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a b s t r a c t

In many scientific disciplines, the advent of new high-throughput technologies is giving rise to vast
quantities of high-dimensional time-series data. A common requirement is to identify clusters of data-
points with similar characteristics in this experimental data, and track their development over time.
In this article we present ChronoClust, a novel density-based clustering algorithm for processing a
time-series of discrete datasets, generating arbitrarily shaped clusters, and explicitly tracking their
temporal evolution. We provide a conceptualisation of ChronoClust’s parameters, and guidelines for
selecting their values. The development of ChronoClust was motivated by the need to characterise
the immune response to disease. As such, we demonstrate and evaluate ChronoClust’s operation on
two immune-related datasets: (1) a synthetic dataset exhibiting the temporal evolution qualities of the
immune response as they would be observed through mass cytometry, a cutting edge high-throughput
technology, and (2) a Flow cytometry dataset capturing the immune response in West Nile Virus
(WNV)-infected mice. Our comprehensive qualitative and quantitative analyses confirm ChronoClust’s
suitability for this type of problem: the temporal relationships engineered into the synthetic dataset
are successfully recovered, and the cell populations and dynamics unveiled in the WNV dataset match
those identified through a domain expert. ChronoClust is applicable beyond Immunology, and we
provide an open source Python implementation to support its adoption more widely. We additionally
make our two datasets publicly available to promote reproducible research and third-party work on
temporal clustering and cluster tracking.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Many scientific disciplines, such as the Life Sciences, are cur-
rently transforming into more data-centric fields, driven by ad-
vances in high-throughput technologies that generate vast quan-
tities of experimental data at unprecedented low costs [1]. Flow
(and mass) cytometry represents one such technology, charac-
terising each individual cell in a sample of millions in terms
of shape, structure, and protein expression [2]. With the recent
advent of mass cytometry, around 50 different characteristics of
a cell can now be simultaneously measured [3,4]. Whilst poised to
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revolutionise our understanding of biological systems, the avail-
ability of such vast and high-dimensional data also raises novel
analytical challenges, in particular the need for effective and effi-
cient methods to mine this data and generate understanding [5].
Most high-throughput technologies, such as those enabling the
sequencing of genes, proteins, metabolites and cell populations,
take snap-shots in time. However, the living systems they probe
are inherently dynamic. Whilst the extraction of meaning from
these individual snap-shots encompasses a vibrant area of re-
search in its own right, linking these datasets to reveal temporal
patterns represents a further compounding challenge.

Our present work concerns understanding the development
of the immune response in disease, as it would be characterised
through a time-series of cytometry datasets. Our immune systems
are integral to our health, protecting us from pathogens such
as viruses and bacteria, and tumours arising from abnormal cell
growth. Pathogens can present in a large diversity of forms,
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and our immune system can deploy a wide range of nuanced
responses specific for the given challenge. However, the immune
response is not always successful. The outcomes to a given im-
mune trigger vary widely in patients, and even in genetically
identical animals under laboratory conditions [6].

To design effective health-promoting interventions, we must
understand how immune actions are deployed. The task is com-
plicated by the immune system’s complexity, comprising a vast
number of functionally distinct cells that cooperate dynamically
over time across numerous bodily organs. The plethora of spe-
cialised cells responding to a given immune challenge are gener-
ated on-demand from common progenitor cells, typically over 10
days. This progressive specialisation in various immune cell popu-
lations is termed differentiation. It encompasses several cell devel-
opmental stages, with divergent options branching from each [3,
7]. Cells at each developmental stage differ in their morphology
and protein expressions, and these differences are detectable
through cytometry. Whilst broad categories of immune cells are
well known (e.g. granulocytes, lymphocytes, monocytes), new
sub-populations within them with nuanced functional differences
are continually discovered. These new sub-populations form a
small proportion of all cells found, but often exert considerable
influence in shaping the overall immune response.

Mapping out the specific times and locations at which dif-
ferentiation pathways are deployed in a given disease is the
key to understanding immune function and developing effective
interventions. Yet, the traditional methods to do this are man-
ual and require advanced immunology expertise. For example,
Fig. 1 illustrates the gating method, where an expert examines
two-dimensional cytometry scatter plots and manually identifies
clusters of cell populations. For instance, gate B denotes cells high
in Ly6C and low in CD11b proteins. The cells included in this gate
could then be examined independently from the remainder of
the dataset, further gated into additional sub-populations using
two-dimensional plots of other cell characteristics. This process
is time consuming, tedious and subjective. It is also clearly in-
tractable when applied to 50-dimensional data, where 1225 such
2D scatter plots are possible.

From a data mining perspective, the task is clustering of cy-
tometry data and identifying the characteristics of each cluster.
Whilst automated approaches for clustering and profiling of cy-
tometry data have recently been developed [3,8], they are appli-
cable to single time-points only. A comprehensive understanding
of the immune response in a given disease, and how it differs
between diseases, requires analytical methods that automatically
identify cell populations in high-dimensional space, and track their
evolution over time. As we show in Section 2, no single existing
clustering algorithm can solve both tasks simultaneously. As a
solution, we introduce here ChronoClust, a novel clustering and
cluster tracking algorithm we have developed which satisfies
these requirements.

We firstly evaluate ChronoClust’s performance on a synthetic
dataset wherein clusters evolve over time, and demonstrate its
ability to track the sub-clusters therein. Then, we demonstrate
ChronoClust’s ability to identify and track immune cell popula-
tions in a real cytometry dataset, capturing the immune response
of mice infected by the West Nile Virus (WNV).

The main contributions of this paper are as follows:

1. We present the novel problem of clustering and tracking
cluster evolution, motivated by a use-case in the Life Sci-
ences. We derive the requirements for a clustering solution,
and through a literature review find no single solution
satisfying all these requirements.

2. We present a new density-based dynamic clustering algo-
rithm, ChronoClust, for the detection of clusters in high-
dimensional time-series data, and tracking their splitting,

Fig. 1. An example of cytometry data, shown as a two-dimensional density
scatter plot, demonstrating the expert knowledge and subjectivity involved in
a conventional analysis. Each data-point represents an individual immune cell,
and its expression of the cell-surface proteins CD11b and Ly6C. Clusters (gates)
of similar cells are delineated by an expert performing manual gating. Clus-
ters are given immunologically-relevant labels, e.g.: A, granulocyte–monocyte
progenitors; B, monoblasts; C, mature monocytes Ly6C+; D, mature monocytes
Ly6C-. Clusters A, C and D are identified based on their high density. Population
B is identified as a separate cluster, rather than an extension of C, due to its
immunological relevance. Region E is not formally defined as a population of
interest, as these are cells deemed to be in a continuum flux between two
well-defined mature states.
Source: Adapted from [9].

merging and de novo creation over time. The tracking is
based on two methods: tracking by lineage determination
and tracking by historical proximity.

3. We conduct a qualitative and quantitative evaluation of
ChronoClust’s performance on a synthetic dataset, designed
to capture the characteristics of an immune response as
observed through cytometry data.

4. We evaluate ChronoClust on a real cytometry dataset,
which characterises the immune response to WNV-infected
mice. Furthermore, we demonstrate ChronoClust’s cluster-
ing performance to be superior to that of FlowSOM, the
leading automated cytometry clustering tool. Importantly,
we verify ChronoClust’s tracking of cellular differentiation
pathways against expert knowledge; FlowSOM does not
include this automated functionality.

5. We provide a conceptualisation of ChronoClust’s parame-
ters that guides selection of their values.

6. We make our ChronoClust implementation publicly avail-
able, alongside both datasets, in the interest of supporting
reproducible research and the application of ChronoClust to
other problems: https://ghar1821.github.io/Chronoclust/,

The remainder of the paper is structured as follows. In the next
section we set out the requirements for the clustering solution
and provide an overview of related work. In Section 3 we describe
ChronoClust, our novel clustering and cluster tracking algorithm.
In Section 4 we present an evaluation of ChronoClust’s perfor-
mance against a well-understood synthetic dataset. Thereafter, in
Section 5 we apply ChronoClust to a real cytometry dataset of
WNV-infected mice. Section 6 concludes the paper.

2. Review of existing clustering approaches

From our cytometry use-case, we derive the following require-
ments for a clustering solution:

https://ghar1821.github.io/Chronoclust/
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1. No pre-specified number of clusters, as this is unknown
for a given immune response, and we wish our solution to
elucidate novel cell populations in the data.

2. Graceful handling of outlier and noisy data; biological sys-
tems are notoriously stochastic and noisy, as exemplified
in Fig. 1.

3. Effective in high dimensions; cytometry can now generate
datasets of over 50 dimensions.

4. Allow clusters to form arbitrary shapes; we do not antici-
pate that clusters in 50 or more dimensions would present
only as ellipsoids.

5. Facilitate dimensionality reduction or sub-space clustering.
In exploratory experimentation, it cannot be guaranteed
that all dimensions will be equally important. Further, we
anticipate that the hierarchical nature of cellular differenti-
ation will culminate in sub-clusters that are well-separable
in subsets of dimensions.

6. Track clusters’ temporal evolution, wherein they branch
and merge with one another over time, or when de novo
clusters are created. This facilitates tracking of differen-
tiation pathways exhibited by cell populations branching
from their predecessors.

We now review existing cytometry-specific and general-
purpose clustering and cluster tracking approaches, taking stock
of our use-case requirements. For general purpose algorithms
we focus on those wherein the number of clusters is not pre-
determined. For a more in-depth review of high-dimensional
clustering algorithms, please see [10].

2.1. Clustering in cytometry analysis

A number of algorithms have been designed for the analysis
of cytometry data, but none accommodate time-series data and
track cellular differentiation simultaneously. One of the most
popular is SPADE [8]. It employs agglomerative hierarchical clus-
tering to group the data and, thereafter, a minimum spanning tree
to connect clusters of similar cells. It also provides visualisation
of the resulting tree. Qiu et al. [8] presented an application of
SPADE to cytometry data of mouse and human bone marrow,
wherein SPADE revealed functionally distinct cell populations.
Bendall et al. [3] successfully applied SPADE to 34-dimensional
bone marrow cytometry data, demonstrating accommodation of
high-dimensional data.

The dimensionality reduction and visualisation tool viSNE [11]
has been used to generate two-dimensional maps of cell popu-
lations, whilst preserving high-dimensional relationships. Specif-
ically, viSNE uses the t-SNE optimisation algorithm [12,13] to
find a mapping from the original high-dimensional space to a
new two-dimensional space, which best preserves the pairwise
distances between the cells. viSNE was used to explore cytometry
data from healthy and leukemic human bone marrow, showing
the effectiveness of the tool [11].

Another dimensionality reduction and visualisation tool, Flow-
SOM [14], uses a Self-Organising Map (SOM) to cluster data, a
minimal spanning tree to visualise the SOM nodes, and a meta-
clustering of the SOM nodes to find the cluster boundaries. Guil-
iams et al. [15] verified the effectiveness of FlowSOM to find a
common set of characteristics defining dendritic cells in mice,
macaques and humans, by comparing its performance with man-
ual gating.

Importantly, whilst these specialised techniques are clearly
effective for single time-point datasets, they cannot accommo-
date time-series data to reveal temporal differentiation patterns,
as we require. Zunder et al. developed FLOW-MAP as an al-
gorithm to elucidate temporal cellular developmental dynamics

and used it to investigate fibroblast reprogramming [16]. Impor-
tantly, FLOW-MAP is not a clustering algorithm; it instead relies
on a third-party clustering solution, such as SPADE. Each time-
point’s dataset is clustered independently, and FLOW-MAP then
performs a post-hoc linking of all those of close spatial proxim-
ity over time. Given the independent application of clustering
to each time-point, this solution does not perform tracking; it
cannot formally detect cluster splitting, merging, disappearance
or de novo creation events as this would require clusters or
their states to persist across time-points. Such formal tracking
is particularly important for analysing the immune response in
peripheral tissues where many cell populations arrive at varying
times following early differentiation events elsewhere.

Finding no cytometry-specific solution to our use-case, we
now consider more general clustering approaches and evaluate
them against our requirements in summary Section 2.5.

2.2. Vector quantisation-based clustering algorithms

Addressing the emerging need to summarise temporal on-
line data, where the algorithm must adapt to novel data as it
becomes available, Lughofer’s incremental clustering algorithm,
the Evolving Cluster Model (ECM) [17,18], extended the classical
Vector Quantisation method [19]. The first extension includes the
use of a vigilance parameter to control the trade-off between the
adaptation of existing clusters versus the creation of new clusters.
If a new data-point is sufficiently close to the centroid of the
nearest existing cluster, as defined by the user-specified vigilance
parameter, it is assigned to this cluster and the cluster centroid is
shifted towards the data-point; otherwise, a new cluster contain-
ing the data-point is formed. By incorporating the spread of data
around cluster centres into Euclidean distance calculations, ECM
accommodates ellipsoid cluster shapes, though not fully arbitrary
shapes. A second extension includes a split and merge strategy
to deal with a non-optimal clustering structure arising from the
order in which the data-points arrive. For example, an early
arrival of data at the extremes of what would ideally be captured
as a single cluster can instead result in several smaller clusters
that should be merged (over-clustering). On the other hand, a
relatively sparse and large single cluster may be followed by
data-points forming two areas of high density; the cluster should
be split to prevent under-clustering. To deal with these issues,
ECM introduces incremental checks of the clustering quality, and
performs merging and splitting accordingly [18].

In [20] Lughofer and Sayed-Mouchaweh further refined the
splitting and merging strategy, and also substituted ECM’s Eu-
clidean distance with Mahalanobis distance, which incorporates
data distributions along a cluster’s principle axes, derived from
the data it captures. The resultant eVQ-AMS algorithm accommo-
dates ellipsoid cluster shapes with arbitrary orientations, therein
providing a better capture of data for practical applications.

As a means to remove ‘‘outlier’’ clusters deemed to represent
noise, Lughofer augmented ECM with satellite deletion (though,
surprisingly, did not carry this extension into eVQ-AMS) [17]. This
filtering stage is performed post-clustering, or at given times or
periodicity during online clustering. A cluster is removed if it
captures less than a minimum threshold portion of data (e.g. 1%),
if its centroid lies within another cluster’s hyper-volume, or if its
volume is substantially less than its neighbouring clusters.

2.3. Density based clustering algorithms

The landmark DBSCAN algorithm strove to accommodate a
non-predefined number of arbitrarily shaped clusters whilst re-
quiring few parameters and being computationally efficient [21].
It seeks to find regions of high density that are separated by
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regions with low density. The density of a point is defined by
the number of points surrounding it within a radius ϵ. Using
a minimum density threshold MinPts, each point is labelled as
forming a cluster’s core, border, or noise. Core points that are
sufficiently close are put in the same cluster, as are border points
that are sufficiently close to a core point from this cluster. A
procedure for selecting the critical parameters ϵ and MinPts from
a graph of descending distances to each data-point’s kth furthest
neighbour was also proposed.

The Density Peaks Clustering (DPC) algorithm [22] is a recently
proposed alternative to DBSCAN. It is based on the assumption
that cluster centres (i) have higher density than their neighbours
and (ii) are located sufficiently far from other points with higher
local density. DPC computes two properties for each data point:
local density and distance to points with higher local density. It
visualises them on a decision graph which is used to determine
the cluster centres and the outliers, while the remaining points
are assigned to the cluster of the closest centre. Although DPC
is easy to implement and has shown good results in several
applications, it is computationally expensive for large and high-
dimensional data. A number of extensions have been proposed to
address this limitation, e.g. using grid and circle division to more
efficiently find the cluster centres [23], computing the local den-
sity of a point by only considering its k nearest neighbours [24,25]
or the grid density [26], and using principal component analy-
sis to reduce the dimensionality of the data [24]. An adaptive
version with an improved selection of initial clusters and cluster
aggregation has been proposed in [25].

Density-based algorithms for data stream contexts have also
been proposed. The IncrementalDBSCAN [27] is an extension
of DBSCAN for data streams, where new data-points are in-
serted and old data-points are forgotten. DBSCAN was deemed
promising for data streams due to its density-based nature — the
insertion or deletion of a data-point will affect only the clusters
around this data-point. This allows for the development of a
computationally efficient algorithm for handling the splitting and
merging of clusters.

However, if a considerable proportion of data-points move be-
tween consecutive time-points, IncremenalDBSCAN’s cluster up-
date procedure becomes computationally expensive. To address
this, Kalnis et al. [28] proposed three algorithms for detecting
moving clusters based on DBSCAN. The first algorithm applies
DBSCAN to each time-point and then merges clusters from con-
secutive time-points based on their similarity to form moving
clusters. The similarity measure is based on the intersection and
union of the data-points in the clusters. The second algorithm
improves on the efficiency of the first by minimising redundant
comparisons between data-points and moving clusters, while the
third algorithm further improves the speed (at the expense of
lower accuracy) by only applying DBSCAN to select data-points
to produce approximate clusters.

It can be impractical to represent clusters through their con-
stituent data-points in online contexts as the data is potentially
limitless, yet computational memory is finite. DenStream [29]
addresses this challenge through a two-tier clustering approach
consisting of online and offline phases. The concept of dividing
the clustering process into online and offline passes was first
introduced in the CluStream framework [30]. The fast online
phase stores summary statistics of the data in the form of Micro-
Clusters (MCs) while the offline phase uses this information and
user inputs, such as the required time horizon and granularity
of clustering, to produce the final clusters. The application of
CluStream was demonstrated by using a k-means variant as the
base algorithm, which has limitations in terms of pre-specified
number of clusters, dealing with outliers, and forming spherical
clusters. DenStream applied and extended the CluStream frame-
work for density-based clustering. The online phase summarises

the data-points through an evolving collection of MCs with con-
strained maximum radius. Novel data items are merged with the
nearest MC, provided that the MC’s radius remains compliant.
The counts of the data-points captured by MCs are periodically
decayed, low-density MCs representing outlier data are deleted
and MCs replenished by arrival of supporting data in the stream
are maintained. During the offline phase, executed periodically or
on demand, DenStream employs a DBSCAN variant to cluster the
highest density MCs. The result is a memory efficient algorithm
that can form arbitrarily shaped clusters that adapt to reflect the
changing nature of the data stream.

D-Stream [31] is another algorithm employing this two tier
clustering approach. Its online phase is slightly different to that
of DenStream’s as it summarises data-points using a collection of
grid cells instead of MCs. Grid cells represent a discretisation of
the feature space; the density of a grid cell is determined by the
number of data-points mapped to it. Further, D-Stream employs
a decay factor to reduce the grid cells’ densities over time and
capture changes in the data stream. Adjoining dense cells are
linked together to form clusters. While D-Stream has been tested
on both synthetic and real datasets, it can be computationally
expensive if applied to high dimensional datasets due to the need
to maintain a large number of cells.

An emerging theme in clustering is subspace clustering, mean-
ing that some data-points might exhibit a narrow distribution,
and hence a tight clustering, in only a subset of all dimen-
sions [10]. The PreDeCon algorithm [32] expands DBSCAN’s density-
based clustering concept to accommodate subspace clustering
by adopting a weighted distance metric. Dimensions in which
a data-point’s neighbourhood exhibits low variance contribute a
higher weight in calculating the distance to other points. As with
DBSCAN, PreDeCon also operates over static datasets.

Mirroring DenStream’s online and offline two-phase opera-
tion, HDDStream [33] adapts subspace clustering to data streams.
As with DenStream, the MC-captured data-point counts are pe-
riodically decayed, allowing adaptation to new changing data
and forgetting of old data. The summarising of input data via
MCs helps in ensuring a relatively modest memory footprint.
Weighted distance calculations are adopted to provide for sub-
space clustering, reminiscent of PreDeCon. In fact, PreDeCon is
employed in HDDStream’s offline phase to assemble final clusters
from high density MCs.

2.4. Cluster tracking algorithms

MONIC is a framework for tracking cluster transitions over
time, developed by Spiliopoulou et al. [34]. It firstly finds the
‘‘same’’ clusters in different time-points. To find the ‘‘same’’ clus-
ter C in a later time-point, MONIC computes the overlap between
cluster C in the current time-point and clusters in the later time-
points. The overlap is based on both the set intersection and
‘‘age’’ of the data-points. MONIC then detects different types
of external and internal cluster transitions. External transitions
include cluster survival, splitting, absorption, disappearance and
the emergence of a new cluster. The internal transitions are
only applicable to ‘‘surviving’’ clusters and include changes in
size, compactness and location. A measure of cluster lifetime and
stability over time was also proposed. MONIC’s ability to track
clusters was demonstrated in a case study using documents from
the ACM digital library.

MEC [35] is another prominent method for monitoring cluster
evolution. It extends MONIC by representing clusters through
summary statistics, such as density, centroid locations and radius
(comprehension), in addition to MONIC’s representation of clusters
via all constituent data-points (enumeration). Two tracking meth-
ods are proposed: using conditional probabilities to construct
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weighted bipartite graphs for enumerated clusters, and using
cluster overlap for clusters represented by comprehension. MEC
was applied to two case studies utilising economic and educa-
tional data from Portugal; the results showed that it was able to
effectively track cluster changes.

2.5. Summary

As discussed above, the existing cytometry-specific approaches
do not meet our use-case. Of the general-purpose clustering
algorithms, vector quantisation-based methods do not permit
arbitrarily-shaped clusters and do not provide temporal cluster
tracking. The density-based algorithms we reviewed, culminat-
ing in HDDStream, do not explicitly support tracking, though
the data-stream variants might be applicable to processing a
time-series of discrete datasets as per our use-case.

Elsewhere, MONIC and MEC do provide temporal tracking of
clusters, but do not facilitate clustering. Additionally, the type
of tracking they provide cannot determine the predecessors of
newly emerged clusters. This is an important requirement for our
use-case as it is biologically impossible for an immune cell not
to differentiate from a progenitor. Hematopoietic stem cells are
the only exception, as they give rise to all immune cells. There
is a clear opportunity to develop a single algorithm capable of
both clustering and tracking and to optimise its performance to
biological use-cases, facilitating adoption by biologists.

In the next section, we present ChronoClust, a novel clustering
and cluster tracking algorithm that we have developed, which
satisfies all the requirements for our use-case from Section 2.

3. ChronoClust

ChronoClust is a density-based clustering algorithm suitable
for analysing a time-series of datasets and explicitly tracking the
evolution of clusters across time-points. A one-pass batch pro-
cessing of each dataset is performed. It builds upon HDDStream [33];
in particular, it retains HDDStream’s two phase operation (online
and offline), with some modifications, and also introduces a third
phase: tracking.

First, during the online phase, ChronoClust summarises a time-
point’s raw data as Microclusters (MCs) of constrained radius.
Second, during the offline phase, it clusters these MCs into ar-
bitrary shapes by applying the PreDeCon [32] algorithm to each
time-point. Third, it generates a history of clusters’ temporal
evolution through two methods:

1. Tracking by lineage determination operates by identifying
the MCs that are shared between clusters from two con-
secutive time-points. This method reveals when existing
clusters merge and split, who their parents are, and when
new clusters emerge. The lineage history is encoded into
each cluster’s unique ID.

2. Tracking by historical proximity links clusters from two con-
secutive time-points based on the proximity of their con-
stituent MCs.

Tracking by lineage determination provides a formal and ab-
solute evolutionary history, based on the behaviour of MCs that
persist across time-points. However, it cannot provide ancestry
for de novo clusters as, by definition, their MCs are not shared
with any cluster from the previous time-step. By instead estimat-
ing ancestry, tracking by historical proximity serves as a contin-
gency. Cluster ancestry is important to our use-case. These two
complementary tracking strategies confer ChronoClust several
advantages. MONIC and MEC cannot estimate ancestry for de novo
clusters, whereas ChronoClust’s tracking by historical proximity
can. FLOW-MAP merely links all nearby clusters across time and

cannot formally label cluster splitting, merging or de novo cre-
ation events as ChronoClust’s tracking by lineage determination
does.

The pseudocode of ChronoClust is presented in Algorithms 1,
2 and 3, and discussed next.
Algorithm 1: ChronoClust overview.
{x, y}: an ordered array of x preceding y. ⊘: an empty array.
array[z]: extracts item(s) from the array corresponding to
index(s) z; z may express a condition.
Input: D = {D0, ...,Dt} ▷ Di indicates dataset at time-point i.
Output: all_clusters = {all_clusters0, ..., all_clusterst} ▷

all_clustersi indicates clusters for time-point i.
1: function ChronoClust(D)
2: Dnorm ← NormaliseData(D) ▷ Normalise all input data

together, not each Di dataset in isolation
3: mcs←⊘ ▷ Store microclusters
4: clusterst−1 ←⊘ ▷ Store offline phase clusters
5: all_clusters←⊘ ▷ Collate clusters for output
6: for Dt ∈ Dnorm do
7: if t > 0 then ▷ Decay and downgrade microclusters for

all but the first time-point
8: decay mc weight, for mc ∈ mcs
9: downgrade mc, for mc ∈ mcs

10: ▷ Online & offline clustering similarly to HDDStream
11: mcs← OnlineMicroclustering(Dt ,mcs)
12: clusterst ← OfflineClustering(mcs)
13: TrackClusters(clusterst , clusterst−1) ▷ See Algorithm 2

14: clusterst−1 ← clusterst
15: all_clusters[t] ← clusterst

return all_clusters

3.1. Clustering: Online and offline phases

ChronoClust commences with an online phase which sum-
marises the raw data-points as MCs; an MC’s weight reflects the
number of data-points it captures. One time-point is processed
at a time, and the resulting MCs persist across time-points. To
permit MCs to evolve and reflect changes in the data over time,
MC weights are decayed after each time-point. Those that are
reinforced by data in the subsequent time-point(s) persist and
evolve, while others are eventually decayed and deleted, thus
allowing old data to be gradually forgotten. The online phase is
followed by an offline phase which groups the MCs into clusters
with arbitrary shapes, forming the final clustering.

We now explore ChronoClust’s online and offline phases in
more detail. We firstly introduce the notation used in Algorithms
1, 2 and 3. We define the input, a time-series dataset of t time-
points, as D = {D0, . . . ,Dt}. Each dataset Di is a table indexable
by features and entries: Di(f , ei), where f ∈ {F0, . . . , Fn} is a set of
n features, and ei ∈ {E0, . . . , Ej} is the set of j entries at time-point
i.

ChronoClust commences by rescaling each feature f to the
range [0, 1], based on the minimum and maximum values ob-
served for f across all Di. The normalisation step facilitates pa-
rameter value selection and conceptualisation as discussed in
Section 3.3. Then, ChronoClust proceeds by clustering the data,
similarly to the HDDStream algorithm. There are four main dif-
ferences between HDDStream and ChronoClust, discussed below:
(1) in the MC initialisation phase, (2) the weight decay of MCs,
(3) outlier MC deletion and (4) the distance measure used to join
MCs in the offline phase, as discussed in Section 3.3.

While HDDStream’s initialisation phase seeds the initial MCs
using the earliest data from the continuous data stream, such
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Table 1
A snippet of ChronoClust output, showing clusters (rows) across five time-points (days) when fine-scale clustering the synthetic dataset, described in Section 4.1.
Weight is a decaying cumulative count of the data-points a cluster has captured. MC IDs gives the cluster’s constituent MC IDs. Cluster centroids presents the centroids
of the clusters; this is shown for convenience only. The tracking phase is responsible for determining the Cluster IDs (using tracking by lineage determination) and the
Cluster associates (using tracking by historical proximity). Cluster ID conveys a full, unique developmental history for each cluster, on the basis of MCs shared across
time. Cluster associates of a cluster in the current time-point are the nearest clusters from the previous time-point, and they are not required to share constituent
MCs.
Day Weight Constituent MC IDs Cluster centroids Tracking by Lineage Determination Tracking by Historical Proximity

X Y Z Cluster ID Cluster Associates

1 2019.0 1 29.9 29.9 29.9 A None
1 5046.0 0 10.1 10.0 10.1 B None
2 2044.8 1, 3 29.1 29.9 30.0 A A
2 465.0 2 34.2 29.9 30.0 C A
2 6264.5 0, 4 10.4 10.3 10.3 B B
3 706.5 3 25.6 30.1 30.0 A A
3 1194.7 1 30.0 29.9 30.0 A|1 A
3 672.3 2 34.3 30.0 30.0 C C
3 6583.6 0, 4, 5 10.6 10.5 10.5 B B
4 1163.5 9, 3 23.4 30.0 29.9 A A
4 1478.7 1, 2 32.5 29.9 29.9 (A|1,C) A|1 & C
4 4455.0 0, 8, 4 10.3 11.3 10.0 B B
4 1327.0 5, 7 10.0 10.0 14.5 B|1 B
4 855.1 6 15.5 10.1 10.0 D B
5 1296.9 9, 3 21.5 30.0 30.0 A A
5 1365.7 1, 2 34.3 30.0 30.0 (A|1,C) (A|1,C)
5 3162.5 0, 4 10.1 10.4 9.9 B B
5 531.5 5 10.0 9.9 13.4 B|1 B|1
5 544.3 7 9.7 10.0 16.9 B|1|1 B|1
5 531.3 8 10.1 16.3 10.1 B|2 B
5 763.8 6 15.7 10.1 9.9 D D
5 324.0 10 5.6 10.1 18.1 E B|1
5 404.3 11, 14 18.1 6.2 10.0 F D
5 415.5 12, 13 10.0 18.1 6.3 G B

Tracking notation key:

Notation Meaning

(X, Y) Merging of clusters X and Y
X|2 A cluster that split from X, and the second to do so (X|1 being the first)
X & Y X and Y are both historical associates

a bespoke initialisation is unnecessary in ChronoClust, as the
entire first time-point’s dataset (indeed, all time-points’ datasets)
is available a priori. Hence, ChronoClust commences online clus-
tering without an initialisation phase.

OnlineMicroclustering summarises the given time-point’s
raw data as MCs. It increases an MC’s weight by 1 for each data-
point it captures. MCs are classified into three categories based
on their weights using decreasing thresholds: core-MCs, potential
core (pcore)-MCs or outlier-MCs. In the offline clustering phase,
core- and pcore-MCs form clusters for that time-point. Core-MCs
serve as cluster seeds, from which nearby pcore-MCs are ‘‘daisy
chained’’ to form clusters of arbitrary shapes. We refer readers
to [32,33] for further details.

To allow MCs to adapt to new data in the stream, their weights
are decreased over time t through multiplication by a factor d =
2−λt with λ > 0 giving 0 < d ≤ 1. Larger values for the decay
rate λ decrease the influence of historical data on an MC’s current
state, including its location and spread. Whereas HDDStream
decays MCs periodically to accommodate the continuous and
possibly sporadic arrival of input data, the time intervals between
datasets are known in advance for ChronoClust and MCs weights
are instead decayed once per time-point before online clustering.
MCs whose weights have fallen below category thresholds are
downgraded, e.g. a decayed pcore-MC becomes an outlier.

Lastly, HDDStream deletes outlier MCs based on a heuristic
that contrasts the expected with actual weights given the pas-
sage of some time, a mechanism well adapted to sporadic data
streams. In ChronoClust we instead employ a novel method to
determine when outlier MCs ought to be deleted, based on their
weight falling below a threshold value. This threshold is deter-
mined on the principle that a pcore-MC should not be deleted,

given decay over time, before having the opportunity to capture
additional data-points at the next time-point. The conceptualisa-
tion and equation to calculate the threshold deletion weight are
detailed in Section 3.3.

ChronoClust’s tracking phase operates over the current and
preceding time-point’s clusters and is discussed in the following
section.

3.2. Tracking phase

Table 1 shows an example tabular output from ChronoClust
to illustrate the tracking phase’s operation. Each row represents
a cluster at a given time-point (days in this example). Cluster
centroids are reported for convenience only; to determine the
exact location and shape of an arbitrarily-shaped cluster one must
inspect each of its MCs. The column MC IDs reports the unique
IDs of all core- and pcore-MCs constituting the cluster. Weight
is a cumulative count of data-points the cluster represents, via
its MCs, decayed over time as discussed above. The tracking
phase includes two modes: tracking by lineage determination and
tracking by historical proximity. The first analyses the shared MCs
between all clusters from two consecutive time-points to deter-
mine child–parent relationships. It assigns a unique Cluster ID to
each cluster, which encodes the cluster’s temporal evolution. The
second determines the cluster’s historical associates, which are
the nearest clusters from the previous time-point, i.e. the most
likely predecessors. There is no requirement for a cluster to share
MCs with its historical associate(s). We next describe these two
tracking modes in more details.
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Algorithm 2: ChronoClust tracking of cluster temporal evolution.
Notation is as in Algorithm 1. Input and output are applicable to both functions.
Input: clusterst ▷ clusters at time-point t .

clusterst−1 ▷ clusters at time-point t − 1.
Output: Nothing
1: function TrackClusters(clusterst , clusterst−1)
2: ▷ Arguments are arrays of clusters at two consecutive days
3: LineageDetermination(clusterst , clusterst−1)
4: HistoricalProximity(clusterst , clusterst−1)
5:
6: function LineageDetermination(clusterst , clusterst−1)
7: ▷ This variable’s state must persist across consecutive function calls
8: ▷ It counts cluster splits (e.g. "B|1") which may occur over several time-points
9: splits_per_id← empty array indexed by cluster labels

10:
11: for cluster ∈ clusterst do
12: ▷ Identify clusters from time t − 1 (parents) sharing MCs with cluster
13: cluster.parents←⊘
14: for mc ∈ cluster.mcs do
15: ▷ If a parent containing mc exists and has not already been recorded
16: if ∃ parent ∈ clusterst−1 | mc ∈ parent.mcs ∧ parent.id /∈ cluster.parents then
17: cluster.parents.Append(parent.id)
18: if cluster.parents = ⊘ then ▷ New cluster, has no parents
19: ▷ Handles initialisation at t=0, as clusterst−1 is empty
20: cluster.parents← {unused label from {"A", ..., "Z", "AA", ...}}
21:
22: ▷ Collect clusters by their parents’ ID(s); used to identify parents that split
23: offspring ← empty array indexed by cluster IDs
24: for cluster ∈ clusterst do
25: for parent ∈ cluster.parents do
26: if parent.id not already an index in offspring then
27: offspring[parent.id]←⊘ ▷ Initialise with empty array
28: offspring[parent.id].Append(cluster) ▷ Record parent–child relationship
29:
30: ▷ Prepare cluster IDs based on parents’; identify parents that have split
31: for parent_id, children ∈ offspring do ▷ Extract both ids (lexicographically) and corresponding arrays
32: sort children descendingly by number of parent_id’s MCs they contain
33: ▷ The cluster with the majority of parent_id’s MCs adopts parent’s ID
34: ▷ An array of id_components is compiled to accommodate several merging parents
35: children[0].id_components.Append(parent_id)
36: ▷ Process subsequent children, if any exist; the parent has split
37: for childi ∈ children[i > 0] do
38: increment splits_per_id[parent_id] by 1
39: new_id← parent_id + "|" + splits_per_id[parent_id] ▷ String concatenation
40: childi.id_components.Append(new_id)
41:
42: ▷ Assign IDs; handles merges if a cluster had several parents
43: for cluster ∈ clusterst do
44: ▷ Insert comma between each cluster.id_components below
45: cluster.id← "(" + cluster.id_components + ")" ▷ String concatenation
46: splits_per_id[cluster.id] ← 0 ▷ Instigate for subsequent time-point

3.2.1. Tracking by lineage determination
This mode of tracking is performed by the function LineageDe-

termination in Algorithm 2. Fig. 5, in particular the two graphs
depicting fine-scaled clustering of the synthetic dataset, may
serve as an aid to readers as we discuss this function; it graph-
ically depicts the evolution of clusters listed in Table 1. Chrono-
Clust assigns IDs to all clusters in a given time-point, requiring
access to the clusters in the preceding time-point. A cluster at
time-point t is deemed to have evolved from one at t − 1 if
both share a common MC. We label these clusters child and
parent. Hence, the algorithm first cycles through a child cluster’s

MCs, seeking parents that possess these same MCs; there may be
several.

Constructing a unique ID conveying evolutionary history re-
quires that we accommodate clusters that split: parents that
contributed MCs to multiple children. For instance, in Table 1 and
Fig. 5 cluster B in day 3 splits to form two clusters in day 4: B
and B|1. Hence, for each parent, we must group together all of
its children and count them. The child inheriting the majority of
the parent’s MCs retains the parent’s label, B in this example. The
remaining children adopt the parent’s label and are incrementally
numbered as such, e.g. B|1.
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Algorithm 3: ChronoClust’s Tracking by historical proximity algorithm.Notation is as in Algorithm 1.
Input: clusterst ▷ clusters at time-point t .

clusterst−1 ▷ clusters at time-point t − 1.
Output: Nothing
1: function HistoricalProximity(clusterst , clusterst−1)
2: for cluster ∈ clusterst do ▷ Initialise predecessors variable
3: cluster.predecessors←⊘
4: ▷ Assemble all constituent MCs from all clusters in previous time-point; used below
5: all_mcst−1 ← {constituent ∈ c.mcs | ∀c ∈ clusterst−1}
6: ▷ Handles t=0 and other times when there are no clusters at t-1 (clusterst−1 is empty)
7: if all_mcst−1 = ⊘ then return
8:
9: for cluster ∈ clusterst do ▷ Find predecessors for each current cluster

10: for mc ∈ cluster.mcs do
11: ▷ Find constituent MC from previous time-point nearest to mc
12: nearest_mc ← argmin

prev ∈ all_mcst−1
distΦ (mc, prev) ▷ See Equation 1

13: ▷ Find the previous time-point cluster that nearest_mc belonged to
14: pred← clu | nearest_mc ∈ clu.mcs ∧ clu ∈ clusterst−1
15: if pred.id /∈ cluster.predecessors then ▷ Add if not already recorded
16: cluster.predecessors.Append(pred.id)

The last stage of this algorithm deals with merges, where
several parents contributed MCs to the same child. In our nota-
tion, this is represented with brackets and commas e.g. (A|1,C)
indicates the merging of clusters A|1 and C. The child’s unique ID
is constructed from a concatenation of all its parents’ IDs, with
some string manipulation for commas and parentheses. Having
given an abstract overview of its operation, we now explore
function LineageDetermination in more detail.

We require each cluster to maintain a reference to the MCs
it comprises, denoted by the ordered set x.mcs for cluster x.
The determination of a cluster’s parents is handled by line 14
of Algorithm 2. If a cluster has no parents, line 18, then it is a
novel cluster. This occurs for the first time-point, as clusterst−1 is
empty, or when the cluster comprises MCs either newly created
or not constituting a cluster in the previous time-point. The novel
cluster is assigned an unused alphabetical ID as its sole parent;
subsequent code will assign this as the cluster’s ID. For example,
cluster C in day 2 (see Table 1) contains MC # 2, which does
not exist in day 1. With labels A and B taken, the new cluster
is assigned ID C.

The block commencing at line 23 maps a parent to all of
its children, needed for subsequent detection of parents that
have split. Line 31 then handles split detection. Each parent is
processed in turn, along with its children. The child inheriting the
majority of the parent’s MCs adopts that parent’s ID, unmodified.
Subsequent children, should there be any, adopt a modified par-
ent ID, employing a ‘‘parent ID|split#’’ notation. The splits_per_id
variable facilitates this labelling by maintaining a cumulative
count of splits each cluster has made; this variable’s state must
persist across LineageDetermination invocations.

Lastly, cluster IDs are assigned as a concatenation of (poten-
tially modified, for splits) parent IDs, in line 43. For example,
cluster (A|1,C) in day 4 (see Table 1) contains MCs # 1, 2 that
belong to clusters A|1 and C from day 3. The parentheses are
necessary to convey an unambiguous history, which is essential
when multiple merging and splitting events have occurred over
time.

We note that for datasets with many time-points the cluster
IDs can become difficult for humans to parse; they are designed
to be machine-interpretable to facilitate graphical user interface-
based analysis in future work. We have incorporated a simple
mapping of Cluster ID to problem specific labels that can aid
human interpretation. Table 2 presents a hypothetical illustration
for immune cell lineages.

Table 2
Mapping of clusters and populations. Note that this is a purely hypothetical
example.
Day Cluster Id Name

1 A Common myeloid progenitors
1 B Common lymphoid progenitors
2 A Common myeloid progenitors
2 B Common lymphoid progenitors
2 C Monocytes
3 B Common lymphoid progenitors
3 A Common myeloid progenitors
3 C Monocytes
3 A|1 Neutrophils
.
.
.

.

.

.
.
.
.

3.2.2. Tracking by historical proximity
This type of tracking is handled by HistoricalProximity in

Algorithm 3. It determines a cluster’s most likely predecessors
from the previous time-point, termed historical associates, which
are those closest to it spatially. To find them for a given cluster
X at time t , ChronoClust iterates through each of X ’s constituent
MCs and determines their nearest cluster-comprising MCs at time
t−1. The union of the clusters corresponding to these nearest MCs
forms the historical associates. For example, as Table 1 shows,
cluster (A|1,C) in day 4 has two historical associates: A|1 and C.
A given cluster can have at most one distinct historical associate
for each MC it comprises, occurring when each MC at time t lies
closest to an MC from different cluster at time t − 1. The nearest
clusters from the preceding time-point are identified for each cur-
rent time-point cluster. This is by virtue of distance calculations
between constituent MCs, though there is no requirement that
MCs are shared by clusters across time-points.

Tracking by historical proximity accommodates subspace clus-
tering, allowing clusters to be more-tightly defined in particular
preferred dimensions. This is accomplished through a weighted-
distance calculation in determining the nearest neighbours’ MCs.
For two equidistant points from an MC, the one aligning along a
preferred dimension will be deemed the nearest. The equation is
thus:

distΦ (mcA,mcB) =

√ d∑
x=1

(cx(mcA)− cx(mcB))2

Φx(mcA)
(1)
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Table 3
Parameters used in ChronoClust. The left column expresses value constraints.
Parameter Function

µ ∈ [0, 1] Minimum weight threshold for a core-MC, as proportion of
time-point data

β ∈ [0, 1] Minimum weight threshold for a pcore-MC, scalar of µ

ϵ > 0 Maximum radius threshold for an MC
υ ≥ 1 Maximum distance between MC during offline clustering, a

scalar of ϵ

π ∈ N Maximum number of MC preferred dimensions
κ ≥ 1 MC preferred dimension weighting in distance calculations
δ ∈ [0, 1] Maximum data variance along an MC’s preferred dimension
λ ≥ 0 Decay rate of old data on current MC state
o ≥ 0 Weight threshold for MC deletion

where mcA is an MC belonging to cluster A at time-point t and
mcB is an MC belonging to cluster B at time-point t − 1. cx(m)
represents the centroid of MC m in dimension x in d-dimensional
space, and Φx(m) represents the dimension preference weighting
for MC m in dimension x. This metric’s dimensional preference
weighting is adopted from PreDeCon [32] and HDDStream [33].

Clusters identified as historic associates and parents will typi-
cally overlap, the main exceptions being for new, de novo clusters.
For instance, in Table 1, Cluster C in day 2 is a newly formed clus-
ter. Using Eq. (1), Algorithm 3 calculates the projected distance
between MC #2 in day 2 and MCs #0 and #1 in day 1, identifying
MC #1 as the nearest. Hence, cluster A is assigned as cluster C’s
historical associate.

3.3. Parameters in ChronoClust

ChronoClust’s parameters are listed in Table 3 and many
of them are adopted from HDDStream. In this section we dis-
cuss these parameters and conceptualise them in terms of input
dataset, in order to provide better understanding and guide-
lines on how to set them. The latter is aided by the dataset’s
normalisation to values in the range [0, 1].

The fundamental unit of clustering in ChronoClust is the MC,
which adapts to a given time-point’s data in the online phase;
MCs themselves are clustered in the offline phase to summarise
the data. An MC is ellipsoid in shape owing to the subspace
clustering as it retains a narrower distribution of data in certain
preferred dimensions. MCs have a maximum radius, ϵ, and in
the extreme case can be spherical. One may conceptualise ϵ as
the spatial resolution along each dimension and select a value
accordingly. Hence, values in the range [0, 1] are prudent, since
the dataset is normalised to this range. Note that this conceptual-
isation is a merely a useful simplification, in actual fact MCs can
overlap in some cases (see below).

We express µ, the minimum threshold weight for a core-MC,
as a proportion of the number of data entries in the time-point
being processed. Hence, each cluster captures a minimum of
100µ% of data-points at each time-point and roughly 100ϵ% of
the range along each dimension (conversions to percent, and
clusters comprise at least one core-MC). This analogy helps the
user choose these parameters based on the degree of sensitivity,
at expense of capturing noise, they desire. By expressing µ as a
proportion, this mechanism is robust to time-points with varying
numbers of data-points.

An MC’s preferred dimensions are those in which its con-
stituent data are tightly clustered. There is an upper limit, π , on
the number of dimensions that an MC may prefer. Where the
absorption of a data-point would violate MC constraints, such
as π , it is instead added to another. As such, it is possible for
MC volumes to overlap. To constitute a preferred dimension,
MC data in that dimension must exhibit a variance less than δ.

MC volumes are ellipsoid by virtue of weighted distance calcu-
lations used to determine which MC will absorb a data-point.
Preferred dimensions are weighted κ , versus 1 for non-preferred
dimensions.

Final clusters for each time-point are assembled through the
offline phase, where core-MCs and pcore-MCs are clustered. MCs
that lie within threshold distance υ are linked to form a cluster.
We make υ explicitly distinct from ϵ; it is unclear in HDDStream
[33] if the same value (ϵ) is employed in both online and offline
contexts. The threshold distance υ is expressed as a multiple of
ϵ; in developing ChronoClust we have found values > 2 to work
well.

In the offline phase core-MCs seed the initial clusters. Pcore-
MCs near to a cluster’s constituent MCs are recursively absorbed
into that cluster, allowing a ‘‘daisy chaining’’ of core-MCs and
pcore-MCs. Consider a spatial distribution of core-MCs represent-
ing regions of very high data density surrounded by pcore-MCs
of lower density. The threshold weight at which an outlier-MC
transitions to a pcore-MC is βµ. A lower value of β generates
more pcore-MCs, potentially bridging two core-MCs (and thus
clusters) that would not otherwise be linked. We envisage a use-
case where β is gradually raised, allowing large conglomerate
clusters representing, for instance, broad categories of immune
cell (e.g. T cells) to split into distinct sub-populations (e.g. T
helpers, cytotoxic T cells, regulatory T cells). So doing would facil-
itate the identification of novel, rare sub-populations of immune
cell, identified in the Introduction as valuable in studying disease.

The parameter λ dictates the influence of old data on cur-
rent cluster state. We retain HDDStream’s formulation of decay,
wherein the cluster weight over time period t is decayed by factor
d = 2−λt . We note that λ can be expressed as λ = 1

half -life , where
half-life represents the duration at which the weight decays to
half its original quantity.

Finally, o is the threshold at which an outlier-MC is deleted.
As with µ and ϵ, o is expressed as a proportion of the number
of data entries in the time-point being processed, therein im-
plicitly accommodating datasets with varying quantities of data.
We recommend setting o after selecting an appropriate λ. We
propose determining o based on the principle that a pcore-MC
with weight exactly βµ should not be deleted before having the
opportunity to capture additional data-points in the subsequent x
time-points. For instance, if time-points are 1 day apart and x = 1,
then let dt = 1; selecting

o = βµ2−λdt (2)

would delete a pcore-MC with weight βµ at the subsequent time-
point. An o value slightly smaller than this (i.e. slightly larger dt)
would slightly extend MC lifespan, affording it the opportunity
to capture additional data-points. Values for x and dt should be
selected in accordance with the problem at hand.

4. Evaluation on synthetic data

A synthetic dataset enables detailed, unbiased and unencum-
bered analysis of ChronoClust’s performance as, in designing it,
we know exactly which clusters and sub-clusters exist, and how
they evolve over time. We gauge how well ChronoClust recovers
these phenomena. In so doing we operate ChronoClust at two
clustering resolutions, reflective of how an immunologist would
approach a cytometry dataset. An initial coarse-scale clustering
identifies the broad types of cell populations present. Thereafter,
finer-scale clustering teases out sub-populations, which are often
of specific interest in a given context. Whereas the immunolo-
gist would employ manual gating to find these populations, we
seek for ChronoClust to uncover these patterns in an automated
unsupervised manner.



Please cite this article as: G.H. Putri, M.N. Read, I. Koprinska et al., ChronoClust: Density-based clustering and cluster tracking in high-dimensional time-series data,
Knowledge-Based Systems (2019), https://doi.org/10.1016/j.knosys.2019.02.018.

10 G.H. Putri, M.N. Read, I. Koprinska et al. / Knowledge-Based Systems xxx (xxxx) xxx

Fig. 2. The synthetic dataset. Day 2 exhibits only minor differences from day 1 and is omitted for brevity. The sub-clusters comprising each conglomerate are given
unique colours for clarity. The range of values for the axes is 0 to 40.

We independently evaluate clustering performance on each
day, qualitatively and quantitatively in Sections 4.3 and 4.4 re-
spectively, and thereafter ChronoClust’s tracking of cluster evolu-
tion over time, Section 4.5. First, however, we define our synthetic
dataset and create manually-defined gates that form the ‘‘ground
truth’’ for subsequent evaluation.

4.1. The synthetic dataset

Our synthetic three-dimensional dataset comprises two con-
glomerate clusters that evolve over 5 time-points (days), as shown
in Fig. 2. Whilst three dimensions is considerably fewer than we
anticipate from real cytometry data, it facilitates visual inspection
and verification of clustering behaviour.

The sprouting conglomerate entails a single cluster that ‘‘spr
outs’’ in three directions, Fig. 2. Both the seed cluster (day 1) and
each of the sprouting appendages are represented by bespoke
Gaussian distributions of data, therein forming adjacent regions
of high density. This mimics immune cell differentiation path-
ways in the bone marrow, where common progenitor cells give
rise to several functionally distinct, specialised sub-populations
that present as discrete stages in the developmental pathway. For
instance, common myeloid progenitors can give rise to neutrophils,
monocytes and eosinophils (amongst others) [36].

The split conglomerate represents the immune response as ob-
served in a tissue where immune activity is triggered, for instance
by a virus. Immune cells will enter the tissue from the blood
circulation, then progressively differentiate and mature into mul-
tiple subsets over time. As the immune response subsides, these
populations will either perish or migrate back out of the tissue.
This can present as an initial cluster of data that grows and then
splits.

The sprouting and split conglomerates comprise 5000 and
2000 data-points at each day, shared evenly between their con-
stituent Gaussians. Conglomerate cluster appendage extensions
and movements are represented through additional Gaussians
that complement those from previous days. In addition to the
Gaussian distributions, 100 data-points are uniformly distributed
through the space to represent noise. All distributions are sam-
pled anew to generate fresh data for each day. The dataset and
its specification in terms of Gaussian distributions are available
at https://ghar1821.github.io/Chronoclust/

4.2. Manual gating

To evaluate ChronoClust’s performance we require a ‘‘ground
truth’’ of which cluster each data-point actually arose from.
Whilst we could assign each data-point the label of the Gaussian
generating it, we instead reproduce the process of manual gating
to provide the ground truth. So doing better aligns our analysis
with our target domain of immunology, where the ground truth
of which cells belong to each of two distinct populations cannot
be known if those populations are not cleanly separable in the
dimensions available. This is the case with many of our Gaussians
which exhibit overlaps. Gating represents the best that could be
accomplished in the immunological case, and so we employ it
here also.

We manually gate at two granularities, coarse-scale and fine-
scale, to simulate two extreme use-cases. First, coarse-scale clus-
tering to capture only the broad immune cell populations present
and, second, to extract in fine detail the sub-populations they
comprise. Gating results are shown in Fig. 3. In coarse-scale gating
we define the ‘‘sprouting’’ conglomerate as a single cluster at all
time-points. The ‘‘splitting’’ cluster is defined as a single cluster
in days 1 to 3, and two clusters thereafter. In fine-scale gating
we define a cluster for each Gaussian. For the ‘‘splitting’’ con-
glomerate, clusters are identical to the coarse-scale case. For the
‘‘sprouting’’ conglomerate, we transit from a single seed cluster
at day 1 to seven clusters at day 5.

Gating in three-dimensions proved challenging and was per-
formed as follows. The gates were firstly defined by determining
the convex hulls for each Gaussian, through Python’s SciPy mod-
ule, or their combination for the coarse-scaled gating. They were
then manually adjusted to remove any overlap in gate volumes,
placing the boundaries in the least dense areas.

4.3. Qualitative evaluation of clustering

We qualitatively evaluate ChronoClust’s ability to find the man
ually-gated clusters. We manually selected parameter values fol-
lowing the conceptualisation outlined in Section 3.3; values are
reported in Table 4. Our goal is to demonstrate ChronoClust’s
successful operation at both clustering scales and, importantly,

https://ghar1821.github.io/Chronoclust/
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Fig. 3. Coarse-scaled and fine-scaled manual gating and ChronoClust clustering results. Axes labels and ranges are the same as in Fig. 2. Only data-points that were
assigned to gates/clusters are depicted.

Table 4
Parameters used in ChronoClust results for coarse and fine-scaled clustering of
the synthetic dataset.
Scale µ β ϵ υ π κ δ λ o

Coarse 0.01 0.0001 0.03 6.5 3 4 0.05 2 4.35× 10−7

Fine 0.01 0.2 0.03 6.5 3 4 0.05 2 4.35× 10−7

that good quality clustering can be achieved at both scales by
changing only a single parameter, β , the threshold weight at
which outlier MCs become pcore-MCs which can be daisy chained
to form larger clusters.

The same value for parameter o was used in both fine- and
coarse-scaled clustering, thereby encouraging a similar spatial
distribution of MCs in both cases. Following Eq. (2), we calculated
o using dt = 1.1 and the smaller value of β = 0.0001 for
coarse-grained clustering. Hence, outlier-MCs are permitted 1 day
to acquire more data-points, else be deleted.

We observe a fewminor qualitative differences between Chron-
oClust and manual gating, Fig. 3. When coarse-scale clustering,
ChronoClust identifies the split conglomerate in day 4 as one
cluster (cluster A) instead of two (clusters η and θ ). We note that
this could be corrected with a smaller υ value (not shown), but in
so doing the sprouting conglomerate then registers as more than
two clusters. When fine-scale clustering, with these parameter
values, ChronoClust tends to over-cluster. For example, in day
2 and 3 the split conglomerate is identified as multiple clusters
rather than one. Further, relative to manual gating, the sprouting
conglomerate is detected as a single cluster in day 3, one too few
clusters in day 4, and then one additional in day 5. In summary,
in both clustering scales ChronoClust broadly recovers the same
number of clusters, in the same locations, as manual gating. The
small discrepancies reflect the random nature of data generated
from overlapping Gaussian distributions in our synthetic dataset.
We also note that whereas manual gating was informed by
the number of clusters sought and set boundaries accordingly,
ChronoClust did not have this information. Its performance here
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Table 5
F1-score and entropy of ChronoClust clustering on coarse-scaled and fine-scaled
synthetic dataset.
Day Coarse Fine

F1-score Entropy Tracking accuracy F1-score Entropy Tracking accuracy

1 0.93 0.28 1.00 0.92 0.29 1.00
2 0.93 0.25 1.00 0.93 0.27 1.00
3 0.95 0.23 1.00 0.43 1.55 1.00
4 0.75 0.53 1.00 0.72 0.86 1.00
5 0.94 0.26 0.75 0.83 0.68 0.90

supports ChronoClust’s ability to find clusters without the need
to pre-specify their number in advance.

4.4. Quantitative evaluation of clustering

We further assess ChronoClust’s performance by calculating
the F1-score and entropy of the clusters produced.

The F1-score is a standard accuracy measure combining recall
and precision [37]. Here it measures clustering accuracy by con-
trasting the data-points’ true class labels from the manual gating
with those of the clusters ChronoClust assigns. It takes values
between 0 and 1, with 1 indicating perfect accuracy. Entropy
measures cluster homogeneity in terms of the true class labels
of the data-points it contains [37]:

Entropy(k) = −
n∑
i

Pi log2 Pi

OverallEntropy =
K∑

j=1

mj

m
Entropy(j)

(3)

where Entropy(k) is the entropy value for cluster k, n is number
of distinct true class labels in cluster k, and Pi is the proportion of
cluster k’s data-points holding true class label i. The total entropy
of the clustering OverallEntropy is the weighted sum of each
cluster’s entropy; mj refers to number of data-points in cluster
j and m is the total number of data-points captured across all
clusters K . A low overall entropy value indicates high-quality
clustering reflective of the underlying data.

To calculate F1-scores and entropy, the ChronoClust cluster
assignments (predicted labels) must be compared against the true
class labels assigned to each data-point through manual gating. To
do this, each ChronoClust cluster adopts the label of its nearest
manual gate, using Eq. (1) on cluster and gate centroids. All data-
points a ChronoClust cluster captures are assigned this label as
their predicted class. Manual gate centroids are computed using
HDDStream’s definition of a microcluster centroid as detailed in
Definition 8 of [33].

Table 5 shows the F1-score and entropy for ChronoClust’s
clustering of the synthetic dataset at each day. Excellent results
are obtained for the coarse-scale clustering, for all days but day
4: very high F1-scores of 0.93–0.95 and very low entropy val-
ues of 0.23–0.28. In day 4 the F1-score drops to 0.75 and the
entropy rises to 0.53 due to ChronoClust’s under-clustering of
gates η and θ as single cluster A, as discussed in the qualitative
evaluation. The results for the more challenging fine-scaled clus-
tering are also excellent for the first two days (F1-score=0.93 and
entropy=0.27–0.29). Consistent with the qualitative evaluation,
in day 3 the F1-score drops, and the entropy increases as Chrono-
Clust captures the sprouting conglomerate (gates ρ, ν, ι, ω) as one
cluster and detects three instead of one cluster in the splitting
conglomerate. The results for days 4 and 5 are worse than for
day 1 and 2 as ChronoClust generates one cluster too few in day
4 and one extra in day 5 for the sprouting cluster. In summary,

Fig. 4. Valid transitions across days for clustering of the synthetic dataset, based
on how we created the dataset. Nodes are given manually-defined gate labels;
it is these gates and transitions that we seek ChronoClust to reproduce.

the quantitative evaluation is consistent with the qualitative,
and confirms ChronoClust’s ability to accurately cluster at both
coarse- and fine-scales.

4.5. Cluster tracking evaluation

Having established ChronoClust’s accurate clustering of the
synthetic dataset at each day, here we explore its linkage of clus-
ters over time. Based on how the synthetic dataset was designed,
Fig. 4 expresses valid lineage relationships over time in terms of
the manually-defined gate labels. This transition graph forms the
basis for evaluating how well ChronoClust reconstructs our data’s
temporal evolution.

Table 1 from Section 3.2 summarises ChronoClust’s fine-scaled
cluster tracking results; the cluster IDs represent tracking by lin-
eage determination. As illustration, Fig. 5 shows cluster temporal
evolution as determined by both tracking modes.

Tracking by lineage determination. As shown by cluster IDs
in Figs. 3 and 5, ChronoClust’s tracking by lineage determination
successfully tracks clusters’ splits and merges. In coarse-scaled
clustering, the splitting conglomerate in day 5 is correctly labelled
as cluster A and A|1, indicating both arise from cluster A at day
4, which are valid transitions (Fig. 4). In fine-scale clustering,
ChronoClust identifies the sprouting conglomerate in day 4 as
clusters B and B|1, indicating they arose from cluster B at day
3. These too are congruent with how the dataset was assembled.
Moreover, it also accurately labels cluster B|1|1 and B|2 in day 5,
indicating they arose from cluster B|1 and B at day 4. Fine-scaled
clustering of the splitting conglomerate is a more complicated
case. In day 2, gate α is over-clustered as clusters A and C. By day
3, A|1 has split from A. By day 4 and 5, while cluster A remains,
day 3’s clusters A|1 and C have merged to form (A|1, C). Whilst ad-
mittedly somewhat over-zealous in creating new clusters, these
lineages are nonetheless consistent with the underlying data.

Tracking by historical proximity. Fig. 3 depicts several new
de novo clusters created during fine-scaled operation, the IDs
of which indicate no parents by lineage determination (C, D, E,
F, G). Hence, these de novo clusters share no constituent MCs
with clusters from the preceding day. This can occur if data-
points from Gaussian distributions representing the growth of
conglomerate appendages register as new MCs, rather than the
movement of pre-existing ones. ChronoClust’s tracking by histor-
ical proximity method is able to accurately determine each novel
cluster’s predecessors, given their spatial proximity across time,
Table 1 and Fig. 5. For example, cluster A in day 1 is accurately
identified as the historical associate of cluster C in day 2. Simi-
larly, clusters B and B|1 in day 4 are correctly identified as cluster
E and G’s historical associates in day 5. Cluster B is also correctly
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Fig. 5. ChronoClust’s capture of the temporal evolution of conglomerates in the synthetic dataset at both fine-scale and coarse-scale clustering resolutions. Both
tracking by lineage determination and historical proximity are shown.

determined as cluster D’s historical associate. Lastly, cluster D is
correctly registered as cluster F’s historical associate.

We quantified the accuracy of ChronoClust’s temporal tracking
by historical proximity as the proportion of identified transitions
that are valid. To do so, we related each ChronoClust cluster
with its nearest gate, using Eq. (1) as outlined in Section 4.4
above. Each cluster’s historical associate relationships could then
be cross-referenced with valid transitions as specified in Fig. 4.

ChronoClust’s tracking accuracy is shown in Table 5. In both
coarse- and fine- scale clustering, identified cluster evolutions
over days 1–4 are valid (tracking accuracy=1.00). However, in
day 5, the tracking accuracy drops to 0.75 and 0.90 respectively.
This is due to day 4’s under-clustering, Fig. 3. For coarse-scale
clustering, ChronoClust captures gates η and θ as a single cluster
A which is linked to gate η. Valid transitions for gates η and θ

at day 5 are from themselves (Fig. 4), but since day 4’s cluster
A corresponds to gate η alone, the transition of A|1 from A is
determined invalid thus reducing tracking accuracy. Similarly for
fine-scale clustering, the valid transition for gate χ at day 5 is
from gate ι at day 4, Fig. 4. However, day 4 gates ι and ω are
captured by a single cluster, B, at day 4, and B is related to ω.
Day 5 cluster G represents gate χ , but as its historical associate
B (at day 4) represents ω, not ι, this transition is deemed invalid.

In summary, ChronoClust demonstrated excellent clustering
and cluster tracking results on the synthetic dataset. In the next
section, we discuss its application to a real cytometry dataset.

5. Evaluation on the West Nile Virus dataset

This study’s main goal is an automated approach for clustering
and profiling cytometry data over time. Hence, it is imperative
that we evaluate ChronoClust’s performance on a real cytometry
dataset, reported here. As with the synthetic dataset, we evalu-
ate ChronoClust’s clustering at each day both qualitatively and
quantitatively, Sections 5.3 and 5.4 respectively. Thereafter we
examine ChronoClust’s cluster temporal tracking performance,
Section 5.5.

5.1. The West Nile Virus dataset

West Nile Virus (WNV) is disseminated by mosquitoes, causing
infection of the central nervous system and severe neurological
disease, which may culminate in death or permanent neurological
damage in survivors [6]. Our WNV dataset quantifies the immune
response of WNV-infected mice over eight days: from day 0 (no
infection) to day 7. For each day, immune cells were extracted
from the bone marrow of four mice and analysed by flow cy-
tometer. Of them, 190,000 cells from each day were obtained for
ChronoClust. Expression levels of nine proteins were measured
per cell: (1) B220, (2) CD3/NK11, (3) Ly6C, (4) CD115, (5) CD11b,
(6) Ly6G, (7) SSC-A, (8) CD117, (9) SCA-1. From a data mining
perspective, the dataset contains 190,000 data-points described
through nine features over each of eight days.

5.2. Benchmark for evaluating ChronoClust

In this context, the ground truth represents the true immune
cell populations that each data-point represents. This is identi-
fied through manual gating, performed by a domain expert (au-
thor Ashhurst). Manual gating is an ideal benchmark for Chrono-
Clust evaluation, as one of our primary goals is to automate this
process.

The following 16 cell populations were identified in the dataset,
comprising un-activated and activated forms of the following: B
cells, eosinophils, monoblasts, mature Ly6C monocytes (labelled
monocytes), neutrophils, plasmacytoid dendritic cells (PDC), stem
and progenitor cells (SPC), T, NK and NK-T (which are indistin-
guishable given the proteins characterised, we label these T-NK )
cells.

In addition to manual gating, we also evaluate ChronoClust
clustering against random cluster assignment (the random base-
line) and automated gating through FlowSOM [14]. Random clus-
ter assignment and FlowSOM both require the number of clusters
to be specified. We set this to 16 for random assignment. For
FlowSOM we specify 32 clusters, adhering to the recommenda-
tion to over-cluster by FlowSOM’s creators, Van Gassen et al. [14].
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Fig. 6. Comparison of cell counts for each cell population between manual gating and ChronoClust, for each day. Names affixed with * indicate activated cell
populations, versus un-activated. Cell counts are shown on log axes to add clarity for small cell populations. Each day’s dataset comprises 190,000 cells. Red arrows
indicate points of substantial divergence between ChronoClust and manual gating.

FlowSOM is specifically optimised for cytometry data, and beyond
specifying the number of clusters to find, standard practice in
cytometry entails no further parameter tuning.

5.3. Qualitative evaluation of clustering

We qualitatively evaluate ChronoClust by contrasting the num-
ber of cells it classifies into each cellular population versus man-
ual gating. In order to relate ChronoClust clusters to manual gates,
we employ the same method as in Section 4.4. Furthermore,
we find changes in cell counts found through ChronoClust to be
consistent with previous biological findings. ChronoClust param-
eters were in the first instance selected in accordance with the

Table 6
ChronoClust’s parameters for the WNV dataset.
µ β ϵ υ π κ δ λ o

3.58× 10−4 0.5 0.0475 8.75 9 15 0.05 0.9 9.01× 10−5

conceptualisation in Section 3.3, and thereafter a subset (µ, ϵ, υ)
were manually tuned; the values are supplied in Table 6.

The clusters produced by ChronoClust are broadly consistent
with manual gating. With the exception of day 0 where it finds
only 14 of the 16 cell populations, ChronoClust consistently iden-
tifies all the cell populations characterised by manual gating,
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Fig. 7. Variation in number of cells found in PDC and T-NK cells by ChronoClust. Names affixed with * indicate activated cell populations, versus un-activated.

Fig. 6. We note that the two missing populations, activated B
cells and activated monoblasts, represent a small proportion of
all available cells: 1.8% and <0.1% respectively.

ChronoClust broadly recovers similar numbers of cells in each
population as manual gating. The largest discrepancy lies in day
6’s activated B cell population, found to represent 21% of all
gated cells by manual gating but only 11% of clustered cells by
ChronoClust. This represents somewhat of an outlier, as all other
discrepancies between percentage were under 5%. Overall, these
results are very encouraging as ChronoClust’s clustering was not
informed by either the expected number of clusters nor any
expert knowledge on WNV.

Fig. 7 demonstrates the variation in number of cells belong-
ing to PDC and T-NK cell populations as time progresses. We
observe a general increasing trend in number of activated PDC
and activated T-NK cells. Furthermore, a sharp decline in un-
activated T-NK cell numbers occurs simultaneously with a sudden
surge in activated T-NK cell numbers at day 5. A similar subtler
trend exists in PDC cells starting from day 3. These findings are
in accord with a study by Cho et al. [38] who characterise the
immune response development to WNV infection as commencing
with an increase in type 1 Interferons (IFNs) leading to a rise in
effector functions of NK cells. The boost in IFNs can be attributed
to rise in PDC cells which are the most dominant producers of
IFNs.

5.4. Quantitative evaluation of clustering

We contrasted ChronoClust, FlowSOM and random baseline
clustering performances in terms of F1-scores and entropy, Ta-
ble 7. In all instances ChronoClust outperformed both FlowSOM
and random assignment, with higher F1-scores indicating a con-
sistently high precision and recall for ChronoClust and lower en-
tropy scores representing more homogeneous clusters. As would
be expected, both ChronoClust and FlowSOM considerably out-
perform random assignment of data-points into clusters.

5.5. Cluster tracking evaluation

We now turn to evaluating ChronoClust’s cluster tracking abil-
ity. Based on existing immunological knowledge, Fig. 8 Left de-
picts valid transitions between different cell populations over
time. This lineage graph serves as the foundation for assessing
ChronoClust’s ability to track cell populations movements over
time.

Fig. 8 Right depicts the temporal evolution of cell populations
as determined by ChronoClust’s tracking by historical proximity.
ChronoClust finds 12% of the clusters across days 1 to 7 to be de

novo clusters. The remaining 88% are existing clusters, trackable
through lineage determination. Their temporal transitions are
very strongly consistent (99.1%) with those found through track-
ing by historical proximity. The minor discrepancy (0.9%) arises
from MCs that split and drift away from their parents, such that
they reside in closer proximity to a cluster from another lineage.
We find this, for instance, in cluster A|1 at day 1 which identifies
B as its historical associate, rather than A (data not shown).
Nonetheless, to find a discrepancy of less than 1% between the
two tracking schemes, on real world, noisy biological data, is
highly encouraging.

Recalling, above, that the only immune cell population to truly
lack a predecessor is the hematopoietic stem cell, we focus on
historical associates in the following analysis, as it offers a more
complete picture of cellular differentiation for de novo clusters.

The majority of transitions represent given populations arising
from themselves at the previous time-point. However, we also
detect cluster transitions between distinct cell populations, rep-
resenting cells transiting through differentiation pathways, such
as transitions from un-activated to activated form, from acti-
vated SPC to un-activated Eosinophils, as well as from activated
Monoblast to un-activated Monocytes. In addition, ChronoClust
observed more transitions from un-activated to activated states
between day 6 and day 7, 0.9% of all transitions compared to 0.3–
0.7% of all transitions for day 1–6. This is in agreement with the
heightening of cell differentiation activity at later stage of WNV
infection.

We quantified ChronoClust’s tracking ability through the track-
ing accuracy metric discussed in Section 4.5. Tracking accuracy
scores of 0.88 to 0.97 indicate that nearly all transitions found
between days are biologically plausible. There exist some minor
discrepancies, representing ∼7.1% of all transitions. Of all tran-
sitions, ∼1.7% represented transitions of cell populations from
activated to un-activated states; this likely reflects the close spa-
tial proximity of these cell populations, coupled with stochastic
noise in how the data-points present. A further ∼4.5% of the
invalid transitions were exhibited by small clusters capturing
1.7% of total cells in the dataset from day 1 until 7. The remaining
∼0.9% represent large clusters capturing 2.1% of total cells in
the dataset between day 1 to day 7, some of which are found
to be cell populations transitioning back and forth as different
cell populations. For example, activated T-NK cells→ activated B
cells in day 1 (specific data not shown), followed by that same
cluster reverting to activated T-NK cells in day 2. It is likely
that these clusters are situated on the periphery of these distinct
cell populations, which are not cleanly separable given the nine
markers employed in this cytometry analysis.
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Table 7
F1-score, Entropy, and tracking accuracy of ChronoClust, FlowSOM, and random baseline clustering of the WNV dataset. High F1-scores and low entropy indicate
superior clustering.
Day Clustering Tracking accuracy

F1-Score Entropy

ChronoClust FlowSOM Random ChronoClust FlowSOM Random ChronoClust

0 0.67 0.63 0.06 0.32 0.63 2.53 N.A.
1 0.54 0.45 0.05 0.46 0.86 2.81 0.88
2 0.64 0.56 0.06 0.38 0.74 2.71 0.93
3 0.65 0.57 0.06 0.39 0.74 2.63 0.92
4 0.68 0.60 0.07 0.37 0.73 2.68 0.88
5 0.62 0.58 0.06 0.50 0.88 2.79 0.93
6 0.60 0.55 0.06 0.61 1.03 3.10 0.97
7 0.63 0.56 0.06 0.62 1.07 3.25 0.96

Fig. 8. Left: Biologically plausible cell population transitions. Right: Legal transitions uncovered by ChronoClust’s tracking by historical proximity. Arrow colours
and labels indicate the proportion of all cluster transitions representing the given transition. The percentage of legal versus illegal transitions (based on Left) are
shown. ChronoClust successfully uncovers most of the biologically plausible transitions, with the exception of transitions from un-activated monoblasts to activated
monocytes, and activated stem and progenitors to un-activated B cells, neutrophils, monoblasts, PDC, and T-NK cells.

Taken together, we consider these results to support Chron-
oClust’s suitability for analysing cytometry data. In an unsuper-
vised manner, it both correctly clusters known cell populations
in each time-point and maps out their differentiation pathways.
There exists no other analytical tool capable of simultaneously
performing both these functions in an automated, unsupervised
fashion.

6. Conclusions

Clustering time-series data, and tracking the evolution of clus-
ters over time, is a powerful technique for analysing data from
scientific experiments. High-throughput analyses have advanced
our understanding of biological systems at single, static points
in time. However, biological systems are highly dynamic, and
technologies to integrate these data and elucidate temporal dy-
namics are lacking. Our present work was motivated by a desire
to characterise the immune response development to a spe-
cific trigger, which is needed for devising effective treatments.
This data would present as a time-series of discrete cytometry
datasets. We formulated our task as clustering of immune cell
populations and tracking their evolution over time. The manner
in which clusters at each time-point evolve from those pre-
ceding them corresponds to immune cell developmental path-
ways which collectively determine immune system and disease
outcomes.

We first derived the requirements for a clustering solution for
our cytometry use-case and then conducted a review of existing
clustering approaches, finding that none meet all our criteria.
As a solution, we proposed ChronoClust, a novel density-based

dynamic clustering and tracking algorithm for high-dimensional
data, which builds upon the HDDStream algorithm. ChronoClust
supports two types of cluster tracking: by lineage determina-
tion and by historical proximity. The former represents a high-
confidence establishment of cluster evolution by virtue of mi-
croclusters (MC; the unit of clustering) being shared between
clusters over time. The latter is based on spatial proximity over
time. It enables the construction of temporal relationships for
newly forming clusters. We have also provided a conceptualisa-
tion of ChronoClust parameters that aid selection of values in a
problem-specific manner and presented guidelines on how to set
them.

To evaluate ChronoClust’s utility and performance for our
use-case, we firstly devised a synthetic dataset exhibiting the
qualities of the immune response’s temporal evolution as cap-
tured through cytometry. The cluster numbers, locations and
temporal relationships were known absolutely, and ChronoClust
excelled in reproducing them. Through this, we also demon-
strated the ability of ChronoClust to operate across different
clustering resolutions by controlling just one parameter. This
functionality is important as immunologists would first wish
to capture the broad cell populations, and then ‘‘zoom in’’ to
identify novel sub-populations of potential importance. We then
analysed a real cytometry dataset capturing the immune response
of mice infected with the WNV over 8 days. A qualitative analysis
revealed ChronoClust’s ability to reproduce the clusters and rela-
tionships determined manually by an expert, in an unsupervised
and automated fashion. In addition, ChronoClust uncovered tem-
poral changes in immune cell population sizes consistent with
existing biological studies. A quantitative analysis shows Chron-
oClust to outperform one of the leading cytometry clustering
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algorithms, FlowSOM. Lastly, ChronoClust successfully uncovers
temporal immune cell developmental pathways with a very high
degree of accuracy (∼92%).

We believe ChronoClust fulfils the criteria set out in Sec-
tion 2. First, it does not require the number of clusters to be
pre-specified in advance. Second, the fundamental components
of its clustering operation (MCs) facilitate sub-space clustering
and are collected into clusters of arbitrary shape. Third, the high
quality of its clustering (high F1-score and low entropy) over
the 9-dimensional WNV dataset suggests it could easily accom-
modate higher dimensional datasets. Lastly, its performance on
the WNV dataset indicates that it is robust to noise and outliers.
Despite a considerable 25% of the WNV data lying outside of the
expert-defined manual gates, suggesting they are noise, outliers,
or biologically irrelevant, ChronoClust performed well.

ChronoClust is not limited to cytometry applications; it can
be applied to other domains and problems requiring dynamic
clustering and cluster tracking over time. To facilitate this we
have made our implementation of ChronoClust publicly available
at https://ghar1821.github.io/Chronoclust/.

7. Future work

There are several avenues for future work, motivated by both
improving and extending the ChronoClust algorithm and its ap-
plication in cytometry. From an algorithmic perspective, firstly,
although ChronoClust was designed to operate over a time-series
of discrete datasets, motivated by our specific use-case, it could
be extended to continuous data streams. Secondly, a self-tuning
method for parameter selection that is based on existing quality
measures such as snapshot quality and historical cost [39] is
worth investigating to aid users in selecting appropriate param-
eter values. Thirdly, ChronoClust can be extended for multi-view
clustering in several ways [40,41]. For our use-case, a possible
strategy is to group the features into different views and inves-
tigate if the diversity and complementarity of these views can
improve the accuracy of the single-view clustering.

From an application perspective, the synthetic and WNV data
sets were suitable starting points for verifying ChronoClust’s op-
eration and temporal tracking functionality. The next step will
be to evaluate ChronoClust’s performance on other cytometry
datasets with higher dimensionality and cell number, exhibiting
greater developments over time. For instance, at any point in
time, most immune cell populations are present in the bone
marrow, albeit at numbers that change during the immune re-
sponse. We believe this to be the reason for the high number
of cluster transitions between the same cell types in our WNV
dataset. In contrast, in non-bone marrow tissues, we anticipate
more de novo clusters emerging, each exhibiting greater evolution
as immune cells arrive to combat pathogens and undergo further
differentiation accordingly.

These differences also highlight another area of further devel-
opment for ChronoClust. The immune response develops not only
over time (the focus of our current study) but also over space.
Cells typically differentiate in one organ, such as the lymph nodes,
bone marrow or spleen, and migrate to the site of infection where
they may undergo further developments. Yet, a single cytometry
dataset is typically constructed for only one organ. There is a need
to label and then integrate several organs worth of data through
ChronoClust, and track not only the immune response over time,
but also across organs.

Lastly, in using cytometry to map out the immune response’s
orchestration to a given target, a pertinent question is to under-
stand when and why given triggers, or even the same trigger in
different individuals, yield different immune outcomes. We plan
to investigate these research questions in future work.
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