ds| giving88

the volume of ds, Y (ds, t) giving the number of agents within ds at time t, and E[·]89

denoting expectation with respect to the distribution of a given process evolving90

stochastically from a given set of initial conditions.91

Using a common continuum model for cell movement [20, 21, 31–34], we assume that
the evolution of λ(r, t) is governed by the Fokker-Planck equation,

∂λ

∂t
= −∇ · (fλ) +∇ · (D∇λ). (2)

It is well established that under certain conditions the evolution of agent-density for92

discrete agent-based models can be well approximated by PDEs [20,40,43,46].93

Working in polar coordinates, and using the assumption of isotropy, we have

∂λ

∂t
=

1

r

∂

∂r

(
r
(
− f(r, t)λ(r, t) +D(r, t)λ′(r, t)

))
(3)

where f(r, t) is the drift term, D(r, t) the diffusivity term, and λ′(r, t) = ∂λ
∂r .94

For a given time t, if the movement of agents positioned at a distance r from the95

origin is unbiased then f(r, t) = 0. If there is bias towards the centre of R then96

f(r, t) < 0. If there is bias away from the centre of R then f(r, t) > 0. The diffusivity97
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term D gives a measure of the component of movement that can be modelled as simple98

diffusion.99

We note that agent-based processes may evolve such that agent behaviour within B100

is of no interest, i.e. we are only interested in the behaviour of agents outside of B. For101

example, an agent-based process might evolve such that agents that reach or enter B102

stop moving and as such their behaviour and distribution within B is of no interest. In103

such circumstances the range of r values analysed can be truncated accordingly, for104

example, r ∈ [rB , rR], for the procedures demonstrated in the following sections.105

2.1 Focal K functions for agent-based processes106

K functions are a well known summary spatial statistic used for detecting and107

characterising the deviation of spatial point patterns from complete spatial108

randomness [15,17,18]. A crucial fact that we make use of is that certain spatial K109

functions can be both easily estimated based on sequential observations of agent110

positions alone, and then related to the function f defined in Eq (3) allowing one to111

estimate f . We here adapt K functions for the analysis of agent-based processes,112

introducing what we refer to as focal K functions.113

We define the overall density of agents within R as

λR =
n

|R|
, (4)

with n giving the number of agents within R, and |R| giving the volume of R.114

We define focal K functions as follows:

K(r, t) =
1

λR
E[Number of agents within r of the origin at time t]

=
2π

λR

∫ r

0

sλ(s, t)ds, 0 ≤ r ≤ rR. (5)

For each time point ti we can use the associated spatial point pattern X(ti) to
produce an empirical K̂(r, ti) function as an estimate of K(r, ti). We assume
observation times are regularly spaced, so that for a positive constant τ , ti+1 − ti = τ
for all i ≥ 1, and hence we express K̂(r, ti) as K̂i(r). We define K̂i(r) as

K̂i(r) =
1

λR

n∑
k=1

1(δ(k) ≤ r), 0 ≤ r ≤ rR, (6)

where δ(k) is the distance from the origin for the kth agent in R, and 1(·) is the115

indicator function. Since our analysis of agents is limited to the behaviour of agents116

within R we do not require an edge correction term in Eq (6) as is typical when117

producing K function estimates in spatial statistics, though we expect that one could118

easily be introduced if required; see [18].119

2.2 Focal L functions and the swarming metric120

Analogous to spatial statistics we can transform focal K functions to produce focal L121

functions that are linear with respect to r and visually easier to interpret, especially for122

smaller r values. Such focal L functions can then be used to produce what we refer to123

as a swarming metric, giving a single value that measures the level of agent aggregation.124

As noted previously we may only be interested in the distribution of agents outside125

of B, i.e. their distribution within B is not of interest. In this circumstance we can126

compare a given distribution of agents against a uniform distribution of agents within127
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the annulus R−B, with the agent density within B equal to 0. As such, the agent128

density associated with this distribution is129

λ(r, t) =

{
0, 0 ≤ r < rB
λRr

2
R

r2R−r2B
, rB ≤ r < rR.

It then follows from Eq (5) that in this case the focal K function takes the form130

K(r, t) =

{
0, 0 ≤ r < rB
πr2R(r2−r2B)

r2R−r2B
, rB ≤ r < rR.

(7)

Given Eq (7), we adjust the usual definition of the L function found in spatial
statistics accordingly, defining focal L functions as

L(r, t) =

√
r2R−r2B
r2R

K(r, t) + πr2B

π
− rB , rB ≤ r ≤ rR. (8)

As such, for a uniform distribution of agents within the given annulus, with the131

associated focal K function in Eq (7), we have L(r, t) = r − rB for r ∈ [rB , rR]. Eq (8)132

reverts to the normal L function of spatial statistics by setting rB = 0.133

Focal L functions can be used to further simplify the measurement of agent134

aggregation by producing a simple scalar metric of aggregation as detailed below. By135

producing a time series of this metric we are able to demonstrate how the distribution136

of agents changes with time in a simple and easily visualisable manner. We define this137

swarming metric as M(t), and, in order to give a formal definition, we proceed by138

defining a perfectly aggregated distribution of agents and a perfectly dispersed139

distribution of agents.140

Under this formulation a given number of agents is perfectly aggregated within R if
they are all within B. The focal L function associated with this distribution of agents is

L(r) = rR − rB , rB ≤ r ≤ rR. (9)

The perfectly dispersed configuration of agents will consist of agents being localised on
the outer edge of R. The associated focal L function for this distribution of agents is

L(r) =

{
0 if rB ≤ r < rR

rR − rB if r = rR

The swarming metric M(t) can then be produced for a given time point t by
transforming the associated focal L(r, t) function as follows:

M(t) =
2

(rR − rB)2

∫ rR

rB

(
L(s, t)− (s− rB)

)
ds. (10)

As such, M(t) has a range of [−1, 1], with −1 being equivalent to agents being perfectly141

dispersed, and 1 being equivalent to agents being perfectly aggregated. Representative142

configurations of these are shown in Figure 1. The empirical metric M̂i is produced143

using L̂i(r) in Eq (10).144

As a scalar summary, M(t) does not contain the amount of information relating to145

agent aggregation as the functions K(r, t) or L(r, t). However, we suggest that as a146

scalar time series of M̂i values may be easier to interpret than the functional time series147

K̂i(r) or L̂i(r). Furthermore, we suggest that the time series of M̂i may be most useful148

in comparing realisations of different experimental conditions in which one expects a149

divergence between M(t) for each condition.150
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(a) (c)(b)

M = -1 M = 1M = 0

Figure 1. Representative images indicating agent arrangements and associated
swarming metric, M , values. a) M = −1; b) M = 0; c) M = 1.

2.3 The relationship between f , D, and focal K functions151

The functions f and D can be related to the focal K functions as follows. From Eq (5)
we have

∂K

∂t
=

2πr

λR

(
− f(r, t)λ(r, t) +D(r, t)λ′(r, t)

)
. (11)

We introduce the function γ(r, t) = − λR
2πr

∂K
∂t , such that

γ(r, t) = f(r, t)λ(r, t)−D(r, t)λ′(r, t). (12)

Eq (12) shows that, under the above assumptions, there is a simple linear152

relationship between γ(r, t) and the functions λ(r, t) and λ′(r, t). Given estimates γ̂i(r),153

λ̂i(r), and λ̂′i(r) at each time point ti, one can employ functional linear regression to154

produce estimates for f and D. This can be achieved using B-spline (or other)155

smoothing of empirical focal K functions as outlined in Supplementary 1. The major156

functions used to produce smoothed empirical focal K functions and to perform157

functional linear regression are found in the fda R package [47].158

Below we apply two methods, again detailed in Supplementary 1, to estimate f and159

D: one in which it is assumed both are time-invariant, so that f(r, t) = f(r) and160

D(r, t) = D(r), and one in which these functions are allowed to be time-varying.161

Time-invariant estimates are denoted f̂(r) and D̂(r), whereas the time-varying162

estimates produced at each discrete viewing time are denoted f̂(r, ti) = f̂i(r), and163

D̂(r, ti) = D̂i(r).164

It may be known a priori whether f and D are time-invariant or time-varying due to165

experimental conditions, e.g. due to the induction of a constant chemokine gradient.166

Also, if Ki(r) strongly suggests that f(r, t) = 0, and D is assumed to be time-invariant,167

time-invariant estimates may be suitable. In general however, we suggest that most168

processes will likely demonstrate a degree of time dependence for f and D.169

We suggest initially analysing data using time-varying f and D, and considering170

whether the functional estimates exhibit any obvious trends. If no obvious trends are171

present, it may be appropriate to proceed to using a time-invariant estimate for f and172

D. We suggest that even for cases that demonstrate trends in the time-varying173

estimates, the time-invariant estimates f̂(r) and D̂(r) may provide a useful measure of174

overall drift and diffusivity.175
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3 Simulations of simple 2D agent-based models of176

chemotaxis177

We here apply the above approaches to simple agent-based models (ABMs) of178

chemotaxis. The models are based on other off-lattice ABMs of cell movement [43,48].179

Each ABM consists of 1000 individual agents moving within an enclosed circular180

region, R, with radius rR = 100, with a circular central region B, with radius rB = 20,181

located at the centre of R.182

Simulations commence with all agents randomly distributed within R under a183

uniform distribution. The models are discrete time processes with time steps of constant184

duration, τ . We set τ = 1 for all simulations. Each simulation runs for 200 time steps.185

Each ABM evolves via a similar underlying process. A random sequential update186

method is used to perform simulations [40,49]. That is, at each time step, 1000187

sequential random selections of the 1000 agents are made, with selected agents188

performing a movement as described below. As such, an agent may move more than189

once, or not at all, for a given time step. If an agent is selected to move, they move in a190

direction, θ, drawn from a probability density function (PDF) that is dependent on an191

idealised chemokine gradient. Once a direction is selected the agent moves a constant192

distance, ∆, in that direction. We use a reflecting boundary at the edge of R, such that193

if an agent attempts to move out of R it is reflected back into R. These processes are194

not exclusion processes and agents can occupy the same position in space. We set ∆ = 1195

for all simulations.196

Zero chemotaxis197

For the ABM of zero chemotaxis agents are not biased to move in any particular198

direction; θ is drawn from a uniform distribution over [0, 2π].199

Chemotaxis200

To model chemotaxis we use a similar concept as in [48,50,51]. An idealised attractive201

chemokine gradient is established radiating from the origin. Agents are more likely to202

move up the gradient with the likelihood determined by the steepness of the local203

gradient at the position of the agent.204

We take the idealised chemokine concentration, v(r, t), to be the product

v(r, t) = V (r)T (t), (13)

with V (r) giving the distribution of chemokine with respect to r, and T (t) giving a time205

dependent function that allows the chemokine concentration to change with time.206

The steepness of v(r, t) determines how biased agent movements are. Thus we use207

the absolute value |∂v∂r | to parameterise the distribution for θ.208

For each agent the angle of movement is drawn from a von Mises distribution [20,52].
Specifically, for an agent at position (r, α) in polar coordinates, at time t, θ(r, α, t) is
drawn using the probability density function

p(θ; r, α, t) =
exp(|∂v∂r | cos(θ − (π + α)))

2πI0(|∂v∂r |)
, (14)

with I0(·) giving the modified Bessel function of the first kind of order 0. As such, the209

expectation of agent movements is α+ π, i.e. towards the origin, with the variability210

around this value determined by the steepness of the chemokine gradient, |∂v∂r |.211
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For our simulations we set V (r) to be a Gaussian function;

V (r) = βe
−r2

2σ2 , (15)

with the parameter β > 0 increasing the steepness of the gradient for larger values and212

σ increasing the “diffusivity” of the chemokine, providing a measure of how far the213

chemokine signal is effective. For all chemotaxis simulations we set β = 40 and σ = 30.214

3.1 Simulation results215

For each case we visualise the empirical functional time series produced using rainbow216

plots [53,54]. Rainbow plots are a useful approach in visualising functional time series217

data; the order in which functions occur in time is indicated by colour with early218

functions red, followed by orange, yellow, green, blue, indigo, with the latest functions219

violet.220

For each simulation we then produce estimates f̂ and D̂ using functional linear221

modelling as described in Supplementary 1 using the fda R package [47]. For each222

simulation we use 40 splines and a smoothing parameter of 1 to produce the smoothed223

empirical focal K functions. We use order 6 splines, since this will ensure that the224

second derivatives of the smoothed focal K functions, which are used to produce the225

functional covariate λ̂′(r), will be smooth [55]. The number of splines used and the226

smoothing parameter employed for the estimated f and D must also be selected, and227

we use 20 splines and smoothing parameters of 10 for both f and D for all simulations.228

In addition, we note that we find estimates for f and D can sometimes be inaccurate229

around r = 0 and r = rR, due the the inherent instability of higher order derivatives of230

splines at boundaries [55]. We find that estimating f and D over a truncated region,231

[r1, r2], with r1 > 0 and r2 < rR, but still close to these values, can produce better232

estimates. For all simulations we use r1 = 5, and r2 = 95.233

For a discussion regarding implementation and robustness of estimates for f and D234

with respect to smoothness of the focal K functions, temporal resolution, agent density,235

and number of time steps, see Supplementary 2. We find that estimates are robust to236

even small agent densities and limited numbers of time steps. As demonstrated in237

Supplementary 2, we note that there is a dependence of the estimates for D on the238

smoothness of the focal K functions, and suggest that using relatively smooth focal K239

functions that still capture the variability of the underlying step functions.240

We are able to compare f̂ and D̂ against approximations of the true drift and241

diffusivity functions associated with each ABM calculated using the first and second242

moment of agent movements [20,40,46,52,56]. See Supplementary 3 for details.243

Zero chemotaxis244

For the case of zero chemotaxis we run three replicates with different initial starting245

agent positions. For simplicity we present K̂i(r), L̂i(r), M̂i, and γ̂i(r) for only the first246

replicate, see Figure 2. The estimates f̂(r) and D̂(r) obtained using functional linear247

modelling for each of the three simulations are plotted together on the relevant panels248

to allow for comparison. We see that for the given simulation the K̂i(r) and L̂i(r)249

functional time series do demonstrate and obvious trend. This is reflected in the stable250

trajectory of the swarming metric M̂i. We note that M̂i > 0 as agents are initially251

distributed uniformly throughout R, with some agents placed within B, and M̂i252

compares the distribution of agents to the uniform distribution of agents within the253

region R−B, i.e. with 0 agents within B. The estimates f̂(r) vary around 0, strongly254

indicating that no bias of agent movement towards B is detected for this model. The255

estimates D̂(r) perform well in estimating the true D(r) function. The estimates f̂(r)256

and D̂(r) are similar between the three simulations.257
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Figure 2. Zero chemotaxis: (a) K̂i(r); (b) L̂i(r); (c) M̂i; (d) γ̂i(r); (e) f̂(r); and (f)

D̂(r). The estimates f̂(r) and D̂(r) for the first replicate are given by solid black lines,
with the dotted black lines giving the 95% confidence intervals for these estimates, the
red solid lines giving the true f(r) and D(r) functions, and the blue lines giving 0.

Estimates for f̂(r) and D̂(r) associated with the two additional replicates using different
initial positions are added to panels (e) and (f) as solid grey and dashed grey lines.

Time-invariant chemotaxis258

For the model of time-invariant chemotaxis we set T (t) = 1, such that attraction259

exerted on agents is time-invariant. We run three replicates with different initial260

starting agent positions. Similarly to above we present K̂i(r), L̂i(r), M̂i, and γ̂i(r) for261

only the first replicate, see Figure 3. We can see that the K̂i(r) and L̂i(r) functions262

associated with the first experiment increase over time for all r values. This is reflected263

in the positive trend in the swarming metric M̂i. The estimates f̂(r) for each simulation264

perform very well in estimating the true f(r) function. The estimates D̂(r) likewise265

perform well in estimating the true D(r) function.266

Linearly increasing chemotaxis267

To model chemotaxis with linearly increasing strength we set

T (t) = 1 + 0.02t. (16)

We perform and analyse only one simulation for this model, see Figure 4. The268

functional time series f̂i(r) for i = 15, ..., 186 is produced using a moving window-type269

estimator, as discussed in Supplementary 1, using a window width of 29 time points.270

We observe that the functional time series f̂i(r) performs well in estimating the271

functional time series of the true f(r, ti) functions for i = 15, ..., 186, with strength of272

attraction increasing with time for this simulation. We note similar results, with slightly273

reduced accuracy, are obtained for the estimates D̂i(r).274
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Figure 3. Time-invariant chemotaxis: (a) K̂i(r); (b) L̂i(r); (c) M̂i; (d) γ̂i(r); (e) f̂(r);

and (f) D̂(r). The estimates f̂(r) and D̂(r) for the first replicate are given by solid black
lines, with the dotted black lines giving the 95% confidence intervals for these estimates,
the red solid lines giving the true f(r) and D(r) functions, and the blue lines giving 0.

Estimates for f̂(r) and D̂(r) associated with the two additional replicates using different
initial positions are added to panels (e) and (f) as solid grey and dashed grey lines.

4 T Cell motility experiments275

Cytotoxic T cells (CTLs) are specialised immune cells that seek out and destroy cancer276

cells, and they are the principal mediators of adoptive cell transfer immunotherapies [57].277

These burgeoning therapies have proven revolutionary in the treatment of blood-borne278

cancers, yet have thus far not shown similar success when applied to solid tumours,279

which leukocytes infiltrate poorly [58,59]. Therefore, understanding the spatial280

movements of T cell populations with respect to tumour masses is key to the281

development of effective immunotherapies targeting solid malignancies.282

Recently, CTLs engaging tumour targets have been demonstrated to engage in283

chemokine signalling, attracting distant CTLs [7]. Here, we analysed ex vivo284

experiments of CTLs engaging tumour cells, presented in [7], (see Figure 1 in [7]). The285

experimental details, along with movies of the experiments, and additional related286

results, can be found in [7].287

In brief the experiments occur within a single well of a 96-well optical plate, and288

consists of a central dense collection of tumour cells and extra-cellular matrix (referred289

to as tumouroid) surrounded by fluorescent effector CD8+ T cells embedded in a 3D290

collagen matrix. We consider two different experimental conditions. One we refer to as291

the pre-embedded-cognate experiment, in which the tumouroid consists of cognate292

tumour cells and pre-embedded, non-fluorescent, CTLs, i.e. the tumouroid already293

contains CTLs at the start of the experiment. The cognate tumour cells in this294

tumouroid present the activating antigen on their surface, thus leading to T cell arrest,295
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Figure 4. Linearly increasing chemotaxis: (a) L̂i(r); (b) M̂i; (c) f̂i(r) for
i = 15, ..., 186; (d) true f(r, ti) for i = 15, ..., 186; (e) D̂i(r) for i = 15, ..., 186; (f) true
D(r, ti) for i = 15, ..., 186.

activation and tumour cell clearance. The other experimental condition we refer to as296

the non-cognate experiment, in which the tumouroid contains non-cognate tumour cells297

only. Non-cognate tumour cells do not activate CTLs, which hence do not arrest on298

contact and thus continue their search.299

We hypothesised that in the pre-embedded-cognate experiment the peripheral CTLs300

surrounding the tumouroid would be attracted to the tumouroid via chemotaxis.301

Specifically, we expected that CTLs initially pre-embedded within the tumouroid, and302

peripheral CTLs that made contact with the cognate cells making up the tumouroid303

during the experiment, would both become activated and secrete a chemokine to recruit304

more distant CTLs. In comparison, we hypothesised that in the non-cognate experiment305

CTLs would not become activated upon contact with the non-cognate cells making up306

the tumouroid, and hence there would be no detection of chemotaxis of CTLs towards307
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the tumouroid.308

Images were taken of the entire closed well every 5-6 minutes over approximately 16309

hours and the positional data for the fluorescing CTLs, i.e. those initially dispersed310

around the tumouroid, were recorded during the experiment. We note that in contrast311

the non-fluorescent CTLs pre-embedded in the tumouroid were not imaged. Owing to312

the resolution required and the comparatively large area being imaged (>6mm in313

diameter), imaging was constrained to a 2D slice through the x-y plane of the entire well.314

Images of the first and last time point from both experiments are presented in Figure 5.315

Figure 5. Images of non-cognate and pre-embedded-cognate experiments: (a) image
from first time point of non-cognate experiment; (b) time point from final time point of
non-cognate experiment; (c) image from first time point of pre-embedded-cognate
experiment; (d) image from final time point of pre-embedded-cognate experiment.
CTLs are blue, with tumouroids red. Scale bars: 500 µm. Time stamps indicate time of
image acquisition. Images are from experiments reported in [7]

For each experiment we need to define the regions R and B. In 2D the tumoroids316

are approximately circular. We choose to set rB equal to the average of longest and317

shortest distances from the centre of geometric mass to the edge of the tumouroid.318

Owing to the technicality of sample preparation, the tumouroid cannot be precisely319

positioned such that its centre of mass is at the exact centre of the well. We set rR to320

the shortest distance from the tumouroid centre to the well edge. The radius of the base321

of the well is approximately 3150µm. For the non-cognate experiment we set322

rB = 1076.75µm and rR = 2855µm. For the pre-embedded-cognate experiment we set323
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rB = 1099 and rR = 2985.324

While the imaged system is closed to the entry and egress of cells in the horizontal325

plane due to the walls of the well, it is open with respect to cell movements in the326

vertical axis due to the 3D nature of the collagen matrix. We expected that the net327

effect of this vertical movement would be negligible. We noted that for both experiments328

the trend in cell number is relatively stable for the first 10 hours of the experiments.329

Since we expect any evidence for the existence of chemotaxis to be evident during this330

period we continued by analysing only the first 10 hours of each experiment. In addition,331

a relatively sharp decrease in cell number was noted to occur over the first hour of the332

pre-embedded-cognate experiment. Since we still expected evidence of chemotaxis to333

still be evident after the first hour of the experiment we continued by removing the first334

hour of the pre-embedded-cognate experiment from our analysis. See Figure 6. for the335

associated cell numbers and K̂i(r) functions for the remaining time points.336

Figure 6. Cell number dynamics: (a) Total number of cells imaged within R for each
time step analysed for the non-cognate experiment; (b) associated K̂i(r) functions for
the non-cognate experiment; (c) Total number of cells imaged within R for each time
step analysed for the pre-embedded-cognate experiment; (d) associated K̂i(r) functions
for the pre-embedded-cognate experiment.

The approach presented in previous sections requires that the number of agents337
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observed does not change with time. In Supplementary 4 we consider the case where338

agent numbers can change with time as a result of an agent birth-death process (in339

addition, we also consider the unrelated case where R has an open boundary). We340

demonstrate that if it can be assumed that the birth-death rate is spatially-invariant341

and linear with respect to λ(r, t), then it has no impact on the interpretation of the342

change in K and L functions, the swarming metric M , or the approach to estimating f343

and D. For the purposes of this paper we continue with this assumption for the analysis344

of the T cell motility experiments.345

4.1 T cell experiment results346

For both experiments we set the number of splines to 200 and a smoothing parameter of347

108. We use 20 spines for estimating both f and D, with smoothing parameters 10−1.348

We estimate f and D over [20, rR − 20].349

Relevant plots for the non-cognate experiment are displayed in Figure 7. The350

functional time series for L̂i(r) has no apparent trend and appears nearly linear,351

suggesting that agents are approximately uniformly distributed outside the tumouroid.352

The associated time series for the swarming metric M̂i varies around 0 for the duration353

of the experiment. Since L̂i(r) and M̂i do not demonstrate any trend we continue by354

producing time-invariant functional estimates for f and D. We note that the estimate355

f̂(r) is approximately 0 for all r values. This result was consistent with our expectation356

that CTLs would not be attracted towards the tumouroid for this experiment.357

Relevant plots for the pre-embedded-cognate experiment are displayed in Figure 8.358

The functional time series for L̂i(r) demonstrates a positive trend, with L̂i(r) appearing359

to increase for all r values over time. The associated time series for the swarming metric360

M̂i demonstrates an associated increase. Since these time series demonstrate obvious361

trends we first estimate time-varying f and D. The associated estimates f̂i(r) and362

D̂i(r) using a window width of 19 appear relatively stable over time. As such, we363

proceed to produce time-invariant estimates f̂(r) and D̂(r). The time-invariant f̂(r) is364

negative for all r values, and approaches 0 as r increases towards rR. This result is365

consistent with our expectation that CTLs would be attracted to the tumouroid via366

chemotaxis for this experiment. We note that f̂(r) is strikingly similar in form to that367

in our simple ABM of chemotaxis, suggesting that the chemokine concentration in the368

experiment may be well approximated by a Gaussian distribution and that CTLs369

respond to the steepness of the chemokine gradient. The estimate for D̂(r) is similar to370

that for the non-cognate experiment, though we note that it is decreased for r values371

between rB and approximately 1500.372

5 Discussion373

In this paper we have presented a novel approach for detecting and characterising374

directional bias in agent movements solely from positional data for agent-based375

processes. Our approach does not require the tracking of agents over time, meaning that376

our approach can be utilised when temporal tracking of individual agents is not377

available. For instance, in comparison to collecting positional data alone, individual cell378

tracking typically requires several undesirable features, including a high sampling rate379

with associated phototoxicity, a small field of view, and a relatively low cell380

density [10,12–14].381

Techniques from spatial statistics, such as the pair correlation function, are382

increasingly being applied to agent-based processes [51, 60–70]. Our approach employs a383

novel combination of both spatial statistics and functional data analysis. There is great384

scope to combine spatial statistical methods and functional data analysis to quantify385
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Figure 7. Non-cognate experiment: (a) rainbow plot of L̂i(r); (b) M̂i; (c)

time-invariant f̂(r) with 95% confidence intervals (dotted black lines); (d)
time-invariant D̂(r) with 95% confidence intervals (dotted black lines).

the dynamics in agent-based processes. In previous work we combined such approaches386

in the analysis of spatially homogeneous agent-based processes [51]. As advances in387

microscopy, and also GPS tracking, yield detailed observations of dynamic and complex388

processes such as immune cell responses, animal behaviour, or search and rescue robot389

swarms, more advanced statistical metrics are increasingly needed.390

The approach presented here introduces focal K functions that provide a measure of391

agent aggregation around an area of interest for a given time point. We use these392

functions to define a related scalar, M , which we refer to as the swarming metric. The393

functional and scalar time series associated with the focal K functions and the394

swarming metric, respectively, provide useful information regarding the evolution of an395

agent-based processes with respect to agent aggregation. These methods are general,396

and do not rely upon any assumptions regarding the underlying agent behaviour. We397

envisage that the swarming metric in particular may provide a useful means of398

comparing different experimental conditions of agent-based processes.399
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Figure 8. Pre-embedded-cognate experiment: (a) rainbow plot of L̂i(r); (b) M̂i; (c)

rainbow plot of f̂i(r); (d) rainbow plot of D̂i(r); (e) time-invariant f̂(r) with 95%
confidence intervals (dotted black lines); (f) time-invariant D̂(r) with 95% confidence
intervals (dotted black lines).

If the evolution of population density with time is well approximated by the400

Fokker-Planck equation, an advection-diffusion PDE, then these focal K functions can401

be analysed using a functional linear model to estimate the associated drift and402

diffusivity terms. Importantly, this allows for any bias in agent movements to be403
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detected and characterised. Our approach allows for the analysis of agent-based404

processes with both time-invariant as well as time-varying attraction or repulsion. In405

addition, there are no requirements regarding whether the system is or is not in a406

steady state.407

We demonstrate our approach using simulations, analysing a set of simple 2D408

random walk agent-based models. We find that our approach performs well for these409

sets of simulations. Moreover, we find that estimates appear to be robust with respect410

to the density of agents and the number of observations. We find that estimates for411

diffusivity are dependent on the degree of smoothing used in smoothing the focal K412

functions, and that this dependence is accentuated by reduced temporal resolution.413

Whilst we suggest that using a relatively large level of smoothing can ensure accurate414

estimates for diffusivity, determining an explicit approach for selecting the most415

appropriate degree of smoothing represents a useful extension.416

We have here only analysed simulations of agents undergoing a random walk process417

without persistence or exclusion. Both these properties may be relevant in considering418

specific agent-based processes, such as bacterial chemotaxis, or cellular processes with419

high agent density. Resent results have demonstrated that drift-diffusion PDEs can be420

produced to approximate the evolution of agent-based processes exhibiting bias and421

persistence in the setting of modelling bacterial chemotaxis [71]. In addition,422

drift-diffusion type PDEs can be produced to approximate the evolution a lattice-based423

agent-based process that includes bias, persistence, and exclusion, with the drift and424

diffusion terms being dependent on agent density [69]. Determining whether our425

approach can be employed to analyse similar off-lattice processes represents a useful426

extension of this work.427

We apply our approach to the analysis of ex vivo experiments consisting of live cell428

imaging of T cells interacting with a central tumouroid consisting of tumour cells.429

These represent a portion of novel experimental results used to demonstrate that430

cytotoxic T cells swarm to tumours [7]. Consistent with these findings, our analysis of431

these experiments identifies an attractive signal that biases cell movements towards the432

tumouroid. As outlined in [7], the attraction exhibited by T cells represents homotypic433

signalling; that is, the activated cytotoxic T cells in contact with cognate tumour cells434

produce the chemoattractant that induces chemotaxis in other cytotoxic T cells. As435

such, this process represents what we refer to as agent-driven swarming, such that the436

swarming behaviour exhibited is driven, at least in part, by the presence of other agents437

at the area of interest. This differentiates agent-driven swarming from other types of438

processes in which the attractive signal is derived from sources other than the agents. It439

can be of considerable interest to researchers whether observed swarming is agent-driven440

or otherwise. If it is known a priori that the agents within a given process represent the441

only possible source of attractant, or this can be proved experimentally, then detecting442

that agents movements are biased towards a given area is enough to determine443

agent-driven swarming. However, it may represent a useful extension of this work to444

produce a statistical technique for detecting agent-driven swarming in circumstances in445

which this is not known and cannot be demonstrated experimentally.446
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