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Abstract

Mapping the dynamics of immune cell populations over time or disease-course is key

to understanding immunopathogenesis and devising putative interventions. We pre-

sent TrackSOM, a novel method for delineating cellular populations and tracking their

development over a time- or disease-course cytometry datasets. We demonstrate

TrackSOM-enabled elucidation of the immune response to West Nile Virus infection

in mice, uncovering heterogeneous subpopulations of immune cells and relating their

functional evolution to disease severity. TrackSOM is easy to use, encompasses few

parameters, is quick to execute, and enables an integrative and dynamic overview of

the immune system kinetics that underlie disease progression and/or resolution.
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1 | INTRODUCTION

The immune response is a dynamic process in time, and inter-

individual differences therein often underlie diverging clinical outcomes.

Under challenge, the immune response deviates from homeostasis

with the expansion of numerous cellular phenotypes that enact

challenge-specific effector functions in a temporally-coordinated

fashion. This is seen, for instance, with accelerated cellular differentia-

tion in the bone marrow and the infiltration of immune cell popula-

tions into peripheral tissues. Yet, the immune response is fallible, as

attested to by autoimmunity, chronic diseases, and lethal infections,

all of which can be mediated by the immune response and may be

ameliorated by immune intervention. Greater understanding of the

temporal kinetics and interactions of immune cell populations would
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present expanded opportunities to intervene for clinical benefit.

Essential to delivering this vision is an explicit mapping of how

immune system status varies with time (“temporal mapping”) and how

this in turn is associated with disease severity.

Cytometry is a popular and widely accessible technology for phe-

notypically characterizing and quantifying individual immune cells

from a body fluid sample (e.g., blood). Taking samples progressively

during disease development presents an opportunity for developing

detailed mappings of immune response against disease-stage. Cyto-

metry quantifies numerous genetically determined characteristics

(“markers”) on potentially millions of individual cells. Advancements in

this technology have now enabled measurements of upwards of

45 markers per cell, and this will continue to grow [1–4]. A key analyt-

ical challenge in cytometry is aggregating (“gating”) these many and

heterogeneous cells into their distinct cellular phenotypes. Given the

high-dimensional nature of such data, the task is challenging. It

requires considerable domain expertise and is prone to subjectivity

and poor reproducibility [5–7]. Many automated clustering algorithms

have emerged to support gating [8–11]. Of these, FlowSOM has

gained popularity, being simple to use, fast to execute, and highly con-

gruent with manual gating efforts [12, 13].

Lacking, however, is algorithmic support for annotating the

immune response dynamics with respect to time and disease-stage.

This requires both (i) clustering to identify populations in each dataset

in the time/disease-stage sequence, (ii) tracking how these popula-

tions evolve, and (iii) visualizing them. This can be complex as both

the absolute number of cells for each phenotype, and their relative

representation within the sample, are liable to change. So too are pop-

ulation marker expression levels, which change as populations

undergo differentiation, maturation, and associated functional alter-

ation. Furthermore, differentiation, such as from hematopoietic stem

cells through common progenitors into distinct effector phenotypes,

mean that phenotype trajectories through marker space can present

as branching tree-like structures through the time/disease-stage

sequence. Additionally, infiltration into and egress out of peripheral

tissues can manifest as populations appearing and disappearing from

the blood compartment. Identifying the existence and timing of phe-

notypic subpopulations that can impact on disease status is also highly

relevant [14]. Required is a unified clustering-tracking-and-

visualization algorithmic framework that can deliver these insights.

Filling this knowledge gap, we previously developed ChronoClust

[15], a clustering and tracking algorithm wherein the data themselves

determine the number and shape (in marker space) of immune cell

populations. While ChronoClust's clustering behavior is highly cus-

tomizable, it is computationally cumbersome to execute and finding

the appropriate parameters can prove challenging [12]. Critically, it

lacks the crucial visualization techniques for interpreting the dynamics

of such cell populations.

Here, we propose a new method, TrackSOM, for analyzing the

immune response dynamics from time-course or disease-stage cyto-

metry data. TrackSOM combines the high-quality clustering capacity

and fast run time of FlowSOM with an improved cluster tracking

capability adapted from ChronoClust to map immune cell population

dynamics against time and/or disease severity status. Importantly,

TrackSOM offers advanced visualization techniques which aid the

visualization and interpretation of resulting immune cell populations'

evolutions. We highlight these capabilities on a synthetic dataset and

by recapitulating previous findings on a bone marrow dataset from

West Nile Virus (WNV)-infected mice. We perform a parameter sensi-

tivity analysis and demonstrate TrackSOM to have both an improved

clustering performance and lower sensitivity to parameter value selec-

tions over ChronoClust. We offer usage and parameter selection

advice to potential users with novel data. Lastly, we demonstrate

usage on novel data by characterizing the evolving immune response

in the brains of WNV-infected mice and relating this to disease

severity.

2 | METHODS AND MATERIALS

2.1 | The TrackSOM algorithm

TrackSOM is a clustering-tracking-and-visualization algorithmic

framework for clustering time/disease-course cytometry data into cel-

lular populations, and for tracking and visualizing how these popula-

tions evolve over time/disease-stage. It takes as input a sequence of

datasets (in either FCS or CSV file formats), where each dataset cap-

tures cytometric quantifications of heterogeneous cells, and the

sequence represents time-points or disease-stages, Figure 1A. Criti-

cally, TrackSOM assumed each dataset has been appropriately pre-

processed, that is, devoid of debris, dead cells, and doublets, and

either transformed using logicle [16] or arc-sinh transformation, or lin-

early binned. TrackSOM determines clusters, representing pheno-

types, within each dataset and then establishes links between them to

reveal temporal evolutions between clusters across the sequence.

Datasets from all time-points or disease-stages are first amalgamated

and normalized using the z-score normalization. A Self-Organizing

Map (SOM) is then built upon them, thus identifying the data's broad

topological shape across the entire sequence, Figure 1B. Each data-

point is uniquely associated with a single SOM node and the data that

any given SOM node represents may be confined to either a single or

several time-point(s) or disease-stage(s). TrackSOM's ability to track

how clusters evolve is based on variation in which SOM nodes are

supported by data-points as the dataset sequence progresses

(Figure 1C) - some nodes will become more relevant, others less so.

Clusterings (phenotypes) of data-points at each time-point are

captured through meta-clusters, which represent the collation of SOM

nodes into discrete groupings (Figure 1C). Having built the SOM,

TrackSOM then processes each dataset (time-point/disease-stage)

independently, isolating SOM nodes containing data from that dataset

only and forming meta-clusters accordingly. The centroids of these

non-empty SOM nodes are re-calculated (temporarily disregarding

data from other datasets) as per FlowSOM operation. Meta-clusters

for the given dataset are derived through consensus as drawn from

multiple efforts at sub-sampling and hierarchically clustering the

SOM's nodes, again in accordance with FlowSOM. The number of
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F IGURE 1 Schematic overview of TrackSOM's operation and usage. (A) Time-course or disease-course cytometry data is parsed by
TrackSOM, resulting in a matrix of cells (rows) and marker values (columns) per time-point/disease-stage. (B) A Self-Organizing Map (SOM) is then
trained on all the matrices. Numbered circles represent SOM nodes. (C) SOM nodes containing data from each given time-point/disease-stage are
then isolated and “meta-clustered” (dotted polygons) using consensus hierarchical clustering. (D) The temporal evolutions of the resulting meta-
clusters are tracked through their shared SOM node memberships. (E) Meta-cluster evolutions can be visualized as network plots (left) or time-
course heatmaps (right). For clarity, the figure refers predominantly to “time-points”, but these could instead be datasets in a series of escalating
disease severities. We have shown only 3 time-points, but TrackSOM is not limited to this. [Color figure can be viewed at wileyonlinelibrary.com]
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meta-clusters formed is parameter-defined. Under the Autonomous

Adaptive option, the number of meta-clusters created at each time-

point is automatically inferred using FlowSOM's elbow criterion which

infers the optimal number of meta-clusters based on the point at

which the rate of change in the variance captured in the meta-clusters

suddenly decreases. Alternatively, users can specify the number of

meta-clusters to be created as either a single number for all time-

points/disease-stages (“Prescribed Invariant” operation) or a number

for each time-point/disease-stage individually (“Prescribed Variant”).
For these options, the specified number(s) of meta-clusters is passed

into FlowSOM's consensus hierarchical clustering function for each

time-point.

Next, meta-cluster linkages across adjacent time-points/disease-

stages are determined to track meta-cluster evolutions. This is accom-

plished by identifying those meta-clusters in adjacent datasets that

share common SOM nodes (Figure 1D). Briefly, meta-cluster evolu-

tions are encoded into the meta-cluster IDs. New meta-clusters are

defined as containing exclusively SOM nodes that did not belong to

any meta-cluster(s) in the preceding datasets. This includes the first

time-point/disease-stage. New meta-clusters are assigned unused

alphabetic labels from an alphabetical sequence (A, B, …, Z, AA, BB,

…). Meta-cluster evolutions are captured in how these labels are

amended over time. A meta-cluster that contains only a subset of a

preceding meta-cluster's SOM nodes is termed a split meta-cluster. A

meta-cluster can simultaneously split multiple ways, and the child

inheriting the majority of SOM nodes retains the parent's label. The

remaining sibling meta-clusters are assigned Aj1, Aj2, and so forth. A

meta-cluster which captured SOM nodes belonging to multiple pre-

ceding meta-clusters can be considered as either a merged meta-

cluster and assigned a label that is the parenthesised concatenation of

its parent IDs, for example, (A,B,C,D), or not. For the latter option,

SOM nodes that belong to the same parent meta-cluster are assigned

to a split meta-cluster (of the parent meta-cluster) while those which

do not exist in previous time-points form new meta-clusters. Impor-

tantly, the ability to disable meta-cluster merging is unique to Track-

SOM and better reflects the diverging nature of cellular

differentiation. It can, however, inflate the number of meta-clusters

above user-specified values.

TrackSOM provides several visualizations, Figure 1E. Network

plots denote all meta-clusters at all time-points/disease-stages as

bespoke nodes, linked via their evolutions. Time-course heatmaps cap-

ture time/disease-stage and meta-cluster IDs on separate axes. The

visualizations are complementary: the network plot provides a funda-

mental global overview of the data while the time-course heatmap

confers additional details for each meta-cluster for subsequent inves-

tigations. In both visualizations, node sizes indicate the proportion of

a dataset's data-points that the corresponding meta-cluster captures.

Meta-clusters can be colored by average marker expression level to

depict movements through marker-space as the sequence progresses,

by time-point/disease-stage, or originating meta-cluster for traceabil-

ity of lineages.

For each cell, at every time-point, TrackSOM denotes which SOM

node and meta-cluster it belongs to. This output coupled with Track-

SOM's visualization techniques enable users to associate meta-

clusters with cellular phenotypes and subsequently track how each

meta-cluster evolved through the dataset sequence. Network plots

are arranged through force-directed layouts. The coloring of meta-

cluster nodes by marker expression level on plots represents raw

values mapped to the color scales for each marker independently.

Notably, TrackSOM inherits FlowSOM's parameters and their

respective default values, though these default values can be changed

to suit the user's needs. A full list of adjustable parameters is available

in Supplementary Tables S1 and S2.

2.2 | Datasets

We evaluated TrackSOM on a 3-dimensional (3D) synthetic dataset

adapted from [15], and two flow cytometry datasets.

The synthetic dataset contains three distinct conglomerates

(sprouting, splitting, and transient) of data points that evolve over five

time-points (Supplementary Figure S1 and Supplementary Section S1).

The dataset is manually-gated to provide “ground truth” labels of

which data-points belong to the same population.

The first flow cytometry data (WNV bone marrow) is a previously

published dataset [15], which quantifies leukocytes in the bone marrow

of mice over 8 days of an infection time-course. Details on animal pro-

cedures are provided in Supplementary Section S2. The data comprise

14 markers: (1) FSC, (2) SSC, (3) Ly6C, (4) CD45, (5) CD48, (6) Ly6G,

(7) CD117, (8) SCA-1, (9) CD11b, (10) CD11c, (11) B220, (12) CD115,

(13) CD16/32, (14) CD3/CD19/NK1.1. Time-point 1 represents pre-

infection (mock-infected), and subsequent time-points represent days

post-infection. There are 190,000 data points (cells) per time-point.

The dataset was manually-gated to assign each cell a label representing

its cellular phenotype (Supplementary Figure S2). The following 16 cel-

lular phenotypes were identified for each time-point, (1) Stem and pro-

genitor cells, (2) B cells, (3) T and NK cells (indistinguishable given the

markers in the flow panel), (4) Monoblasts, (5) Monocytes, (6) Eosino-

phils, (7) Neutrophils, (8) Plasmacytoid Dendritic cells (PDCs), with all

8 populations existing as “activated” or “un-activated” types based on

the upregulation of SCA-1 expression [17–21].

The second flow cytometry data (WNV CNS) represents the

immune cells in the brains of mock- and WNV-infected mice at day

7 post-infection. C57BL/6 female mice aged between 8 and 12 weeks

were inoculated with PBS or a lethal dose of WNV (LD-100) and then

euthanised for analysis 7 days later. Mice were stratified into 6 groups

based on severity of symptoms at the time of sacrifice. As the WNV

dose inoculated is lethal in 100% of the cohort, the differential disease

severity observed between groups at day 7 represent mice progres-

sing through disease at different stages. The corresponding cytometry

datasets were organized into a sequence of increasing disease sever-

ities. Both the numbers of mice and the clinical scoring criteria are

reported in Supplementary Table S3. Further details on animal proce-

dures are provided in Supplementary Section S2. The following

18 markers were quantified: (1) FSC, (2) SSC, (3) Ly6C, (4) CD45,

(5) CD62L, (6) CD4, (7) CD86, (8) CD11b, (9) B220, (10) Siglec-F,

(11) I-A/I-E, (12) Ly6G, (13) CD8-alpha, (14) CD11c, (15) CD115,

(16) CD80, (17) CD3e, (18) NK1.1.
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2.3 | Algorithm parameter sweeps and evaluation

TrackSOM was evaluated on all three datasets and was compared

against ChronoClust on the WNV bone marrow dataset.

For the datasets where ground truth labels were available (syn-

thetic and WNV bone marrow datasets), the algorithms were exe-

cuted over all available data-points in the dataset sequence, and

evaluations were then performed on only those data-points (cells) for

which ground-truth labels are available. For each time-point, each

clustering solution was evaluated against the corresponding manually-

gated ground-truth clustering using the Adjusted Rand Index (ARI)

metric [22]. ARI values are obtained for each dataset in the sequence

independently, and we then report the mean of these values. Details

on the ARI metric are available in Supplementary Section S3.

To evaluate the quality of cluster evolution tracking, we adopted

the tracking accuracy metric used in [15]. This metric computes the

proportion of transitions which are valid (e.g., biologically plausible,

such as un-activated B cells transitioning to activated B cells as char-

acterized by upregulation of the marker SCA-1). Valid transitions for

the synthetic and WNV bone marrow datasets are shown in Supple-

mentary Figure S3. The metric requires each meta-cluster to be

assigned a cell type (ground-truth) label. In our evaluation, each meta-

cluster is assigned the majority label of the data-points it captured. In

the event of a tie, alphabetical order of labels is used.

We broadly explore TrackSOM and ChronoClust parameter space

when clustering the WNV bone marrow dataset, and TrackSOM for

the synthetic dataset. For TrackSOM, we generated 100 sets of

parameter values using Latin Hypercube sampling for each dataset [23,

23, 24]. For ChronoClust, we subsampled 100 results generated under

Latin Hypercube from a prior publication using this dataset [25]. More

details are available in Supplementary Section S5.

Latin Hypercube sampling generates parameter values as floating

point numbers. However, because TrackSOM's SOM grid size and

number of meta-clusters parameters are encoded as integers, we

round the parameter samples to the nearest integer before passing

them to TrackSOM. This rounding can resolve to identical points in

parameter space, and we discard duplicates from the analysis. Non-

sensical parameter samplings, which specify more meta-clusters than

the number of non-empty nodes available for any given time-point,

were also discarded.

The parameters and ranges of values explored are given in Sup-

plementary Tables S2 and S4. The rationale for how parameter value

ranges were chosen for each algorithm and dataset are provided in

the Supplementary Sections S4 and S5.

2.4 | Statistical methods

Latin Hypercube sampling and Partial Rank Correlation Coefficients

(PRCC) were performed using the Spartan R package version 3.0.2

[26]. ARI implementation was provided by the mclust R package ver-

sion 5.4.7 [27]. The FIt-SNE [28] plots and scatter plots for the WNV

CNS data are provided through the Spectre R package version

0.4.0 [29].

2.5 | Availability of data and materials

TrackSOM is implemented in R, and is freely available to download

under the GPL-3.0 open source license from https://github.com/

ghar1821/TrackSOM. Code to reproduce all analyzes and figures in

the manuscript are also available at the following GitHub repository:

https://github.com/ghar1821/TrackSOM-evaluations. All three data-

sets used here are freely available to download under the GPL-3.0

open source license from the open science framework portal: https://

osf.io/8dvzu/.

3 | RESULTS

3.1 | TrackSOM tracks splitting, merging and
transient clusters

We verified TrackSOM's capacity to uncover cell population emer-

gence, disappearance, splitting, and merging in time-series data by

applying it to the synthetic dataset into which these phenomena had

been engineered. To comprehensively assess TrackSOM's perfor-

mance, we broadly explored each of TrackSOM's three clustering

options by generating 100 parameter value sets (Supplementary

Table S2) for each option using the Latin Hypercube sampling, varying

the number of meta-clusters produced each day and the SOM grid

size. Meta-cluster merging was permitted.

TrackSOM reproduced manually-gated populations and was

robustly resistant to parametric perturbation. Solutions from Pre-

scribed Variant operation consistently obtained mean ARI scores of

at least 0.7, Figure 2A,B. TrackSOM's other operational modes,

Autonomous Adaptive and Prescribed Invariant, fared less well. They

scored �0.55 and 0.35–0.65 for ARI, respectively. Autonomous

Adaptive operation was strikingly invariant to parameter value varia-

tion. Closer manual inspection of the clustered data (not shown)

revealed it to consistently produce 3–4 meta-clusters per day and,

consequently, a sub-optimal capture of the sprouting conglomerate

as a single meta-cluster. That Prescribed Variant operation obtained

higher ARI scores than Prescribed Invariant likely reflects a better

capture of the varying numbers of populations across time

(Supplementary Figure S1), to which Prescribed Variant can be

adapted. Thus, overall, Prescribed Variant operation more accurately

reflected both manually-gated populations and their temporal

evolutions.

TrackSOM excelled in correctly capturing temporal cluster

dynamics, Figure 2A,C. For each parameter value set explored, 83%–

100% of the cluster evolutions uncovered reflected valid population

transitions. These were not simply self-referential transitions of the

same populations across time-points; a quarter of the valid transitions
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were between distinct populations (e.g., meta-cluster (A,C), population

II, splitting at day 2 to form meta-clusters representing populations III,

IV, and V, Figure 3 and Supplementary Figures S1 and S3).

To demonstrate data exploration through TrackSOM visualiza-

tions, we focused on one solution that performed well in both metrics

(Figure 2A, arrow). This solution was generated under Prescribed Vari-

ant, generating 3, 3, 11, 9, and 17 meta-clusters per day from an

8 � 8 SOM grid. Between days 2 and 3, population II “sprouts” into

three different directions, each representing movements across X, Y

or Z dimensions, Supplementary Figure S1. This divergence is clearly

captured by TrackSOM and shown in Figure 3A and Supplementary

Figure S4, where the branches stemming from meta-cluster (A,C) each

move in only one dimension. Figure 3B,C allow meta-cluster lineages

to be identified from their initial IDs, and can better visualize complex

meta-cluster temporal transitions. For example, meta-cluster ((A,C)j4,
(A,C)j3)j3 and ((A,C)j3j1,(A,C),(A,Cj2j1),(A,C)j1)j2 in day 5 originates

from meta-cluster A and C which has repeatedly merged and split

across day 1–4. These complex temporal transitions most likely

occurred due to over-clustering of the data and having permitted

meta-cluster merging.

3.2 | Revealing the evolving immune response to
West Nile Virus infection in mouse bone marrow

We next evaluated TrackSOM against the WNV bone marrow flow

cytometry data. We executed each of TrackSOM's three modes of

operation both with and without meta-cluster merging, resulting in six

operational modes in total. As with the synthetic dataset, we gener-

ated up to 100 unique parameter value combinations for each

operation.

All of TrackSOM's modes of operation were capable of generating

high-quality clustering solutions. The majority of solutions scored over

0.7 for ARI, Figure 4A,B. Autonomous Adaptive operation was the

least variable under parametric perturbation, but the ARI scores were

suboptimal owing to its persistent under-clustering of the data: it typi-

cally generated eight meta-clusters despite manual gating defining

16 distinct cellular phenotypes (Supplementary Figure S2). Prescribed

Variant and Prescribed Invariant operations together generated the

best ARI scores but were more sensitive to parametric perturbation

with meta-cluster merging disabled. This is because under no-merging

operation the number of meta-clusters specified is a strict lower

F IGURE 2 Evaluation of TrackSOM clustering solutions when applied to the synthetic dataset. We generated up to 100 unique parameter
value combinations for each of TrackSOM's three modes of operation using Latin Hypercube sampling and then performed clustering on the
synthetic dataset. Merging of meta-clusters was allowed. (A) A scatter plot of solutions in terms of mean clustering quality adjusted rand index
(ARI) over the 5 time-points and the validity of the cluster temporal transitions generated (tracking accuracy). The solution explored further in the
text is denoted by the arrow. (B-C) Cumulative distribution of TrackSOM's (B) mean ARI across time-points and (C) tracking accuracy. Statistical
comparisons for (B-C) are done through the Kolmogorov-Smirnov test: *signifies p-value <0.005, ns denotes not significant. [Color figure can be
viewed at wileyonlinelibrary.com]
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F IGURE 3 The TrackSOM's single high-performing solution for the synthetic dataset (denoted by the arrow in Figure 2) explored through
several graphing formats. (A) Time-course heatmaps depict meta-clusters (dots), temporal evolutions (lines), relative meta-cluster sizes at each
time-point (dot sizes), and either (left) the ground truth label it represents or (right) the meta-cluster locations and movements through the space
(colors; X dimension shown. Y and Z dimension are available in Supplementary Figure S4). For A left, meta-clusters were assigned the ground
truth label from which they captured the most data-points. Plausible and implausible transitions were determined based on the transition rules
depicted in Supplementary Figure S3. (B-C) Network plots show meta-clusters colored by (B) time-point and (C) meta-cluster of origin (splits and
merges are colored gray). Arrows indicate meta-cluster evolutions over consecutive time-points. [Color figure can be viewed at
wileyonlinelibrary.com]
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bound and inappropriate parameter values can lead to an explosion in

meta-cluster numbers, leading to reduced ARI scores. Conversely,

with merging enabled, this parameter is not a strict lower bound and

TrackSOM has greater capacity to correct for suboptimal parameter

values.

TrackSOM performance in tracking evolutions of cell populations

was more variable across its modes of operation, Figure 4A,C. Pre-

scribed Variant and Prescribed Invariant were statistically indistin-

guishable and both outperformed Autonomous Adaptive, irrespective

of whether merging was permitted. Interestingly, no-merging opera-

tion produced notably superior tracking accuracy scores than the

same modes of operation when merging was permitted. This is

because no-merging operation tended to generate more homoge-

neous meta-clusters (Supplementary Figure S5) and self-referential

transitions are valid (Supplementary Figure S3). Conversely, merging

operation has a greater capacity to amalgamate distinct cellular phe-

notypes and generate heterogeneous clusters, which can result in

lower tracking accuracy scores.

Overall, the data revealed a possible trade-off between perfor-

mance in clustering quality (mean ARI) and meta-cluster evolution

tracking, as seen in the scatter plot of Figure 4A. The very best solu-

tions by one metric are not necessarily optimal under the other. Nota-

bly, TrackSOM solutions at the leading edge of mean ARI scores

(0.83) exhibited a wide range of tracking accuracy scores (0.6–0.9).

F IGURE 4 Evaluation of
TrackSOM and ChronoClust
clustering solutions when applied
to the West Nile Virus bone
marrow dataset. (A) Scatter plot
of solutions in terms of mean
clustering quality Adjusted Rand
Index (ARI) over the 8 time-point
dataset and the validity of the

cluster temporal transitions
generated (tracking accuracy).
Solutions explored further in the
text are denoted by the circle
(ChronoClust) and the arrow
(TrackSOM). (B-C) Cumulative
distribution of TrackSOM's and
ChronoClust's (B) Mean ARI and
(C) Tracking accuracy. Statistical
comparisons are done through
the Kolmogorov-Smirnov test:
* signifies p-value <0.005, ns
denotes not significant. [Color
figure can be viewed at
wileyonlinelibrary.com]
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Conversely, solutions judged high quality by tracking accuracy (>0.9)

varied widely in mean ARI (0.38–0.83). The latter can be explained by

no-merging operation over-clustering the data and thus creating many

self-referential transitions which are valid across time-points.

We selected one no-merging Prescribed Invariant solution that

performed particularly well in both metrics for closer examination

(arrow in Figure 4A). Figures 5A,B illustrate the solution as time-series

heatmaps and network plots respectively. TrackSOM was able to

track the progressive upregulation of SCA-1 expression by several

meta-clusters, and these mapped onto manually-gated cell popula-

tions transiting from un-activated to activated phenotypes. For

instance, the transition from un-activated to activated monocytes can

be observed in meta-clusters E, Ej1, and Ej3 at day 5, 3, and 5 respec-

tively. The same can be observed for meta-cluster K (stem and

F IGURE 5 TrackSOM

clustering of West Nile Virus
(WNV) bone marrow dataset
using no-merging Prescribed
Invariant operation. (A) Time-
series heatmaps illustrating
meta-clusters' (symbols)
temporal changes (lines). Meta-
clusters on the left plot are
colored by the majority cell
population they each represent.
Biological plausibility of
transitions are indicated based
on known cellular differentiation
pathways (see Supplementary
Figure S3). The right plot
captures the average expression
of SCA-1 marker for each meta-
cluster. (B) Network plots with
meta-clusters colored by time-
point, cell population
represented, and average SCA-1
marker expression. [Color figure
can be viewed at
wileyonlinelibrary.com]
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progenitor cells) and meta-cluster G (T and NK cell populations) at day

5. Not all the meta-clusters capturing a given population show upre-

gulation of SCA-1 marker: clusters P and Kj1 also capture stem and

progenitor cells, but show no such transition, demonstrating a capac-

ity to uncover heterogeneity within phenotypes in response to infec-

tion. Further, being the bone marrow, activated forms of all the cell

populations exist in small numbers even at pre-infection, and this is

reflected in the cluster population assignments, showing the sensitiv-

ity of TrackSOM to uncovering minor phenotypes in the data. For

instance, meta-cluster N captures pre-infection activated B cells, and

meta-cluster D does likewise for PDCs. The majority of cluster evolu-

tions are biologically plausible (see Supplementary Figure S3),

although there are some exceptions, for example, in meta-cluster M, B

cells transit into T and NK cells. Such implausible transitions occur

only in meta-clusters that capture a minority of data points (indicated

by small symbols) and these likely reside on the periphery between

several high-density regions of cell populations in marker-space.

Together, these data demonstrate that TrackSOM can accurately

identify, without external guidance, both majority and minority popu-

lation phenotypes and track their evolution through time in terms of

changing marker expression levels. Further, it offers excellent perfor-

mance in doing so without being overly sensitive to exact parameter

value choices.

3.2.1 | Comparison with ChronoClust

We contrasted TrackSOM's performance with that of ChronoClust on

the WNV bone marrow dataset. For a fair comparison with Track-

SOM, we collected 100 unique parameter value combinations for

ChonoClust (see Methods and Materials) and obtained their mean ARI

and tracking accuracy scores.

All TrackSOM modes of operation vastly out-performed Chrono-

Clust, based on mean ARI score, Figure 4B. All TrackSOM solutions

held ARI scores >0.38, whereas 30% of ChronoClust solutions scored

<0, indicative of worse than random clustering. Curiously, these very

poor ARI scoring ChronoClust solutions also exhibited very high track-

ing accuracy scores (Figure 4A). Indeed, ChronoClust tended to gener-

ate higher tracking accuracy scores than TrackSOM, Figure 4C.

Manual inspection of representative ChronoClust solutions revealed a

pattern of severely over-clustering the data (Supplementary Figure S6

and Table S5) into highly homogeneous clusters (poor ARI) that exhib-

ited self-referential temporal transitions which are technically valid

and thus promote high tracking accuracy scores. Examining Figure 4A

more closely, the best ChronoClust solution (black circle on figure)

held an ARI score of 0.76 and a tracking accuracy of 0.87. These

scores are impressive, but still suboptimal compared to what Track-

SOM was readily able to produce in many solutions under parameteric

perturbation. Indeed, the very wide distribution of ChronoClust

solution scores suggests the algorithm to be quite sensitive to its

parameter values, mirroring prior findings elsewhere [12]. Obtaining

high-quality performance would require either considerable explora-

tion of ChronoClust parameter space or prior knowledge of good

parameter value choices. Overall, we consider TrackSOM the vastly

superior algorithm.

3.3 | Advice on using TrackSOM

Key to the successful use of clustering algorithms on novel data is the

selection of appropriate parameter values. We performed a global

sensitivity analysis to relate TrackSOM's two most influential parame-

ters, SOM grid size and the number of meta-clusters generated, to its

clustering and tracking performance. Accordingly, we calculated PRCC

of these parameters against TrackSOM performance on the WNV

bone marrow dataset. PRCC ascertains the effect of one parameter

on TrackSOM performance while controlling for the effect of other

parameters whose values will simultaneously be varying given the

Latin Hypercube design [30]; this is a form of global sensitivity analy-

sis [31].

Examining the SOM grid size parameter first, Table 1, we find fre-

quent positive correlations of grid size with mean ARI, yet negative

correlations with tracking accuracy. For the Prescribed modes of oper-

ation, we find a non-linear diminishing increase in mean ARI as the

SOM grid size increases (Supplementary Figures S7A,S8A,S9A,S10A).

With SOM nodes being the fundamental unit of clustering, exces-

sively small SOM grid sizes will capture distinct cellular phenotypes

into the same nodes, ultimately reducing ARI scores. This effect was

worse for no-merging operation, where small SOM grid sizes generate

more variable and lower ARI scores (Supplementary Figures S7A

vs. S8A, and S9A vs. S10A), suggesting that merging operation has

some capacity to correct for poor choices of SOM grid size. Merging

Autonomous Adaptive operation exhibited an opposite pattern, with

increasing SOM grid size reducing ARI scores, Supplementary

Figure S11A. We suspect this relates to an interaction between SOM

grid size and how FlowSOM chooses the number of meta-clusters to

generate, see Supplementary Section S6.

There is a consistent pattern of increasing SOM grid sizes reduc-

ing the tracking accuracy. Tracking accuracy can diminish when the

number of meta-clusters drops, because numerous meta-clusters tend

toward self-referential transitions which are always valid. However,

the presently observed pattern is independent of the number of

meta-clusters created: PRCC controls for this parameter, and we find

no discernible differences between merging and no-merging opera-

tions (the latter tends to raise meta-cluster numbers). This suggests

that the pattern is driven by incorrect meta-cluster label re-

assignments across time-points, which result in invalid population

transitions. SOM nodes do not aim to capture equal numbers of data-

points, instead they emphasize a comprehensive coverage of space,

even between high-density regions. As such, increasing the SOM grid

size will result in more nodes supported by fewer data points. Such

nodes will be more sensitive to how the distribution of the data

changes between time-points, and for minority phenotypes (which are

represented by relatively few nodes), these dynamics under large grid

sizes could result in strong fluctuations of nodes entering and leaving

the meta-cluster. We believe this could result in assignments of
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incorrect labels to meta-clusters and thus invalid transitions that

reduce tracking accuracy scores.

As expected, increasing meta-cluster numbers tended to increase

tracking accuracy for Prescribed modes of operation, though we

found no effect for Autonomous Adaptive operation (Table 1, graphs

in Supplementary Figures S11 and S13). This likely reflects increasingly

homogenous meta-clusters, many of which will generate self-referential

transitions as explored in the datasets above. For Prescribed Invariant

operational modes, increasing the number of meta-clusters reduced

the ARI scores, likely due to the resultant over-clustering relative

to manually-gated populations. Curiously, Autonomous Adaptive

operation again exhibited a converse pattern, wherein the maximum

meta-cluster number explored increased ARI scores; see Supplemen-

tary Section S6.

For users with unanalyzed data we offer the following usage

advice (Figure 6). If the number of cellular phenotypes to be discov-

ered is completely unknown, Autonomous Adaptive operation can

give a solid performance. Prescribed Invariant operation can be more

effective, but is dependent on parameter values that such users are

unlikely to have a basis to choose well; this is seen for both synthetic

(Figure 2) and bone marrow datasets (Figure 4). Autonomous Adaptive

operation can accommodate a large number of meta-clusters to

explore (we attempted up to 40 with no deterioration in performance,

Supplementary Figures S11B and S13A), and we recommend users

setting this to a large number as TrackSOM will adjust as needed. If

the number of populations sought is known, then the Prescribed oper-

ations are more appropriate. Prescribed Variant is more appropriate

where the number of cell populations to be discovered varies over

time, for instance via tissue infiltrates. If the number of populations is

instead constant over time, then Prescribed Invariant is more appro-

priate and has fewer parameters to set.

Preventing meta-cluster merging arguably better reflects the biol-

ogy of cellular differentiation, and it conferred better performance in

all operational modes. However, this came at the possible expense of

less meaningful clustering through an explosion of meta-cluster num-

bers if parameters are poorly chosen. The alternative, enabling merg-

ing, restricts the number of meta-clusters created, but can instead

generate convoluted meta-cluster transitions. We suggest users try

both modes and select that which better suits their circumstance. For

selecting a SOM grid size, values between 10 and 15 consistently

delivered a good balance between ARI and tracking accuracy scores

(Supplementary Figures S7–S11).

3.4 | Mapping the CNS immune response onto
WNV clinical disease severity

TrackSOM is not constrained to analyzing time-course data, it can also

relate immune system status to the spectrum of clinical disease sever-

ities that present at a single time-point. We demonstrated this in a

novel, ungated dataset representing the immune cells in the brains of

mock- and WNV-infected mice at day 7 post-infection. We ran Track-

SOM over the sequence of cytometry datasets indicative of increasing

disease severities to relate changes in cellular phenotypes to disease-

stage at this single time-point. In accordance with the above Track-

SOM usage advice, we employed Prescribed Variant operation with

meta-cluster merging disabled (see methods and materials) and con-

ducted some manual exploration of meta-cluster and grid size num-

bers before manually selecting a solution that we judged to best

separate the cell phenotypes. We anticipated that the number of cel-

lular populations would increase with disease severity. This was sup-

ported by preliminary unguided analysis through FIt-SNE, where

increased severity was associated with a larger number of distinct

clusters of cells (Supplementary Figure S14).

TrackSOM successfully distinguished numerous meta-clusters of

cells, that we could resolve to immune cell phenotypes, and related

TABLE 1 Partial Rank Correlation Coefficients (PRCC) of
TrackSOM parameters against clustering (mean ARI) and tracking
accuracy performance metrics for the indicated modes of operation.
Data represents samplings of TrackSOM parameter space and
corresponding clustering of the WNV bone marrow dataset. Only
parameters with PRCC p-values <0.005 are indicated (p-values not
shown); ns, not significant

Operational mode
PRCC:
Mean ARI

PRCC:
Tracking

Parameter: SOM grid size

Autonomous Adaptive, merging �0.72 �0.50

Autonomous Adaptive, no-merging ns ns

Prescribed Invariant, merging 0.62 �0.93

Prescribed Invariant, no-merging 0.71 �0.71

Prescribed Variant, merging 0.78 �0.95

Prescribed Variant, no-merging 0.82 �0.66

Parameter: Maximum number of meta-clusters considered

Autonomous Adaptive, merging 0.68 ns

Autonomous Adaptive, no-merging 0.38 ns

Parameter: Number of meta-clusters

Prescribed Invariant, merging �0.55 0.88

Prescribed Invariant, no-merging �0.83 ns

Parameter: Number of meta-clusters per time-point

Prescribed Variant (Pre-infection),

merging

�0.29 ns

Prescribed Variant (day 1), merging �0.31 ns

Prescribed Variant (day 2), merging �0.35 ns

Prescribed Variant (day 3), merging �0.39 0.52

Prescribed Variant (day 4), merging ns 0.50

Prescribed Variant (day 6), merging ns 0.32

Prescribed Variant (day 1), no-

merging

�0.37 ns

Prescribed Variant (Pre-infection),

no-merging

�0.52 ns

Abbreviations: ARI, Adjusted Rand Index; PRCC, Partial Rank Correlation

Coefficients; SOM, Self-Organizing Map.
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their phenotypic evolution to increasing disease severity, Figure 7 and

Supplementary Figure S15. TrackSOM tracked how the relative

(Figure 8) and absolute counts (Supplementary Figure S16) of cellular

populations, and their marker expression levels (Figure 7B and Supple-

mentary Figure S15) shifted with disease severity. As disease severity

rose from mock-infection to the 2nd most severe stage WNV-04, we

observed substantial rises in infiltrating macrophage, CD4 and CD8 T

cell, and NK cell populations. Further, we tracked a drop in the pro-

portion of microglia from 82% to 10% of total cells, consistent with

the concomitant substantial increases over this time in infiltrating

macrophages. The proportion of infiltrating macrophages rose sharply

from 9% to 65% of total cells by WNV-04. Several of these cell popu-

lations are not ordinarily found in the brain but were identified by

TrackSOM in the mock-infection dataset, likely representing either

the capture of post-flushing remnant intravascular cells in the samples

and/or the recognition of central nervous system-associated macro-

phage populations in the homeostatic brain [32].

Notably, TrackSOM identified the infiltration of phenotypic sub-

populations with worsening disease severity, indicated by the branch-

ing meta-clusters in Figure 7. Macrophages were represented by

11 meta-clusters in mock-infection, curiously high given their low rel-

ative abundance (Figure 8), and 4 of these underwent extensive

branching into distinct subpopulations as disease progressed. Most of

these macrophage subphenotypes upregulated the CD80 activation

marker with increasing disease severity, indicative of response to

inflammation. NK cells were captured by one meta-cluster which

expressed the NK1.1 marker expression. Both CD4 and CD8 T cell

populations were captured by meta-clusters that bifurcated at the

point of mild (WNV-01) symptoms in accordance with CD4 and CD8

marker expression levels respectively, presumably capturing differen-

tiating functions under immune challenge [33]. Microglia were cap-

tured by a single meta-cluster at mock infection that branched into

several sublineages with heightening symptoms, varying in CD11b,

Ly6C, and CD45 expression.

Overall, TrackSOM was able to elucidate and map the changing

profile of CNS immune cell populations onto a progression of clinical

symptom severities emanating from WNV infection.

4 | DISCUSSION

Immune responses are fallible. Identical inoculation doses can cause

disease that resolves in some individuals but are lethal in others [20],

and autoimmunity perhaps represents quintessential immune system

error [34]. In addition, many non-communicable diseases, of which

prevalence rates are rising globally, have an immune system compo-

nent [35, 36]. Many such diseases are characterized by periods of

remission and relapse, often with localized exacerbation of inflamma-

tion, such as the skip legions that characterize Crohn's disease [37] or

the localized lesions in multiple sclerosis. The tone of the immune

response, and its influence on health status, is a complex consequence

of broad interactions between numerous dynamic cell populations

[34, 36].

Thus, the identification and characterization of novel cell subpop-

ulations has potential therapeutic benefit [14]. Mapping the immune

response, at the level of cell population dynamics and interactions,

over time and in relevant organs of the body, and relating these maps

to disease outcomes, is essential for discovering possible intervention

targets.

We developed TrackSOM with a view to enable mapping of the

immune response against time and/or disease severity. TrackSOM

excelled in unveiling the temporal evolution of clusters engineered

into a synthetic dataset. When applied to pregated, time-series

bone marrow cytometry data from WNV-infected mice, TrackSOM

correctly tracked the activation of several immune cell populations

and the upregulation of the SCA-1 marker. On ungated data, Track-

SOM identified and tracked the infiltration and functional evolution

of distinct subpopulations of key immune cell phenotypes and

mapped these against clinical disease-stage. Further, TrackSOM

readily revealed how the phenotypic composition, in terms of both

absolute cell counts and relative abundance, varied with disease

severity. TrackSOM is a powerful tool for studying coordinated

immune population dynamics and how these pertain to disease sta-

tus; it has already been used to identify cell populations and their

shifting functional status over time in COVID-19 infection in

humans [38].

F IGURE 6 Practical guidelines for
choosing TrackSOM's mode of
operation. As the separability and
tracking of cellular phenotypes mostly
depends on the number of meta-
clusters for each time-point, the
choice of operation mode is best
guided by the user's prior knowledge
of the expected number of

phenotypes in the data.
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F IGURE 7 TrackSOM-enabled exploration of the immune response in the brains of West Nile Virus (WNV)-infected mice over 6 graded
clinical disease severities. All data represent day 7 post-inoculation. Shown is a network plot of TrackSOM meta-clusters and their evolution with

worsening clinical disease severity at this time-point. Analysis is focused on meta-clusters given high-confidence manual phenotype labels (not
blurred). Meta-clusters in (a) are colored by disease severity and arrows indicate the sequence of progression. Meta-clusters in (B) are colored by
the indicated mean marker expression level. The numbering in (B) refers to the number-phenotype mapping in (a). For (B), color bars capture the
full range of values for each marker independently. Node sizes relate to the proportion of cells captured in the meta-cluster at given disease
severity. [Color figure can be viewed at wileyonlinelibrary.com]
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When evaluating clustering solutions, we observed a degree of

trade-off across our two algorithm performance metrics. Solutions

judged optimal for cluster quality tended to be poorer for cluster evolu-

tion tracking, and vice versa, particularly for Chronoclust. This is seem-

ingly contradictory; how could poor quality clusters be well-tracked?

The tracking accuracy metric is somewhat ignorant of cluster quality,

and judges specifically only if cluster transitions are valid. Over-cluster-

ing, wherein single phenotypes are split across numerous meta-clus-

ters, will tend to produce valid, self-referential transitions, thus scoring

low on ARI but high on tracking accuracy. Under-clustering, wherein

single meta-clusters amalgamate several phenotypes, will adopt and

retain the majority population label, again valid for tracking accuracy

but poor for ARI. Conversely, high quality clusters could also be poorly

tracked. This may be due to misclustered data-points (leading to non-

homogeneous meta-clusters) suppressing the ARI score to the same

extent, irrespective of which meta-clusters they occur in, but not track-

ing accuracy where all meta-clusters contribute equally to the score

irrespective of their size in terms of data-points. Misclusterings that are

concentrated in a single, small meta-cluster at a given time-point could

switch the assigned label of the meta-cluster and lead to invalid transi-

tions, thus impacting tracking accuracy. Importantly, if misclusterings

are instead confined to large meta-clusters or broadly distributed

across many meta-clusters, tracking accuracy is unlikely to be affected,

though ARI would be. Hence, the location of misclustered data-points

could impact tracking accuracy while minimally affecting ARI.

There are advantages to multi-metric evaluation, as single metrics

(and thus values) struggle to comprehensively describe all aspects of a

complex phenomenon. Complementary perspectives through multiple

metrics can offer a robust and comprehensive evaluation framework

[12], and is the approach we took here. We identified and focused on

solutions that exhibited minimal trade-offs between the two metrics,

those solutions that generated an optimal balance of the conflicting

criteria. With only two metrics, scatter plots such as Figures 2A and

4A were sufficient to identify such solutions. Where more metrics are

employed, and the potential trade-offs more severe, a formalized

framework through Pareto fronts can be employed [12].

F IGURE 8 The profile of
immune cell phenotypes varies
with increasing disease severity
in the brains of West Nile Virus
(WNV)-infected mice. Mapped
are the proportion of the given
cell phenotypes per mouse. Only
cells (and TrackSOM meta-
clusters) that we could label with

high confidence are included in
the calculation of proportions.
Data represent between n = 2
and n = 6 mice per group
(Supplementary Table S3). Note
that ranges for y-axes vary across
panels. Pairwise statistical
comparisons between mock and
other disease severities are
through the Wilcoxon test;
* signifies p-value <=0.05,
** signifies p-value <=0.01, ns
signifies not significant. [Color
figure can be viewed at
wileyonlinelibrary.com]
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TrackSOM's Autonomous Adaptive operation carries considerable

appeal, being largely insensitive to exact parameter value choices and

thus simplifying the task of choosing appropriate values. However, we

consistently found it to under-cluster the data, failing to fully distin-

guish all the subtly different cell populations discovered through

expert manual gating. Its performance lagged behind the best that the

Prescribed Invariant operations could produce when given optimal

parameter values. Autonomous Adaptive operation draws upon Flow-

SOM's procedure for self-determining an appropriate number of

meta-clusters. The selection is made by identifying the point at which

the reducing variance captured per meta-cluster sharply diminishes as

the number of meta-clusters generated increases [11] (a standard

approach in clustering called the “elbow method”). FlowSOM's

method is simple and quick to execute, however it evidently does not

converge on a clustering that an expert would manually produce.

Identifying an alternative method that more closely aligns with expert

opinion in cytometry specifically would be transformative for the dis-

cipline, enabling a heuristic search for appropriate parameter values

that algorithm users must currently best-guess at and laboriously eval-

uate. This is a worthy avenue of future work, though prior efforts indi-

cate that it is non-trivial [39].

A key investigative theme in immunology is to relate the kinetics

of immune cell subpopulations with disease outcomes, and to identify

the key events at which outcomes bifurcate; these point to potential

therapeutic targets. TrackSOM's primary contribution is as an algorithm

that automatically identifies and tracks the dynamics of cellular sub-

populations, mapping these over time and/or progressing disease sta-

tus. A salient line of future investigation is the automated extraction of

features in the rich data TrackSOM generates that constitute key dis-

tinguishers of clinical outcomes. For instance, TrackSOM could be run

twice, over datasets of patients who recover versus those who do not.

Within a supervised machine learning context, classifiers could be built

over TrackSOM-originating features describing subpopulation kinetics

to highlight those of particular relevance. Further, the classifiers would

be of natural clinical benefit, potentially informing clinical decisions for

novel patients by predicting their future clinical outcomes. A contem-

porary possibility could include for example, predicting in advance

which COVID-sufferers would require ventilators or admission into

intensive care units. We are currently pursuing such technologies.

We focused here on cytometry because it is relatively cheap to

run, accessible and widely adopted. Single-cell RNA sequencing

(scRNAseq) is a related technology with falling costs and growing pop-

ularity. There is interest in identifying phenotype differentiation path-

ways through scRNAseq using trajectory inference algorithms [40–45].

This resembles TrackSOM's usage context, and while trajectory infer-

ence algorithms have been applied over amalgamated time-series data-

sets [46, 47], the algorithms themselves do not account for time, and

thus do not relate changes to specific time-points. Pseudodynamics

[48] added an explicit accounting for time to trajectory inference

methods. ScRNAseq differs from cytometry in that the data generated

typically cover many thousands of features (genes) and hundreds to

thousands of cells, whereas cytometry captures under 100 features

and up to millions of cells. How well pseudodynamics can

accommodate cytometry data, and how well TrackSOM performs over

scRNAseq data is worthy of future investigation.
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