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novel framework for investigating spatial interactions between
agents combining techniques from spatial statistics and functional
time series analysis. Assuming second order spatial equilibrium
of the agent-based process, we develop a test for identifying the
specific nature of interactions between agents. We also consider
methodology for validating the assumption of spatial equilibrium
for a given realisation of the agent-based process. The efficacy
of this methodology is demonstrated via Monte Carlo simulation
studies and an application to experimental data obtained by
observing a species of flightless locust.
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1. Introduction

Dynamic systems of interacting autonomous individuals are encountered in a diverse range of
sciences, including ecology, biology, and swarm robotics (Balch, 2000; Plotkin et al., 2000; Cavagna
et al., 2008; Buhl et al., 2012; Brambilla et al., 2013; Dale and Fortin, 2014; Johnston et al., 2014;
Michalec et al., 2015b; Russell et al., 2015; Binder and Simpson, 2015). Technological developments
increasingly allow for the tracking or imaging of individuals in processes arising in these fields,
from GPS-tagging of animals (Cagnacci et al., 2010; Dell et al., 2014) and video recordings of animal
movements (Cavagna et al., 2008; Buhl et al., 2011, 2012;Michalec et al., 2015a,b) to in situ imaging of
cellswithin live animals (Chtanova et al., 2008; Ng et al., 2011;Meijering et al., 2012; Tong et al., 2015).
Such systems are typically referred to as agent-based processes and models of these are similarly
referred to as agent-based models, or individual-based models.

Observing agent-based processes over time results in sequential sets of positional point data, or
point patterns, representing agent positions. For example, an animation of wingless locust nymph
movement data, from which two frames are presented in Fig. 1, is presented in the supplementary
material. These data are analysed in a later section of this paper. A primary interest in the analysis of
such dynamic positional data is to determine the existence and nature of interactions between agents.

Whilemany commonly observed agent-basedprocesses evolve via agentmovements, they can also
evolve via births and deaths of agents. For example, a population of cells could increase in number via
mitosis. Moreover, over longer time scales processes that are not necessarily considered dynamic can
in fact be thought of as agent-based processes. For example, the evolution of tree locations in a forest
could be considered as a birth–death agent-based process with the probabilities of births and deaths
being influenced by the relative position of other trees.

A novel approach used to analyse agent-based models is moment dynamics (Bolker and Pacala,
1997; Law and Dieckmann, 2000; Plank and Law, 2015). Dynamic spatial moments are analogous
to the intensity terms in spatial statistics (Diggle, 2003), but describe dynamic agent-based models
rather than static point processes. The dynamic first and second spatial moments of an agent-based
process can be combined to produce a dynamic pair correlation function and related K function. These
functions indicate ranges and types of spatial interaction between agents. Moment dynamic analysis
is becoming increasingly important and widespread in the analysis of agent-based models (Raghib
et al., 2011; Plank and Law, 2015; Binny et al., 2015).

The study of agent-based processes from a statistical perspective has been limited. Although
approaches for the analysis of agent-based processes with respect to pair correlation functions have
recently been developed (Cavagna et al., 2008; Binder and Simpson, 2013) these methods have
several limitations. Primary among these is the lack of a statistical test of significance for detecting
agent–agent interactions from experimental data. Furthermore, existing approaches lack a means
of determining when it is reasonable to pool data across observations of an agent-based process
to produce a single estimate for the pair correlation function or K function. If the expected spatial
arrangement of agents is time invariant, then such data can be pooled, making estimation more
accurate. However, if the expected spatial arrangement is not invariant with time, as might occur
if the spatial arrangement at observed times is dependent on initial conditions, or if agent–agent
interactions are dependent on an environmental factor that varies with time, then the data should
not be pooled.

In this paper, we present a general framework for the analysis of agent-based processes that
addresses these issues. The methodology that we propose is based on analysing the functional time
series that is generated by calculating empirical K functions for each set of agent positional data. The
resulting series of curves often exhibit significant autocorrelation due to the dependence between
successive spatial arrangements of the agents. The discipline of functional time series analysis has
grown considerably in the last decade to provide methodology for the analysis of autocorrelated
functions (Ferraty and Vieu, 2006; Hörmann et al., 2010; Horváth and Kokoszka, 2012).

By using techniques in functional time series analysis, we develop a test for stationarity of the
empirical K functions. As we will show, the stationarity of empirical K functions suggests that the
underlying process is in a type of spatial equilibrium, which we refer to as reduced second moment
temporal stationarity. Importantly, if it is determined that an agent-based process exhibits such
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Fig. 1. Positional data from a field experiment recording wingless locust nymph movements, presented in Buhl et al. (2012),
and the associated empirical K functions associated with each set of positional data. (a) and (c) give the positional data from
two consecutive time points, and (b) and (d) give the empirical K functions ( ) associated with each respective set of
positional data, and πr2 ( ), the theoretical K function for agent-based processes with no interaction. (d) also indicates
the previous empirical K function from the previous time point from (b) ( ).

stationarity, one can pool data from the entire realisation of the process to produce a single accurate
estimate for a time invariant K function that may be used for inference regarding agent–agent
interactions. We develop a hypothesis test based on this estimated K function for the hypothesis that
agent–agent interactions are of a specific nature. For example, our test can be used to determine if
agent positional data is consistent with completely randommotion.

The rest of the paper is organised as follows. In Section 2 we provide some background on spatial
moments of agent-based processes, and introduce themain objects of study in this paper. In Section 3
we introduce a statistical test for second moment stationarity for agent-based processes. In Section 4
we present a statistical test for detecting statistically significant clustering and regularity. In Section 5
we introduce an example of a continuous time agent-basedmodel, and performanalysis for thismodel
to demonstrate the performance on the presented statistical tests. We also consider in Section 6 an
application to dependent sequences of spatial point patterns that arise from the simulation of Gibbs
processes via the Metropolis–Hastings algorithm. In Section 7 we use our methods to analyse field
experiment data for wingless locust nymphs.

2. Agent-based processes, spatial moments, and the K function

2.1. Notation and definitions

Agent-based processes may be modelled by spatiotemporal stochastic processes consisting of
agents, or points, in Rd evolving through time via a set of rules. Such rules can allow for interaction
between agents. We envision that the agents in such a process are evolving in either of, or a mixture
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of, two modes: (1) that agents undergo continuous movement within Rd, or (2) new agents enter
via births and are removed via deaths, and that these actions are based on their current location and
the relative position of other agents. In Section 4 of Ripley (1977), both types of such evolving point
processes are formally defined, focusing on the spatial birth–death process and interacting particles
performing diffusions. Further information on the mathematical foundations of such processes may
be found in Preston (1975) and Schweitzer (2003).

In practice, dynamic agent-based processes can only be observed in a bounded region at discrete
time points. Let us define an observation region, A ⊆ Rd, and let the time points at which observations
occur be given as T = {t1, t2, . . . , tN}, with N giving the total number of time points observed. For
simplicity, we assume that the time between observations is constant; i.e. ti+1 − ti = a, for i =

1, . . . ,N − 1, with a being constant. For times T, we only observe agents with positional data x ∈ A.
As such, for any given time t ∈ T, the realisation of the dynamic agent-based process results in a
spatial point pattern within A.

Let Xi give the spatial co-ordinate data for observed agents recorded for time ti, such that Xi =

{x1, x2, . . . , xni}, with xj giving the spatial co-ordinates of a single agent within the observation region
A, and ni giving the total number of agents occurring within the observation region A at time ti. Let
X = {X1, X2, . . . , XN} give the complete set of spatial data for all N time points.

Raghib et al. (2011), Plank and Law (2015) and Binny et al. (2015) define the first spatial moment
as

λ(u; t) = lim
|du|→0

E[Y (du|t)]
|du|

,

with du defining a small region around the point u, |du| giving the volume of du, Y (du|t) giving the
number of agents within a region du given time t , and E[·] denoting expectation.

The second spatial moment is defined as

λ2(u, u′
; t) = lim

|du|,|du′|→0

E[Y (du|t)Y (du′
|t) − Y (du ∩ du′

|t)]
|du||du′|

,

with the second term in the expectation designed to remove theDirac delta peak thatwould otherwise
arise for u = u′ (Plank and Law, 2015). The first and second spatial moments are analogous to the first
and second-order intensities common to spatial and spatiotemporal statistics (Diggle, 2003; Gabriel
and Diggle, 2009; Cressie and Wikle, 2011). Higher order spatial moments can be similarly defined,
although the study of agent-based processes typically focuses on the first and second moments.

As in Plank and Law (2015), we refer to processes for which statistical properties with respect to
spatial arrangements of agents are invariant with translation as being ‘‘spatially homogeneous’’, i.e.
suchprocesses are spatially stationary (Diggle, 2003). Spatial homogeneity implies that the first spatial
moment is not dependent on position and that higher order spatial moments are only dependent
on the distances between positions. Thus, for a spatially homogeneous agent-based process, for all
u, u′

∈ A, we can express the first spatial moment λ(u; t) as λ(t) and we can express the second
spatial moment λ2(u, u′

; t) as λ2(r; t), with r = |u − u′
|.

The pair correlation function, and the reduced second-order moment measure, the K function, are
well studied in spatial statistics as they are typically more interpretable and easier to estimate than
the second spatial moment itself (i.e. the second order intensity in spatial statistics). For a spatially
homogeneous agent-based process, the pair correlation function and K function are defined as

g(r; t) =
λ2(r; t)
λ(t)2

, and K(r; t) = 2π
 r

0
g(u; t)udu. (1)

We can express K(r; t) as an expectation:

K(r; t) =
1

λ(t)
E[Number of additional agents within r of a randomly chosen agent at time t].

It is well known that the pair correlation function for a non-interacting spatially homogeneous
agent-based process is g(r; t) = 1 (Raghib et al., 2011; Plank and Law, 2015; Binny et al., 2015). Thus
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the K function for such processes is K(r; t) = πr2. As such, pair correlation functions, and K functions,
for interacting spatially homogeneous agent-based processes can be compared against the respective
functions associated with non-interacting agent-based processes to indicate types, magnitudes, and
ranges of agent–agent interactions. All concepts covered in this paper are equally applicable to both
g and K functions. Because calculation of empirical estimates for the K function is substantially easier
than for g , we focus our analysis within this paper on the K function.

For each spatial point pattern, Xi, we can produce an empirical K̂(r; t) function as an estimate
of K(r; t). Due to the discrete time nature of observations, we instead express K̂(r; ti) as K̂i(r), with
K̂i(r) corresponding to the estimate for time ti. We define K̂i(r) similarly to the K function of spatial
statistics,

K̂i(r) =
1

λ̂ini

ni
k=1


l≠k

wk,l1(δ(k, l) ≤ r),

=
|A|

n2
i

ni
k=1


l≠k

wk,l1(δ(k, l) ≤ r), (2)

where ni is the number of agents within A at time ti, |A| is the volume of A, λ̂i = ni/|A| is the unbiased
estimate for λ(t) for time ti, δ(k, l) is the distance between the kth and lth agents within A at time ti,
1(·) is the indicator function, and wk,l is an appropriate edge correction weight associated with the
kth and lth agents (Diggle, 2013). The inclusion of an edge correction term reduces the bias that would
otherwise occur due to the fact that the observation region A represents only a subset of the entire
process, with agents occurring external to the boundaries of A. An example of two time points from
an agent-based process, movement data for wingless locust nymphs from a field experiment, and the
associated K̂i(r) functions are given in Fig. 1.

The estimate K̂i(r) in (2) is an approximately unbiased estimator of K(r; ti) for small enough r
(Ripley, 1977; Diggle, 2003, 2013). On account of this we restrict r values to r ∈ [0, R], for some
arbitrary R such that the bias of K̂i(r) is relatively small for r ≤ R. Appropriate values for R generally
depend on the geometry of the observation region. For example, for a 2D rectangular observation
region a recommended value for R is 1/4 the length of the smallest side length (Baddeley et al., 2015).

We note that it is typical to use λ̂i = (ni − 1)/|A| in (2) instead of ni/|A| for reasons pertaining
to bias, though the difference between estimates is clearly small for large enough ni. We use λ̂i =

(ni − 1)/|A| in all numerical analysis presented in this paper. For a single longitudinal set of spatial
point patterns, X = {X1, X2, . . . , XN}, arising from a single realisation of an agent-based process, we
can produce a series of functions, K̂ = {K̂1(r), K̂2(r), . . . , K̂N(r)}, ordered sequentially in time.

Before proceeding to specific applications, we briefly address some of the benefits and limitations
to using K and pair correlation functions in order to study point patterns generated by observing
agent-based processes. One benefit is that they do not rely on a specificmodel to quantify agent–agent
interactions. Though model-based analysis of agent-based processes requires a thorough prior
knowledge of the underlying process to facilitate construction of a realistic model, this approach
has the potential to elucidate detailed characteristics about the interaction of agents. For example,
Buhl et al. (2012) attempt to fit an agent-based model to experimental data by calculating the model
parameters to minimise the difference between moment measure computed from the data, and
those computed from simulations of the model. Other examples of model-based approaches include
Gautrais et al. (2012), Cavagna and Giardina (2014), Plank and Law (2015), Russell et al. (2015)
and Cavagna et al. (2015). The proposed methodology may supplement model based approaches
by assessing the homogeneity of second moment measures estimates used to fit such models (see
Appendix C). Additionally, K functions do not require that the agents are each individually tracked,
and all agents within an observation region are utilised in analysis regardless of whether they entered
the region after the beginning of the observation period, or whether they leave it prior to the end of
the observation period. On the other hand, any inference about the process at hand based on second
momentmeasures is restricted to the information available in them. This could bemisleading since, for
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example, onemay construct point patterns for which K(r) = πr2 that are not Poisson point processes
(Baddeley and Silverman, 1984).

2.2. Temporal stationarity for spatially homogeneous agent-based processes

Determining whether certain properties of agent-based processes with respect to spatial
arrangements are invariant with time has major implications for the types of analysis that can be
performed. Here we define an important type of temporal stationarity.

Definition 2.1. For a spatially homogeneous agent-based process, the process is reduced second-
moment (RSM) temporally stationary if the K function is time invariant, such that K(r; t) = KI(r).

We note that RSM temporal stationarity is independent of whether λ(t) is also invariant with time.
From Eq. (1) it is clear that if K(r, t) is time invariant then g(r; t) = gI(r) is also time invariant.

Examples of agent-based processes thatwould be expected to be RSM temporally stationarywould
be processes for which the ranges, types, and strengths of agent–agent interactions are invariant
with respect to time. In contrast, processes in which agent–agent interactions can change with time
would be unlikely to be RSM temporally stationary. Such processesmight include processes for which
agent–agent interactions are influenced by a time dependent environmental factor.

3. Testing for RSM temporal stationarity

For an RSM temporally stationary processes, estimates for gI(r) or KI(r) can provide information
regarding agent–agent interactions similar to the analogous functions in spatial statistics. This
motivates developing a test that measures the validity of the assumption that a given realisation K
has been generated by an agent-based process that is RSM temporally stationary. Our procedure is
based on the fact that, under RSM temporal stationarity, K̂i(r) is an approximately unbiased estimator
for KI(r). This suggests testing the hypothesis

H0 : K̂i(r) = KI(r) + εi(r), for r ∈ [0, R], 1 ≤ i ≤ N,

where the error functions in the estimation εi(r) aremean zero, stationary, and temporally dependent.
Hypothesis testing for H0 is considered in Horváth et al. (2014a) in the context of testing for
stationarity with functional time series data. In order to adapt their test to this setting, we must
assume a weak dependence condition on the error functions under H0. Let

SN,ε(x, r) =
1

√
N

⌊Nx⌋
i=1

εi(r), for r ∈ [0, R], 0 ≤ x ≤ 1.

Assumption 3.1. There exists a sequence of bivariate Gaussian processes ΓN(r, x), 0 ≤ r ≤ R,
0 ≤ x ≤ 1, and N ≥ 1 satisfying that

sup
0≤x≤1

 R

0


SN,ε(x, r) − ΓN(x, r)

2 dr = oP(1),

where E[ΓN(x, r)] = 0, Cov(ΓN(x, r), ΓN(y, s)) = min(x, y)c(r, s), with c(r, s) =


∞

ℓ=−∞
E[ε0(r)

εℓ(s)].

Assumption 3.1 implies that the partial sum process of the error functions under H0 admits a
Gaussian approximation. We note that the limiting sequence of Gaussian processes ΓN does not
depend on N , and so this assumption can be readily used to approximate the distribution of test
statistics based on the partial sum process. The function c(r, s) is typically referred to as the long-
run covariance function, and incorporates the information on the autocorrelation of the series of K
functions.
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Assumption 3.1 holds for weakly dependent, stationary function space valued time series in great
generality. Specifically, Assumption 3.1 has been shown to hold if we assume a nonlinear dynamical
dependence structure as in Wu (2005) and further second order moment conditions (Berkes et al.,
2013; Jirak, 2013). Similar results have been shown for mixing sequences of random functions, see
Dehling (1983) and Politis and Romano (1994). In the context of empirical K functions computed from
agent-based processes, the dynamic and stochastic elements of agent movements or births/deaths
imply that the spatial arrangement of agents within an observation region, A, for a particular time
point will be dependent on spatial arrangements occurring at previous time points, but that the
dependence will dissipate as temporal separation increases. Since K̂i(r) functions are dependent only
on the spatial arrangement of agents, it is a reasonable assumption that the error functions will also
be weakly dependent, and hence satisfy Assumption 3.1.

Let

SN,K̂ (x, r) =
1

√
N

⌊Nx⌋
i=1

K̂i(r), and S0
N,K̂

(x, r) = SN,K̂ (x, r) − xSN,K̂ (1, r).

The bivariate process S0
N,K̂

is a function space version of the cumulative sum (CUSUM) process. In
order to test H0, we employ the test statistic

PN =

 R

0

 1

0


S0
N,K̂

(x, r)
2

dxdr. (3)

By utilising the Karhunen–Loéve expansion, it follows under H0 and Assumption 3.1 that

PN
D
→

∞
i=1

λi

 1

0
B2
i (x)dx, (4)

where the Bi, i ≥ 1 are independent and identically distributed Brownian Bridges on the unit interval,
and the λi, i ≥ 1 are the eigenvalues of the Hilbert–Schmidt integral operator with kernel c; namely

λiφi(r) =

 R

0
c(r, s)φi(s)ds, 1 ≤ i ≤ ∞,

with the φi being orthonormal eigenfunctions. An approximate test of size α of H0 is obtained by
rejecting if PN > qα , where qα is the 1 − α quantile of the distribution on the right hand side of (4).

The limiting distribution is non-pivotal, since it depends on the eigenvalues of the long run
covariance operator, which depend on c(r, s). To get around this, we use a Monte Carlo simulation
to estimate the limiting quantile qα from the empirical eigenvalues λ̂i based on an estimator ĉ of c .
The details are outlined in Appendix A.

In the casewhen the agent-based process is not RSM temporally stationary,wehaveK(r, t) varying
with t for t ∈ [t1, tN ], and

HA : K̂i(r) = K(r, ti) + εi(r), for r ∈ [0, R], 1 ≤ i ≤ N,

holds. In the case when K(r, t1) = K(r, t2) = · · · = K(r, t∗i ) ≠ K(r, t∗i+1) = · · · = K(r, tN) for some
time point t∗i , i.e. there exists a change point in the sequence K(r, ti), then PN → ∞ in probability.
As shown in Horváth et al. (2014a), PN → ∞ in probability under HA for even mild conditions on the
nature of the change.

4. Analysis of K̄ (r) for a single realisation of an agent-based process

Working under the assumption of RSM temporal stationarity, an estimate for KI(r) may be
obtained by averaging over all functions in the functional time series:

K̄(r) =
1
N

N
i=0

K̂i(r).
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A problem of interest is to determine the nature, or even existence, of interaction between agents.
To study this, the estimate K̄(r) can be compared to a given K function of interest. For example, a
sensible K function to compare to to check for completely random motion of the agents in a two
dimensional space is K(r) = πr2. The function for comparison could also be produced by a separate
simulation, for example by estimating the K function from a large number of independent simulations
of a Strauss process, since the theoretical K function for such a process has no known analytic form.
Making such comparisons over different ranges of the radius r allows for detailed inference about the
scales at which the agent-based process tends to cluster or disperse.

Specifically, if the functional time series K̂ is stationary, and satisfies 3.1, then we can test the
hypotheses

H0 : KI(r) = f (r) vs. HA : KI(r) ≠ f (r),

for r1 ≤ r ≤ r2, for an arbitrary function f (r).
We propose to test H0 using the test statistic

QN(r1, r2) =

 r2

r1


SN,K̂ (1, r) −

1
√
N
f (r)

2

dr.

QN(r1, r2) defines an analog of the one sample ‘‘T -test’’ statistic for functional time series over the
range r1 to r2. Under Assumption 3.1, one can show that

QN(r1, r2)
D
→

∞
i=1

λi(r1, r2)Z2
i , (5)

where Zi are i.i.d. standard normal variables, and the eigenvalues λi(r1, r2) satisfy

λi(r1, r2)φr1,r2(r) =

 r2

r1
c(r, s)φr1,r2(s)ds,

with orthonormal eigenfunctions φr1,r2 defined on [r1, r2]. Again, since the limiting distribution of
QN(r1, r2) is non-pivotal, we performMonte Carlo simulations to estimate the asymptotic distribution
from estimates of the eigenvalues λ̂i(r1, r2), with these estimated in the manner described in
Appendix A. Under HA, QN(r1, r2) → ∞ in probability at the rate of

√
N .

Due to the fact that agent–agent interactions at different scales result in deviations in KI(r) from
πr2 at different ranges of r it is of interest to test for equality of K̄(r) and πr2 for specific ranges of
r . Similar considerations are important in spatial statistics (Loosmore and Ford, 2006; Baddeley et al.,
2014).

5. Simulation study of the 2D jump agent-based model

In the following section we use the approaches outlined above to analyse simulated data from a
specific dynamic agent-based model. For our purposes, we adapt the one-dimensional agent-based
simulation model presented in Binny et al. (2015) to two dimensional space. We will refer to the
agent-based process presented here as the 2D jump model. This simulation model is of interest with
respect to modelling cell movements.

The model consists of M individuals positioned on a two-dimensional continuous rectangular
domain with periodic boundary conditions. Let xl, and xr give the left and right x boundaries
respectively, and yL, and yU give the lower and upper y boundaries respectively. We refer to this
region as the simulation region. We then define a rectangular observation region, A, with left, right,
lower, and upper boundaries given by x∗

l , x
∗
r , y

∗

L , and y∗

U , respectively, such that we only observe the
agents positioned such that their x and y values satisfy x∗

l ≤ x ≤ x∗
r and y∗

L ≤ x ≤ y∗

U .
The model is a continuous time Markov process, with the state of the system at time t given by

x(t) =

(x1(t), x2(t), . . . , xM(t))


, with xi(t) = (xi(t), yi(t)) giving the position of the ith agent in

the simulation region.
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Fig. 2. Plot of
n

j=1 v(xj − x), with β = 10 and σ 2
= 10, for a [0, 400] × [0, 400] simulation region with periodic boundary

conditions. The vertical colour scale to the right of the plot indicateswhich colours correspond towhich values of
n

j=1 v(xj−x).
The black dots indicate positions of agents. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

The movement event xi → xi + s, for agent i, occurs with the rate mµ(xi, xi + s), with m giving
the movement rate, and µ(xi, y) giving the probability density function for agent imoving from xi to
position y. The process is simulated using the Gillespie algorithm (Gillespie, 1976).

To define how neighbouring agents biasmovements of other agents, we define a bias function b(x)
by

b(x) = ∇

 n
j=1

v(xj − x)


,

with ∇ = ( ∂
∂x ,

∂
∂y ), and v(z) = β exp


−

|z|2

2σ 2


. As such, b(x) is defined as the gradient of the bivariate

function
n

j=1 v(xj − x). The function
n

j=1 v(xj − x) produces an undulating 2D surface, with the
gradient of the surface being determined by the locations of agents, and the sign of parameter β . See
Fig. 2 for an example of

n
j=1 v(xj − x). Agents are biased to move down the gradient of this surface.

For β > 0 agents are biased tomove away from one another, and for β < 0 agents are biased tomove
towards one another. Parameter σ 2 indicates the range at which this interaction is strong, with range
of interaction increasing with σ 2.

Using this bias function, we define the probability density function for an agent at x moving in
direction θ as

p(θ, x) =
1

π(1 + e−b(x)·(cos(θ),sin(θ)))
, 0 ≤ θ < 2π,

with b(x) · (cos(θ), sin(θ)) being the dot product between these vectors.
Similarly to Binny et al. (2015), we assume that the distance moved by an agent is independent

of the direction it moves. We utilise the same distribution for the distance moved as in Binny et al.
(2015), an exponential distribution with mean 1/ρ.

Consequently, we can express the movement density function as µ(x, d, θ), giving the density
function for an agent at position x moving distance d at an angle of θ from its current position:

µ(x, d, θ) = ρ e−ρdp(θ, x), 0 ≤ d, and 0 ≤ θ < 2π.

We applied both of the tests outlined in Sections 3 and 4 to positional data obtained from
simulations of the 2D jump model. For all simulations we set xl = 0, xr = 400, yL = 0, and yU = 400,
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Table 1
The empirical rejection rates for nominal levels 10%, 5%, and 1% for testing stationarity
for the 2D jump process with no interaction. R gives the maximum r used for each test.
M gives the number of agents. T defines the time period of simulations.

Parameters Nominal levels
R M T 0.1 0.05 0.01

25 100 50 0.114 0.038 0
100 0.123 0.051 0.003
250 0.113 0.049 0.006
500 0.11 0.054 0.008

200 50 0.122 0.045 0.003
100 0.1 0.043 0.004
250 0.118 0.045 0.008
500 0.115 0.05 0.009

400 50 0.097 0.039 0
100 0.114 0.041 0.002
250 0.096 0.036 0.002
500 0.1 0.056 0.006

50 100 50 0.113 0.043 0.002
100 0.12 0.048 0.003
250 0.109 0.053 0.005
500 0.108 0.049 0.004

200 50 0.13 0.056 0
100 0.097 0.035 0.001
250 0.107 0.052 0.005
500 0.114 0.056 0.008

400 50 0.131 0.038 0
100 0.122 0.04 0.002
250 0.1 0.04 0.006
500 0.111 0.059 0.005

with the parameters of the observation region given by x∗

l = 100, x∗
r = 300, y∗

L = 100, and y∗

U = 300,
such that the observation region is given by [100, 300]×[100, 300], 1/4 of the total simulation region.

We considered the cases for no interaction, β = 0, attraction, β < 0, and repulsion, β > 0. We set
ρ = 1/10, andm = 10 for all simulations. For interacting processes we use σ 2

= 10. This selection of
parameters is designed to allow for an effective illustration of the approaches outlined in this paper.

Each simulation is repeated 1000 times. The empirical sizes of each test are reported in Tables 1–4
for nominal sizes of 10%, 5%, and 1%.

5.0.1. Analysis for β = 0

We begin analysis with the case β = 0, i.e. no interaction. To demonstrate the effect of the total
numberM of agents in the simulation we compare the statistical tests forM = 100, 200, 400. We let
these agents be distributed randomly within the simulation region, [0, 400] × [0, 400], with uniform
distribution. Note that since the observation region is [100, 300] × [100, 300] the expected number
of observed agents for any time point will beM/4.

The lack of interaction between agents implies that K(r; t) = πr2 for all t . As such, the non-
interacting 2D jump process is RSM temporally stationary for all t ≥ 0.

For the case β = 0, wewish to determinewhether the statistical tests for stationarity, and equality
of the mean K function to πr2, behave as expected. Let the observation periods considered be [0, T ],
with T = 50, 100, 250, 500. We let ti+1 − ti = 0.5 be the length of a time step for all observations.
Consequently, the number of time points, and hence functions, in the time series for each T value is
given by N = 2T + 1, since we take t1 = 0. We produce 1000 independent simulations for each
combination ofM and T .

Both tests must be performed over a specified range of r values. We perform the tests over the
ranges [0, R], with R = 25, 50.
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Table 2
The empirical rejection rates for nominal levels 10%, 5%, and 1% for testing K̄(r) = πr2
for the 2D jump process with no agent–agent interactions. R gives the maximum r used
for each test.M gives the number of agents. T defines the time period of simulations.

Parameters Nominal levels
R M T 0.1 0.05 0.01

25 100 50 0.138 0.081 0.025
100 0.128 0.066 0.011
250 0.119 0.06 0.011
500 0.105 0.054 0.005

200 50 0.159 0.085 0.031
100 0.139 0.088 0.028
250 0.106 0.052 0.007
500 0.103 0.057 0.014

400 50 0.129 0.075 0.034
100 0.122 0.065 0.021
250 0.102 0.056 0.012
500 0.103 0.05 0.012

50 100 50 0.176 0.107 0.044
100 0.124 0.074 0.021
250 0.124 0.068 0.022
500 0.108 0.057 0.014

200 50 0.166 0.097 0.044
100 0.139 0.085 0.031
250 0.114 0.068 0.015
500 0.118 0.062 0.016

400 50 0.172 0.105 0.036
100 0.136 0.079 0.025
250 0.12 0.056 0.013
500 0.12 0.063 0.017

Testing for stationarity: The empirical rejection rates when the nominal levels are 10%, 5%, and 1%
are given in Table 1. We can see from these results that the statistical test for stationarity performs
well for all combinations of R, M , and T .

Testing for interaction: To test for agent–agent interactionswe test each of the simulations produced
for equality between K̄(r) andπr2. The empirical rejection rates when the nominal levels are 10%, 5%,
and 1% are given in Table 2. From these results we can see that the test for equality between K̄(r) and
πr2 performs relatively well for the different combinations of R, M , and T , with the test performing
better for larger T values, and better for the smaller R value.

We summarise the above results of the simulations as follows: When analysing relatively small
time series, e.g. N = 50, 100, it is advisable to either (a) use a smaller R value than might otherwise
be used when testing for K̄(r) = πr2, or (b) appreciate that this test, for small N , is biased towards
rejection of the null hypothesis, and thus to reduce any nominal level used for rejection.

5.0.2. Analysis for cases β ≠ 0

We continue with analysis of simulations of the 2D jump model for cases β ≠ 0. While the non-
interacting 2D jump process was known to be RSM stationary, with KI(r) = πr2, it is not known
whether this will be the case for any particular non-zero β . However, we expect it to be the case
for range of β values selected for analysis, which typically result in weak to moderate dispersion or
clustering.

We compare several different β values, β = 10, 5, −2.5, −3, with σ 2
= 10 for all simulations.

The observation period for all simulations is [0, 125], since, as discussed below, we remove a burn-
in period from this total observation period prior to analysis. As for the non-interacting case we
populate the simulation regions with theM agents distributed randomly with a uniform distribution.
We compare results forM = 100, 200, 400.
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Table 3
The empirical rejection rates for nominal levels 10%, 5%, and 1% for testing stationarity
for the 2D jump process with agent–agent interactions for the observation period of
[25, 125]. R gives the maximum r used for each test. β defines the strength and type
of agents.M gives the number of agents.

Parameters Nominal levels
R β M 0.1 0.05 0.01

25 10 100 0.112 0.035 0.003
200 0.12 0.043 0
400 0.116 0.04 0.001

5 100 0.114 0.045 0.001
200 0.105 0.046 0.004
400 0.111 0.044 0.005

−2.5 100 0.115 0.046 0.004
200 0.114 0.043 0.003
400 0.105 0.036 0.003

−3 100 0.123 0.049 0.004
200 0.115 0.048 0.002
400 0.11 0.044 0.004

50 10 100 0.099 0.04 0.001
200 0.108 0.044 0.001
400 0.105 0.032 0

5 100 0.118 0.053 0.004
200 0.102 0.039 0.001
400 0.118 0.05 0.004

−2.5 100 0.105 0.033 0.001
200 0.119 0.041 0.001
400 0.11 0.047 0

−3 100 0.128 0.061 0.002
200 0.11 0.039 0.002
400 0.126 0.048 0.003

Now, if a time invariant KI(r) function exists for a given β ≠ 0 and KI(r) ≠ πr2, then the
agent–agent interactions are expected to drive the agents away from the initial uniform arrangement
towards an arrangement correspondingwith the associated KI(r) function, i.e. towards equilibrium. If
this is the case then theremay be an initial period of non-RSM temporal stationarity before the process
becomes RSM temporally stationary. We are interested in analysing the RSM temporally stationary
portion. To this end we remove an initial segment, or burn-in period, of the observations from the
sample. Specifically, the burn-in period of [0, 25) was removed from sample over all simulations,
since the vast majority of simulations for each β appear to have reached equilibrium after t = 25.
This leaves the final observation period of [25, 125].

Testing for stationarity: The empirical rejection rates when the nominal levels are 10%, 5%, and
1% when testing for stationarity for the different β values are given in Table 3. We can see from
these results that for the observation period of [25, 125], the empirical rejection rates are relatively
comparable to those for the non-interacting process.

We expected that the 2D jump processes for these β values would be RSM temporally stationary,
and these rejection rates suggest this is the case, confirming that the test for RSM temporal stationarity
performs well for interacting agent-based processes as well as non-interacting processes as observed
above.

Testing for interaction: The empirical rejection rates when the nominal levels are 10%, 5%, and 1%
when testing for K̄(r) = πr2 for the different β values are given in Table 4. These values demonstrate
that increasing M , and thus the number of agents observed at each time point, for a given β value
significantly increases the rejection rates at all levels. We also note that rejection rates are higher for
smaller R values, reflecting the fact that agent–agent interactions are strongest over small distances.
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Table 4
The empirical rejection rates for nominal levels 10%, 5%, and 1% for testing K̄(r) = πr2
for the 2D jump process with agent–agent interactions for the observation period of
[25, 125]. R gives the maximum r used for each test. β defines the strength and type
of agents.M gives the number of agents.

Parameters Nominal levels
R β M 0.1 0.05 0.01

25 10 100 1 1 0.999
200 1 1 1
400 1 1 1

5 100 0.946 0.905 0.773
200 1 1 1
400 1 1 1

−2.5 100 0.536 0.402 0.198
200 0.982 0.949 0.831
400 1 1 1

−3 100 0.674 0.552 0.299
200 0.998 0.986 0.93
400 1 1 1

50 10 100 0.955 0.913 0.762
200 1 1 1
400 1 1 1

5 100 0.55 0.437 0.259
200 0.97 0.942 0.795
400 1 1 0.999

−2.5 100 0.216 0.132 0.039
200 0.591 0.428 0.203
400 0.998 0.969 0.834

−3 100 0.309 0.172 0.068
200 0.732 0.584 0.321
400 0.999 0.996 0.948

Anestimate, ḡ(r), for the pair correlation function canbeproduced via smoothing and transforming
the estimate K̄(r) (Illian et al., 2008; Chiu et al., 2013; Baddeley et al., 2015). Examples of estimated
K̄(r) and ḡ(r) functions for single realisations of 2D jumpprocesses forβ ≠ 0,M = 400, are presented
in Figs. 1 and 2 in the online supplementary material.

6. Simulation study of point patterns generated by the Metropolis–Hastings algorithm

The 2D jump model considered in the previous section evolves in continuous time via agents
performing movements via jumps. Agent positions are observed at discrete times. As mentioned in
Section 2, agent-based processes can also evolve via births and deaths of agents.We here demonstrate
the applicability of the statistical methods presented above to birth–death processes. In particular,
we consider an application of the proposed methodology to dependent sequences of point patterns
that arise as iterations of the Metropolis–Hastings (M–H) algorithm when used to simulate Gibbs
processes. The M–H algorithm is explained in detail in Chapter 13 of Baddeley et al. (2015), and,
in brief, may be used to simulate spatial point processes from a target distribution by describing
and simulating a discrete-time Markov Chain whose states are spatial point patterns, and whose
transitions involve adding, removing, or shifting points. The target point process is described by a
density function, which is used to assign a probability of whether a proposed change to the point
process should be accepted or rejected. Depending on the clustering behaviour and intensity of the
target process, it can take anywhere from several thousand to hundreds of thousands of iterations to
achieve acceptable convergence to the target distribution.

Our methodology may be used to analyse the point patterns that result from this procedure.
Formally, let X1, . . . ,XN denote the sequence of point patterns that result from applying the M–H
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Table 5
The empirical rejection rates for nominal levels 10%, 5%, and 1% for testing stationarity
and K̄(r) = πr2 for M–H Strauss model with β = 2, rint = 0.7, p = 0, and q = 0.5.

γ Test Nominal levels
10% 5% 1%

1 Stationarity 0.101 0.049 0.006
K̄(r) = πr2 0.099 0.049 0.007

0.7 Stationarity 0.098 0.04 0.002
K̄(r) = πr2 1 1 1

0.2 Stationarity 0.091 0.047 0.006
K̄(r) = πr2 1 1 1

algorithm to simulate a specified point process with density f (x), starting from a given initial point
pattern (perhaps a uniform distribution of a certain number of points). In order to control the
dependence between K functions computed from these point patterns, we only consider every wth
pattern, which results in a sample of point patterns of length N/w. The specific form of the M–H
algorithm that we used is described on page 533 of Baddeley et al. (2015), which involves the choice
of parameters p and q/1 − q, defining the probabilities of proposing a point shift and, given a shift is
not proposed, a death/birth, respectively.

6.1. Application to point patterns simulating a Strauss process

We first consider point patterns that arise during the simulation of the well known Strauss point
process (Strauss, 1975; Kelly and Ripley, 1976):

f (x) = αβ |x|γ s(x), (6)

where s(x) =


x,y∈x 1(∥x − y∥ ≤ rint), α is a normalising constant, β > 0 is the ‘abundance’
parameter associated with intensity of agents per unit area, 0 ≤ γ ≤ 1 is the interaction parameter,
rint is the range of interaction, and |x| gives the number of agents in x. The Strauss point processmodels
inhibition, with γ < 1 resulting in ‘‘repulsion’’ between points (for γ = 1 there is no interaction.
γ = 0 results in a hard core process) (Baddeley et al., 2015). We are interested in studying whether
the proposed methodology can detect dispersion, and if the sequence of K functions computed from
successive point patterns appears stationary.

We set the number of agents in the initial point pattern, X1, to be M1 = 100, and the observation
area to be [0, 10]×[0, 10]. Settingβ = 2, rint = 0.7 in (6), we perform three sets of 1000 independent
simulations with γ = 1, 0.7, and 0.2 for each set respectively. We note that for γ = 1 (6) reduces
to the density of a homogeneous Poisson point process, i.e. there are no interactions between agents
(Baddeley et al., 2015).We set the total number of iterationsN for each simulation to be 100,000, with
w = 100, so that each 100th iteration of the Metropolis–Hastings algorithm was retained to produce
a sample of size 1000. We set the simulation probabilities to p = 0 and q = 0.5. We refer to this
agent-based model as the M–H Strauss model.

For similar reasons as for the 2D jump model with interaction we removed a burn-in period from
each simulation before performing the statistical tests on the remaining data. We removed the first
500 point patterns to constitute a burn-in period, leaving 500 patterns for analysis for each simulation.

The empirical rejection rates when the nominal levels are 10%, 5%, and 1% are given in Table 5 for
running both the stationarity test and the test of significance for the mean K function being equal
to πr2. Since we removed a significant burn-in period from the simulated data before performing
the statistical tests, we expected that data produced for the M–H Strauss model would indicate RSM
stationarity. We can see from the results in Table 5 that this appears to be the case for each value of
γ considered, and that the statistical test for stationarity performs well for this model. The rejection
rates with respect to the nominal levels of 10%, 5%, and 1% for testing if K̄(r) is significantly different
from πr2 for no interaction, γ = 1, behave as expected. When the process exhibited dispersion, i.e.
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for γ = 0.7, 0.2, a significant difference between the mean K function and πr2 was found in every
associated simulation and significance level considered.

6.2. Investigating convergence of the M–H algorithm for simulating the Geyer saturation process

Additionallywe consider an application of ourmethodology to investigate the number of iterations
required to achieve convergencewhen using theM–H algorithm. A criterion that seems reasonable for
assessing if convergence has been achieved when simulating a Gibbs process is to monitor whether a
corresponding sequence of secondmomentmeasures appears to have stabilised. Thismay be achieved
by applying the proposedK -function stationarity test to rollingwindowsof a fixed size to the sequence
of spatial point patterns, which we illustrate here with a short application to the Geyer saturation
processes.

For these simulations,we used the probability density associatedwith theGeyer saturation process
(Geyer, 1999):

f (x) = αβ |x|
|x|
i=1

γ min(s,t(xi,rint ,x)), (7)

where α is a normalising constant, β , γ , rint , and s are parameters, and t(xi, rint , x) is the number of
other data points xj from x lying within a distance rint of the point xi. The effect of these parameters
for the Geyer saturation point process is explained elsewhere (Geyer, 1999; Baddeley et al., 2015).

Similarly to our application to the Strauss process, we set the initial number of agents toM1 = 100,
and let the observation area be [0, 10] × [0, 10], with the initial agents uniformly distributed in the
observation area. We compared the results from changing the value of p while keeping the other
parameters constant, performing 40 independent simulations for each set of parameters. We set β =

0.4, γ = 1.25, rint = 1, s = 10, and q = 0.9, and compared the results for p = 0.99, 0.975, 0.95, 0.9.
We set the total number of iterations N for each simulation to be 1,000,000. We again set w = 100,
producing a sample size of 10,000.Wedid not remove a burn-in period.We then broke up each sample
into ‘‘windows’’ of length 500, giving 20 total windows per simulation, and computed p-values of
the stationarity test applied to each window. We refer to this agent-based model as the M–H Geyer
saturation model.

We expected that since the agents were initially uniformly distributed the M–H algorithm would,
over the initialwindows, tend to change thepoint patterns fairly dramatically, and thiswouldmanifest
in the p-values computed from the initial windows being quite small. As convergence is achieved, the
changes in the point processes become much more gradual, and we expected the p-values to become
essentially uniformly distributed on (0, 1) for later windows.

The results of the tests for each set of simulations are presented in Fig. 3 in terms of heat maps of
the resulting p-values. We can observe in Fig. 3 that for each set of simulations there is an initial band
of small p-values occurring for at least the first window, and that p-values for the remaining windows
demonstrate a relatively uniform distribution. This suggests that for each set of simulations there is
an initial period of non-RSM temporal stationarity, after which the process reaches RSM temporal
stationarity. We observed in Fig. 3 that the width of the bands of small p-values decreased with
decreasing p, i.e. decreasing the probability of proposing a shift appeared to decrease the number
of iterations taken for the process to reach RSM temporal stationarity. Other data, not presented here,
suggests that there may be a complicated relationship between parameter values and the length of
the non-RSM temporal stationarity for this process.

7. Data application: wingless locust nymph movement data

Prior to developing into winged adults and forming large flying swarms, wingless locust nymphs
(juveniles) aggregate into large migratory locust marching bands. The Australian locust Chortoicetes
terminifera forms large crescent shaped bands that can spread over kilometres and contain millions
of locusts (Buhl et al., 2011). Such marching bands maintain their global structure, such that minimal
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Fig. 3. Plot of p-values for eachwindowassociatedwith each simulation of theM–HGeyer saturationmodel. The vertical colour
scale to the right of the plot indicates which colours correspond to which p-value. The following parameters are identical for
each figure: β = 0.4, γ = 1.25, rint = 1, s = 10, and q = 0.5. The value of p changes for each figure: (a) p = 0.99; (b)
p = 0.975; (c) p = 0.95; (d) p = 0.9. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

dispersion of the locusts occurs duringmigration. The interactions between individual locust nymphs
are of considerable interest to researchers, since these local interactions lead to emergent cohesive
global behaviour.

Here we apply the approaches presented above to a single set of experimental data recording the
movements of individual C. terminifera locusts in a locust marching band. The data analysed here
represents a single experiment of the collection presented in Buhl et al. (2011, 2012).

Datawas collected during field experiments described in detail in Buhl et al. (2011). In brief, footage
of migrating bands of juvenile C. terminifera were recorded via a tripod-mounted 1080p camera
filming vertically overhead. One frame from every 30 s was then analysed, with the middle of each
locust being recorded as the locust’s position (locust nymphs are approximately 7 mm in length and
a few mm in width). As discussed in Buhl et al. (2011), the recording area was flat, smooth, without
vegetation and raked to ensure homogeneity, with the recording area being of significant distance
from obstacles and landmarks that might otherwise influence the homogeneity. Buhl et al. (2012)
found that the process was isotropic. While there are no existing tests for spatial homogeneity of
agent-based processes, visual inspection of the data suggests that these attempts were successful and
that the observed process was spatially homogeneous.

Buhl et al. (2011) describe how the density of locusts, analogous to the first spatial moment, is
higher at the front of migrating bands and lower at the rear. As such, the global structure of locusts
is spatially inhomogeneous. However, the local homogeneity observed in the observation region
during the observation period ensures that our approach for analysis is valid, i.e. we can consider
the observed process within the fixed observation region to be a spatially homogeneous process with
time dependent λ(t).
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Fig. 4. Empirical functions produced from a field experiment recording wingless locust nymph movements presented in Buhl
et al. (2012) (a) The rainbow plot for the functional time series K̂, with K̄(r) ( ); (b) K̄(r) ( ), K(r) = πr2 ( );
(c) L̄(r) ( ), L(r) = r ( ); (d) ḡ(r) ( ), g(r) = 1 ( ). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Furthermore, we note that the movements of the locusts are biased in the direction of the
movement of the overall locustmarching band, though this has no impact on ourmethods for analysis
due to the maintenance of spatial homogeneity throughout the observation period.

For the specific data set being analysed here the observation region was a 0.583 m2 rectangle
(103.8 cm × 56.2 cm), with 114 time points, each 30 s apart. The minimum and maximum number
of locusts observed at a particular time point was 11 and 52 respectively, with the mean number of
locusts observed being 29. We note that we removed the first time step from our analysis as this
appeared to be the time point at which the first locusts entered the visualisation area and thus was
deemed to be inhomogeneous.

An animation indicating the positions of locusts at each time point and the corresponding K̂i(r)
functions for each time point is provided in the online supplementary material (see Fig. 1 for the
associated details). Fig. 4 presents the estimates for K̄(r) and ḡ(r), as well as the rainbow plot for this
functional data and the estimated L function. A rainbow plot of functional data is a useful means of
visualising a functional time series, with earlier functions shown in red, followed by orange, yellow,
green, blue and indigo with the last few functions plotted in violet (Hyndman and Shang, 2010;
Shang and Hyndman, 2015). The L function is a useful transformation of the K function commonly
used in spatial statistics that makes visualisation easier (Diggle, 2003; Illian et al., 2008). Specifically,
L(r) =

√
K(r)/π , so that the theoretical L(r) function associated with a non-interacting process is

L(r) = r .
We continued by performing the statistical tests for stationarity. We set R, the maximum value of

r analysed, to be 1/4 of the smallest edge of the observation region; R = 14.04 cm. The p-value for
the stationarity for r ∈ [0, 14.04] was 0.50. The large p-value suggests that the data is stationary,
and therefore we continue under the assumption that the underlying process is RSM temporally
stationary. As such, we are justified in continuing to test for equality between K̄(r) and πr2.

Analysis in Buhl et al. (2011, 2012) suggests that locusts interact differently at two different inter-
locust distance scales. First, locusts appear to be have repulsive interactions for inter-locust distances
up to somedistance likely between 2 and 3 cm. Secondly, locusts appear to have attractive interactions
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at inter-locust distances between approximately 3 cm and 13.5 cm, though the maximum distance at
which interactions occur is unresolved (Buhl et al., 2012). Based on this prior knowledge of these
potential ranges of interaction, and the cumulative nature of the K function, we would expect that
K̄(r) < πr2 for approximately r ∈ [0, 3] and K̄(r) > πr2 for approximately r ∈ [3, 13.5]. As such
we decided, prior to observing the estimate for K̄(r), to test for K̄(r) = πr2 over r ∈ [0, 3] and
r ∈ [3, 13.5]. The p-values obtained when testing for K̄(r) = πr2 over these ranges were 0.009 for
r ∈ [0, 3], and 0 for r ∈ [3, 13.5], indicating that the null hypothesis of K̄(r) = πr2 could be strongly
rejected over these ranges of r .

As seen in images (b) and (c) in Fig. 4, we have K̄(r) < πr2 and L̄(r) < r for r ∈ [0, 2.77], and
K̄(r) > πr2 and L̄(r) > r for r ∈ [2.77, 14.04]. This matches our expectations for K̄(r) given our
prior knowledge regarding locust behaviour, and combinedwith the above p-values strongly indicates
that locusts are dispersed over the range of r ∈ [0, 2.77] and clustered over the range of (at least)
[2.77, 13.5].

We can utilise the estimated pair correlation function in image (d) in Fig. 4 to further characterise
the agent–agent interactions present between locusts. Interpretation of pair correlation functions has
been extensively studied for spatial statistics (Illian et al., 2008) and is an active area of research
for agent-based processes (Buhl et al., 2012; Agnew et al., 2014). Interpretation of pair correlation
function functions typically requires some understanding of the underlying process, and can be aided
by the use of simulations (Buhl et al., 2012; Agnew et al., 2014). We utilise the work of Buhl et al.
(2012) in aiding our interpretation. Since the centres of two locusts cannot occur closer than thewidth
of a locust, i.e. a few millimetres, the process can be described as a hard core process (Illian et al.,
2008). As such we expect ḡ(r) = 0 for very small r values, which is evident in Fig. 4. The peak of ḡ(r)
occurs around r ≈ 3.5 cm suggesting that, in addition to the space occupying restrictions on locust
positions, agent–agent interactions for locusts are repulsive for inter-agent distances below 3.5 cm
with attractive interactions occurring at larger distances. As r approaches 14.0 cm, ḡ(r) approaches
1, suggesting that the maximum range of attraction may occur around this distance. As mentioned
previously, such descriptions of interactions match well with existing evidence regarding locust
interactions (Buhl et al., 2012), though we note the presence of quantitative differences arising from
methodological differences in how the correlation function is calculated.

8. Discussion

In this paper we have presented a framework for the statistical analysis of spatially homogeneous
dynamic agent-based processes. Our approach utilises methods from both spatial statistics and
functional time series. The combination of methods from these areas for the analysis of dynamic
agent-based processes has not been explored previously and represents a novel method for analysis.
The significant contributions of our approach are the addition of statistical rigour to the analysis of
agent-based processes and the added efficiency for the analysis of such processes.

By transforming spatial data arising from agent-based processes into longitudinal series of
functional data, we are able to perform important statistical tests using newly developed statistical
methods from the functional time series literature. By doing so, we can make important inferences
about the underlying agent-based processes. With appropriate assumptions being met, testing for
stationarity of the functional series supplies evidence of reduced second moment (RSM) temporal
stationarity of the underlying agent-based process.

If an observed agent-based process is RSM temporally stationary we can then pool the functional
data from an observed realisation to efficiently produce an accurate estimate for the time invariant
KI(r) function, K̄(r). In contrast, this cannot be done for a process that is not RSM temporally
stationary. For an RSM temporally stationary agent-based process we can perform a test for equality
between K̄(r) and the theoretical K function associated with a non-interacting agent-based process,
πr2 forR2. This provides statistical evidence forwhether or not interaction exists over different spatial
ranges. Finally, both the estimated K̄(r) and ḡ(r) functions can be utilised to characterise interactions
for a given process.

We employed these methods for several Monte Carlo simulation studies. Specifically, we
introduced the 2D jump model, and agent-based models derived from the Metropolis–Hastings
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algorithm. As such, different types of processes, strengths and types of interactions, and time lengths
were analysed and the results matched the asymptotic theory of the tests, validating our approach.

To demonstrate the application of our techniques to real world data we examined experimental
wingless locust nymphmovement data. Statistical testing suggests that the process is RSM temporally
stationary and that agent–agent interactions were present. The interpretation of locust interactions
from the estimates K̄(r) and ḡ(r) matches existing descriptions of locust nymph behaviour.

Observations made during this work point to several avenues of further work. Specifically, we
noted that the dependence structure of the spatial arrangement of agents and, thus, the dependence
structure of the empiricalK functions influenced theperformance of the statistical tests employed. The
relationship between such dependence and the appropriate bandwidth selection to use for estimating
the long run covariance for functional time series is an open area of research and warrants further
examination.

Finally, several other extensions of the work presented here exist. Our approaches could be
developed for the analysis of agent-based processes with multiple types of agents (i.e. multi-species
systems) which often are of interest in biological and ecological research. Also, adapting this approach
for inhomogeneous environments would open up analysis to a much wider range of real world
scenarios. Adapting the approaches presented here for the analysis ofmultiple realisations of dynamic
agent-based processes would be another important extension that would allow for these methods to
be employed in areas in which conducting multiple experiments or observations is feasible.
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Appendix A. Estimation of empirical eigenvalues for use in Monte Carlo simulations

To produce estimates λ̂i for the eigenvalues λi used in the statistical tests presented in this paper,
we use the sample autocovariance functions, defined as

γ̂i(r, s) =
1
N

N
j=i+1


K̂j(r) − K̄(r)


K̂j−i(s) − K̄(s)


, 0 ≤ i ≤ N − 1,

to produce an estimate for the long run covariance function c(r, s). We refer to this as the sample
long-run covariance (a kernel estimator), and define it as

ĉN(r, s) = γ̂0(r, s) +

N−1
i=1

U
 i
h


γ̂i(r, s) + γ̂i(s, r)


.

An appropriate kernel function U and bandwidth h are required for accurate estimation of c(r, s).
Suggestions for U and h are found in Horváth and Kokoszka (2012) and Horváth et al. (2013a,b,

2014a,b). We used a kernel, lag-window estimator as defined in Horváth et al. (2013a), with the flat-
top kernel

U(s) =

1, 0 ≤ |s| < 0.5
2(1 − s), 0.5 ≤ |s| < 1
0, |s| ≥ 1

and bandwidth parameter h = N1/2. While we found this bandwidth to be appropriate for all analyses
conducted in this paper, we noted in the analysis of highly dependent functional data, not presented
here, that using a larger bandwidth than h = N1/2 appeared to produce more accurate results.
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If for each i, K̂i(r) is defined for a vector of evenly spaced r values, then the estimated ĉN(r, s)
is likewise defined for an even grid of r and s values. By treating the resultant grid as a matrix, we
can produce the empirical eigenvalues by finding the eigenvalues for this matrix. We performed
Monte Carlo simulation to estimate the limiting quantiles for the limiting distributions (4) and (5).
We performed 5000 simulations for each statistical test.

Appendix B. Numerical methods for spatial statistics

All numerical methods employed to produce the relevant output for this paper were produced
using the software R (R Core Team, 2015), with themajor package used being spatstat (Baddeley et al.,
2015).

All K̂i(r) functions were estimated using the Kest spatstat function, with the ‘‘Ripley’’ edge
correction method. The ḡ(r) estimates were produced using an approach similar to the pcf.fv spatstat
function, with a smoothing parameter of 0.9.

Appendix C. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.
spasta.2016.06.002.

References

Agnew, D., Green, J., Brown, T., Simpson, M., Binder, B., 2014. Distinguishing between mechanisms of cell aggregation using
pair-correlation functions. J. Theoret. Biol. 352, 16–23.

Baddeley, A., Diggle, P.J., Hardegen, A., Lawrence, T., Milne, R.K., Nair, G., 2014. On tests of spatial pattern based on simulation
envelopes. Ecol. Monograph 84 (3), 477–489.

Baddeley, A., Rubak, E., Turner, R., 2015. Spatial Point Patterns: Methodology and Applications with R. CRC Press.
Baddeley, A.J., Silverman, B.W., 1984. A cautionary example on the use of second-order methods for analyzing point patterns.

Biometrics 1089–1093.
Balch, T., 2000. Hierarchic social entropy: An information theoretic measure of robot group diversity. Auton. Robots 8 (3),

209–238.
Berkes, I., Horváth, L., Rice, G., 2013. Weak invariance principles for sums of dependent random functions. Stochastic Process.

Appl. 123 (2), 385–403.
Binder, B.J., Simpson, M.J., 2013. Quantifying spatial structure in experimental observations and agent-based simulations using

pair-correlation functions. Phys. Rev. E 88 (2), 022705.
Binder, B.J., Simpson, M.J., 2015. Spectral analysis of pair-correlation bandwidth: application to cell biology images. Roy. Soc.

Open Sci. 2 (2), 140494.
Binny, R.N., Plank, M.J., James, A., 2015. Spatial moment dynamics for collective cell movement incorporating a neighbour-

dependent directional bias. J. R. Soc. Interface 12 (106), 20150228.
Bolker, B., Pacala, S.W., 1997. Using moment equations to understand stochastically driven spatial pattern formation in

ecological systems. Theor. Popul. Biol. 52 (3), 179–197.
Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M., 2013. Swarm robotics: a review from the swarm engineering perspective.

Swarm Intell. 7 (1), 1–41.
Buhl, J., Sword, G.A., Clissold, F.J., Simpson, S.J., 2011. Group structure in locust migratory bands. Behav. Ecol. Sociobiol. 65 (2),

265–273.
Buhl, J., Sword, G.A., Simpson, S.J., 2012. Using field data to test locust migratory band collective movement models. Interface

Focus 20120024.
Cagnacci, F., Boitani, L., Powell, R.A., Boyce, M.S., 2010. Animal ecology meets gps-based radiotelemetry: a perfect storm of

opportunities and challenges. Philos. Trans. R. Soc. B 365 (1550), 2157–2162.
Cavagna, A., Cimarelli, A., Giardina, I., Orlandi, A., Parisi, G., Procaccini, A., Santagati, R., Stefanini, F., 2008. New statistical tools

for analyzing the structure of animal groups. Math. Biosci. 214 (1), 32–37.
Cavagna, A., Del Castello, L., Giardina, I., Grigera, T., Jelic, A., Melillo, S., Mora, T., Parisi, L., Silvestri, E., Viale, M., et al., 2015.

Flocking and turning: a new model for self-organized collective motion. J. Stat. Phys. 158 (3), 601–627.
Cavagna, A., Giardina, I., 2014. Bird flocks as condensed matter. Annu. Rev. Condens. Matter Phys. 5 (1), 183–207.
Chiu, S.N., Stoyan, D., Kendall, W.S., Mecke, J., 2013. Stochastic Geometry and its Applications. John Wiley & Sons.
Chtanova, T., Schaeffer, M., Han, S.-J., van Dooren, G.G., Nollmann, M., Herzmark, P., Chan, S.W., Satija, H., Camfield, K., Aaron,

H., et al., 2008. Dynamics of neutrophil migration in lymph nodes during infection. Immunity 29 (3), 487–496.
Cressie, N., Wikle, C.K., 2011. Statistics for Spatio-Temporal Data. John Wiley & Sons.
Dale, M.R., Fortin, M.-J., 2014. Spatial Analysis: A Guide for Ecologists. Cambridge University Press.
Dehling, H., 1983. Limit theorems for sums ofweakly dependent banach space valued random variables. Z.Wahrscheinlichkeit-

stheor. Verwandte Geb. 63 (3), 393–432.
Dell, A.I., Bender, J.A., Branson, K., Couzin, I.D., de Polavieja, G.G., Noldus, L.P., Pérez-Escudero, A., Perona, P., Straw, A.D.,Wikelski,

M., et al., 2014. Automated image-based tracking and its application in ecology. Trends Ecol. Evol. 29 (7), 417–428.
Diggle, P.J., 2003. Statistical Analysis of Spatial Point Patterns. Hodder Arnold.

http://dx.doi.org/10.1016/j.spasta.2016.06.002
http://dx.doi.org/10.1016/j.spasta.2016.06.002
http://dx.doi.org/10.1016/j.spasta.2016.06.002
http://dx.doi.org/10.1016/j.spasta.2016.06.002
http://dx.doi.org/10.1016/j.spasta.2016.06.002
http://dx.doi.org/10.1016/j.spasta.2016.06.002
http://dx.doi.org/10.1016/j.spasta.2016.06.002
http://dx.doi.org/10.1016/j.spasta.2016.06.002
http://dx.doi.org/10.1016/j.spasta.2016.06.002
http://dx.doi.org/10.1016/j.spasta.2016.06.002
http://dx.doi.org/10.1016/j.spasta.2016.06.002
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref1
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref2
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref3
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref4
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref5
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref6
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref7
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref8
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref9
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref10
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref11
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref12
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref13
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref14
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref15
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref16
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref17
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref18
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref19
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref20
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref21
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref22
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref23
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref24


J.D. Hywood et al. / Spatial Statistics 17 (2016) 199–219 219

Diggle, P.J., 2013. Statistical Analysis of Spatial and Spatio-Temporal Point Patterns. CRC Press.
Ferraty, F., Vieu, P., 2006. Nonparametric Functional Data Analysis: Theory and Practice. Springer Science & Business Media.
Gabriel, E., Diggle, P.J., 2009. Second-order analysis of inhomogeneous spatio-temporal point process data. Stat. Neerl. 63 (1),

43–51.
Gautrais, J., Ginelli, F., Fournier, R., Blanco, S., Soria,M., Chaté, H., Theraulaz, G., 2012. Deciphering interactions inmoving animal

groups. PLoS Comput. Biol. 8 (9), e1002678.
Geyer, C., 1999. Likelihood inference for spatial point processes. In: Stochastic Geometry: Likelihood and Computation, Vol. 80.

pp. 79–140.
Gillespie, D.T., 1976. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions.

J. Comput. Phys. 22 (4), 403–434.
Hörmann, S., Kokoszka, P., et al., 2010. Weakly dependent functional data. Ann. Statist. 38 (3), 1845–1884.
Horváth, L., Hušková, M., Rice, G., 2013a. Test of independence for functional data. J. Multivariate Anal. 117, 100–119.
Horváth, L., Kokoszka, P., 2012. Inference for Functional Data with Applications, Vol. 200. Springer Science & Business Media.
Horváth, L., Kokoszka, P., Reeder, R., 2013b. Estimation of the mean of functional time series and a two-sample problem. J. R.

Stat. Soc. Ser. B Stat. Methodol. 75 (1), 103–122.
Horváth, L., Kokoszka, P., Rice, G., 2014a. Testing stationarity of functional time series. J. Econometrics 179 (1), 66–82.
Horváth, L., Rice, G., Whipple, S., 2014b. Adaptive bandwidth selection in the long run covariance estimator of functional time

series. Comput. Statist. Data Anal..
Hyndman, R.J., Shang, H.L., 2010. Rainbow plots, bagplots, and boxplots for functional data. J. Comput. Graph. Statist. 19 (1).
Illian, J., Penttinen, A., Stoyan, H., Stoyan, D., 2008. Statistical Analysis and Modelling of Spatial Point Patterns, Vol. 70. John

Wiley & Sons.
Jirak, M., 2013. On weak invariance principles for sums of dependent random functionals. Statist. Probab. Lett. 83 (10),

2291–2296.
Johnston, S.T., Simpson,M.J., McElwain, D.S., Binder, B.J., Ross, J.V., 2014. Interpreting scratch assays using pair density dynamics

and approximate Bayesian computation. Open Biol. 4 (9), 140097.
Kelly, F.P., Ripley, B.D., 1976. A note on strauss’s model for clustering. Biometrika 357–360.
Law, R., Dieckmann, U., 2000. A dynamical system for neighborhoods in plant communities. Ecology 81 (8), 2137–2148.
Loosmore, N.B., Ford, E.D., 2006. Statistical inference using the g or k point pattern spatial statistics. Ecology 87 (8), 1925–1931.
Meijering, E., Dzyubachyk, O., Smal, I., et al., 2012. Methods for cell and particle tracking. Methods Enzymol. 504 (9), 183–200.
Michalec, F.-G., Holzner, M., Souissi, A., Stancheva, S., Barras, A., Boukherroub, R., Souissi, S., 2015a. Lipid nanocapsules for

behavioural testing in aquatic toxicology: Time–response of eurytemora affinis to environmental concentrations of pahs
and pcb. Aquat. Toxicol..

Michalec, F.-G., Souissi, S., Holzner, M., 2015b. Turbulence triggers vigorous swimming but hinders motion strategy in
planktonic copepods. J. R. Soc. Interface 12 (106), 20150158.

Ng, L.G., Qin, J.S., Roediger, B., Wang, Y., Jain, R., Cavanagh, L.L., Smith, A.L., Jones, C.A., De Veer, M., Grimbaldeston, M.A., et al.,
2011. Visualizing the neutrophil response to sterile tissue injury in mouse dermis reveals a three-phase cascade of events.
J. Invest. Dermatol. 131 (10), 2058–2068.

Plank, M.J., Law, R., 2015. Spatial point processes and moment dynamics in the life sciences: A parsimonious derivation and
some extensions. Bull. Math. Biol. 77 (4), 586–613.

Plotkin, J.B., Potts, M.D., Leslie, N., Manokaran, N., LaFrankie, J., Ashton, P.S., 2000. Species–area curves, spatial aggregation, and
habitat specialization in tropical forests. J. Theoret. Biol. 207 (1), 81–99.

Politis, D.N., Romano, J.P., 1994. Limit theorems for weakly dependent hilbert space valued random variables with applications
to the stationary bootstrap. Statist. Sinica 4 (2), 461–476.

Preston, C.J., 1975. Spatial birth-and-death processes. Bull. Int. Statist. Inst. 46, 371–391. 405–408.
Raghib, M., Hill, N.A., Dieckmann, U., 2011. A multiscale maximum entropy moment closure for locally regulated space–time

point process models of population dynamics. J. Math. Biol. 62 (5), 605–653.
R Core Team, 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna,

Austria. URL http://www.R-project.org.
Ripley, B.D., 1977. Modelling spatial patterns. J. R. Stat. Soc. Ser. B Stat. Methodol. 39 (2), 172–212.
Russell, J.C., Hanks, E.M., Haran, M., 2015. Dynamicmodels of animalmovementwith spatial point process interactions. J. Agric.

Biol. Environ. Stat. 1–19.
Schweitzer, F., 2003. Brownian Agents and Active Particles. On the Emergence of Complex Behavior in the Natural and Social

Sciences. In: Springer Series in Synergetics, Springer, Berlin, Germany.
Shang, H.L., Hyndman, R.J., 2015. rainbow: Rainbow Plots, Bagplots and Boxplots for Functional Data. R package version 3.3.

URL http://CRAN.R-project.org/package=rainbow.
Strauss, D.J., 1975. A model for clustering. Biometrika 62 (2), 467–475.
Tong, P.L., Roediger, B., Kolesnikoff, N., Biro, M., Tay, S.S., Jain, R., Shaw, L.E., Grimbaldeston, M.A., Weninger, W., 2015. The skin

immune atlas: three-dimensional analysis of cutaneous leukocyte subsets by multiphoton microscopy. J. Invest. Dermatol.
135 (1), 84–93.

Wu, W.B., 2005. Nonlinear system theory: Another look at dependence. Proc. Natl. Acad. Sci. USA 102 (40), 14150–14154.

http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref25
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref26
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref27
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref28
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref29
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref30
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref31
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref32
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref33
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref34
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref35
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref36
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref37
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref38
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref39
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref40
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref41
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref42
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref43
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref44
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref45
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref46
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref47
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref48
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref49
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref50
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref51
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref52
http://www.R-project.org
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref54
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref55
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref56
http://CRAN.R-project.org/package=rainbow
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref58
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref59
http://refhub.elsevier.com/S2211-6753(16)30026-4/sbref60

	Statistical analysis of spatially homogeneous dynamic agent-based processes using functional time series analysis
	Introduction
	Agent-based processes, spatial moments, and the  K  function
	Notation and definitions
	Temporal stationarity for spatially homogenous  homogeneous  agent-based processes

	Testing for RSM temporal stationarity
	Analysis of  K (r)  for a single realisation of an agent-based process
	Simulation study of the 2D jump agent-based model
	Analysis for  β = 0 
	Analysis for cases  β not = 0 

	Simulation study of point patterns generated by the Metropolis--Hastings algorithm
	Application to point patterns simulating a Strauss process
	Investigating convergence of the M--H algorithm for simulating the Geyer saturation process

	Data application: wingless locust nymph movement data
	Discussion
	Acknowledgements
	Estimation of empirical eigenvalues for use in Monte Carlo simulations
	Numerical methods for spatial statistics
	Supplementary material
	References


