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Current and emerging treatment options to prevent renal failure due to autosomal 
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Gopala K. Rangana,b, Aarya Raghubanshia, Alissa Chaitarvornkita,c, Ashley N. Chandraa, Robert Gardosd, Alexandra Munta,b, 
Mark N. Reade, Sayanthooran Saravanabavana, Jennifer Q.J. Zhanga and Annette T.Y. Wonga,b

aCentre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia; bDepartment 
of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Australia; cFaculty of Engineering, The University of 
Sydney, Camperdown, Australia; dPKD Australia, Sydney, Australia; eThe School of Computer Science and the Westmead Initiative, The University of 
Sydney, Westmead, Australia

ABSTRACT
Introduction: Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most common inherited 
cause of end-stage kidney disease (ESKD) in adults. The aim of this narrative review is to analyze current 
and emerging treatment options to delay ESKD due to ADPKD. Emerging treatments were defined as 
those that were in clinical trial (according to ClinicalTrial.gov database to July 2020) or in development.
Areas covered: The epidemiology and economic burden of ADPKD; molecular pathogenesis of ESKD; 
current (first-line; tolvaptan in groups with high-risk for progression to ESKD), emerging treatments 
under investigation [re-purposed small molecule drugs (SMDs): lixivaptan, venglustat, bardoxolone, 
tesevatinib, metformin; public health interventions: prescribed fluid intake, vitamin B3, ketone diet] and 
those in development (RGLS4326, VX-809, MR-L2, 2-doexyglucose).
Expert opinion: Over the next decade, the number of proven treatments will expand, providing 
opportunities to individualize therapy based on personal preferences and disease ontology; Major 
barriers to future research include the absence of disease-specific biomarkers, national disease- 
specific registries. In parallel, there is also a need for need for earlier pre-symptomatic diagnosis and 
enhancement of health-care service delivery. Addressing these gaps will enable ESKD to become an 
ultra-rare complication of ADPKD during the 21st century.
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1. Introduction

Autosomal Dominant Polycystic Kidney Disease (ADPKD) 
(OMIM ID173900; ICD-11-GB81) is a common single-gene dis-
order, and the most frequent inherited cause of chronic kidney 
disease (CKD) in adults leading to end-stage kidney disease 
(ESKD) [1–6] (Table 1). In the 1990s, treatment to delay or 
prevent ESKD due to ADPKD was ineffective and largely sup-
portive [7]. However, the discovery that arginine vasopressin 
drives kidney cyst growth over the last two decades [8–10] 
culminated in the regulatory approval of the first disease- 
modifying drug (DMD), tolvaptan (a vasopressin receptor 
antagonist, V2RA), to slow the decline in renal function in 
patients at high-risk for ESKD in 2018. The aim of this narrative 
review is to analyze current and emerging treatment options 
to delay ESKD due to ADPKD. Current and emerging treat-
ments were defined as those in clinical trial or in development, 
according to recent comprehensive narrative reviews on this 
topic [11–13] and search of a search up until July 2020 of the 
ClinicalTrial.gov database (search term: ‘polycystic kidney’) [14] 
and the internet using the Google search engine for media 
release statements (using the terms: ‘polycystic kidney and 
new treatment’).

2. Epidemiology and economic burden of ADPKD

ADPKD occurs in all regions of the world [15–18] suggesting 
that it probably arose early in human evolution [19] and/or 
that the PKD genome is naturally susceptible to mutation 
[19,20]. The genetic prevalence of ADPKD in the population, 
as defined by high-confidence pathogenic mutations in PKD1/ 
PKD2, was 93 (PKD1: 68; PKD2: 26) per 100,000 [21]. The latter 
is higher than pathologic phenotype prevalence in popula-
tion-based studies (68 per 100,000) [22] probably due to 
incomplete ascertainment of mild cases [23]. In high-income 
countries (Gross National Product per capita >$US12,055/ 
year), such as Australia, ADPKD accounts for 1 in every 10 
patients in the nephrology clinics and 5–10% of the ESKD 
population [1,2]. ESKD is the most serious clinical complication 
of ADPKD causing a significant reduction in life-expectancy, 
quality of life and psychosocial well-being [2], and develops in 
mid-life, preceded by progressive symptoms in the second to 
third decades. The life-time risk for ESKD has wide intra- and 
inter-familial variability, and a classical study from the 1980s 
showed that the probability of developing this complication 
was 52% by 73 years of age [24]. The predictors for ESKD are 
numerous and include demographic factors (younger age at 
diagnosis, male gender), clinical factors (family history of ESKD, 
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hypertension, a history of cyst-related complications) and dis-
ease-markers (rapid rate of renal function decline, baseline 
kidney size, albuminuria, PKD1 mutation) [25].

The prevalence of ESKD due to ADPKD is accurately docu-
mented in high-income countries in ESKD Dialysis/Transplant 
Registries. In Australia (population of 25 million people) ~2000 
patients receive dialysis or have a kidney transplant due to 

ADPKD [26]. A 50 year longitudinal follow-up of the Australia 
and New Zealand Dialysis Registry [26] showed that the: (i) 
incidence and median age of onset of ESKD has stabilized over 
the last two decades; and (ii) the 5-year survival rate of 
patients on dialysis (censored for transplantation and adjusted 
for age) was ~80%. In contrast, the epidemiology of pre-ESKD 
ADPKD is not precise due to variations in the time to diagnosis 
by renal ultrasound leading to incomplete ascertainment 
[2,21]. This leads to delayed diagnosis, and the HALT 
Progression of PKD (HALT-PKD) study showed that the average 
age at diagnosis was 35 years old [27]. Ideally, pre- 
symptomatic diagnosis could be achieved by genetic testing 
but not widely performed, in part, due to cost of sequencing 
the PKD1 gene and lack of government re-imbursement [28]. 
Therefore blood pressure measurement of asymptomatic at- 
risk young adults or children has been recommended as 
a simple method to identify affected patients and introduce 
interventions earlier [29–31]. In Australia, based on the 
assumption that the incidence of mutations in PKD genes in 
general population is ~1:1000 [29], we hypothesize that total 
number of ADPKD patients in Australia could range between 
~10,000 to 25,000 with ~3,000 at risk of ESKD (Figure 1) [32].

ESKD is the highest contributor to the economic cost of 
ADPKD. An Italian healthcare analysis showed patients with 
CKD had ten times lower costs compared to those receiving 
dialysis (Euro 4,287 per year in ADPKD-non-dialyzed patients 
vs. Euro 45,393 per year) [33]. In Australia with an estimated 
prevalence of two thousand patients with ESKD due to ADPKD 
patients the total costs were estimated to be ~1 million dollars 
per year, based only on the annual cost of dialysis of up to 
$A79,072 per patient [26,34].

3. Pathogenesis of ADPKD

3.1. Genetics

ADPKD is due to heterozygous germ-line mutations in either 
PKD1 (85% of cases; 46 exons in length on chromosome 
16p13.3), PKD2 (15% of cases; 15 exons in length on chromo-
some 4q21) or rarely other genes in <0.1% of cases (GANAB 
[35], DNAJB11 [36]). In ~10% of patients, no mutation is 
detected (NMD), possibly due to other genetic mechanisms 
(mosaicism, bi-allelic transmission of PKD1 or copy number 
variations) or else mutations in genes not yet linked to 
ADPKD [37]. The mutations are typically private with no 
greater than 2% of families sharing sequence similarities [38]. 
Cohort studies show that groups with mutations in PKD1 have 
an earlier onset of ESKD (50–55 vs. 75–80 years old) and twice 
the number of renal cysts [38,39] than those with mutations in 
PKD2. Similarly, groups with PKD1-protein-truncating muta-
tions have more severe renal disease than non-truncating 
mutations, whereas those with mutations in PKD2 or NMD 
have the mildest renal disease [38,39]. Despite these data, 
the prognosis of an individual is difficult to predict as the 
clinical phenotype has high intra- and inter-familial heteroge-
neity, possibly due to interactions between non-modifiable 
factors (both genic and allelic; modifier genes; gender) and 
modifiable risk factors (dietary and lifestyle factors that mod-
ulate epigenetic pathways) [40,41]. Data from murine models 

Article highlights

● ADPKD is the most frequent monogenic cause of chronic kidney 
disease in adults, characterised by the growth and formation of 
multiple fluid-filled cysts in the kidney. It accounts for ~5–10% of 
the ESKD population;

● arginine vasopressin is a key driver kidney cyst growth and the first 
disease-modifying drug (DMD), tolvaptan (a vasopressin receptor 
antagonist, V2RA), to slow the decline in renal function in patients 
at high-risk for ESKD was approved in 2018;

● Current treatment options to prevent options to prevent ESKD are 
limited and include dietary sodium restriction, maintenance of nor-
mal BMI, blood pressure control, using inhibitors of renin-angiotensin 
system, and tolvaptan for those at high-risk for progression to ESKD;

● While the efficacy of tolvaptan was proven in two landmark rando-
mised controlled trials (TEMPO 3:4 and REPRISE) but long-term effects 
on slowing the onset ESKD as well as real-world tolerability (due to 
aquaresis) are not known

● The efficacy of several promising emerging treatments, including 
public health interventions (Vitamin B3, Prescribed Water, Ketone 
Diet) and at least eight small molecule drugs (lixivaptan, tesevatinib, 
venglustat, bardoxolone, pravastatin, hydralazine, pioglitazone, met-
formin) are currently in progress

● It is expected that over the next 10 years, the number of proven 
treatments will expand, providing opportunities to individualise ther-
apy based on personal preferences and disease ontology;

● Major barriers to future research include the absence of disease- 
specific biomarkers, national disease-specific registries. In parallel, 
there is also a need for need for earlier pre-symptomatic diagnosis 
and enhancement of health-care service delivery.

This box summarizes key points contained in the article.

Table 1. Characteristic features of ADPKD.

Parameter Characteristic Feature References

Gene mutation Heterozygous germ-line mutations in one of 
the causative genes (PKD1 in 85%; PKD2 in 
15%; and <1% in five others such as 
GANAB/DNABJ11) in 90% of patients and 
~10% no mutation is detected due to 
mutations in deep intronic regions, copy 
number variations and/or unknown genes.

[3–5,28]

Inheritance 
Pattern

Autosomal dominant but 10% family history 
may be negative due to de novo mutation, 
mosaicism or non-biological parentage.

[3–5,28]

Renal Phenotype Almost (close to 100%) full penetrance of the 
phenotype (adult-onset of multiple kidney 
cysts) with variable expressivity in kidney 
cyst number and cyst growth rate (range 
from <1.5% to >6%/year) and increased 
life-time risk for end-stage kidney disease.

[6,49]

Systemic 
Phenotype

Variable development of systemic 
complications, most commonly 
hypertension, extra-renal cysts (liver, 
pancreas, arachnoid), intracranial 
aneurysm/dissection (cerebral, aorta) and 
connective tissue defects (hernias, 
diverticular disease).

[66]
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demonstrates that PKD1 dose is the key rate-limiting determi-
nant of all types of ADPKD and associated with greater sever-
ity of the renal phenotype [42].

3.2. Molecular pathogenesis of ADPKD

PKD1 and PKD2 encode polycystin-1 and polycystin-2 respec-
tively which are members of the transient receptor potential 
channel protein family [29,43]. Both are membrane proteins 
and exist as a hetero-oligomeric complex (PKD1:PKD2; 1:3 
ratio) on the shaft and basal body of the primary cilia and 
other subcellular locations (e.g. polycystin-2 is expressed on 
the endoplasmic reticulum where it acts as a nonselective 
calcium channel) [44]. The functions of the PKD1/PKD2 com-
plex are not fully clear but evidence to date shows that it is 
a homeostatic suppressor of multiple signal transduction path-
ways (TORC1, c-myc-sirtuin, Wnt, Jak-Stat) in response to cili-
ary bending with fluid flow during quiescence [45]. 
Intracellular cyclic adenosine monophosphate (cAMP) and cal-
cium are critical intermediate molecules involved in mediating 
these signaling pathways [45]. Thus, in ADPKD, the reduction 
of polycystin-1 below a critical threshold produces an abnor-
mal cell characterized by: (i) increased intracellular cAMP and 
reduced calcium; (ii) an increased utilization of aerobic glyco-
lysis (‘Warburg effect’) [46]; and (iii) increased rate in 

proliferation, loss of differentiation and a more elastic base-
ment membrane [46].

3.3. Mechanisms of focal kidney cyst formation

The dysregulated signal transduction due to polycystin-1 
results in the renal phenotype in ADPKD. Interestingly, how-
ever, the formation of kidney cysts are focal arising from <5% 
of the estimated 1 million nephrons per kidney, and develop 
in haphazard manner, giving the typical multi-cystic and dis-
torted appearance of the end-stage kidney in ADPKD. The 
focal manner of cyst formation is due to sporadic postnatal 
reductions in PKD1 dose in principal cells of the collecting 
duct, either due to loss of heterozygosity (LOH, ‘second hits’) 
[47], stochastic and epigenetic factors and/or mosaicism 
[43,48]

3.4. Natural history of kidney cyst growth and kidney 
failure

The initial kidney cysts are microscopic (~200 μm in diameter) 
and form during early life, grow at a slow exponential rate 
(<1.5.to >6% per year) [49] and first become detectable by 
kidney ultrasound two to four decades later when they are 
~1 cm and can be detected by renal ultrasound. By middle 

Figure 1. Hypothetical model of the epidemiology of ADPKD in Australia. The size of the total ADPKD population in Australia is unknown (contained within the 
largest green circle), and we estimate that between ~10,000–25,000 people may have ADPKD based on the genetic prevalence of mutations in PKD genes in the 
population [21], probability of developing ESKD [22–24] and current 2020 population in Australia of ~25,000,000. Our proposed model hypothesizes that at least 
half of the ADPKD population will probably have a normal life expectancy with minimal medical complications during life [22–24] but that ~ 3,000 will be at risk of 
developing ESKD (light green circle), and of those two-thirds (n = 2000) are probably known to a nephrologist, but one-third will be undiagnosed and/or unknown 
to a nephrologist (n = 1000) (blue circle). The diagnosis of ADPKD in childhood is rare and in Australia estimated to be ~100 children [32] (yellow circle). In 
2015 ~ 2000 individuals with ADPKD had end-stage kidney disease and were receiving dialysis or had a kidney transplant and the size of this population is 
accurately known (orange circle) [26]. Further studies using registry data (such as the ADPedKD) [32] and/or electronic medical records are an opportunity to test 
this hypothesis in the real-world.
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adulthood, the cyst burden may increase the total kidney 
weight by more than five times of normal (1 kg vs. 0.2 kg) 
[50], causing chronic pain, hypertension and renal impairment 
[29,43]. The growth of kidney cysts is mediated by chloride- 
driven fluid secretion (via cystic fibrosis transmembrane reg-
ulator chloride channel, CFTR) and proliferation (via multiple 
signal transduction pathways including TORC1), and 
a multitude of other mechanisms in parrallel (renal inflamma-
tion/fibrosis, angiogenesis/microvascular ischemia, oxidative 
stress) contribute to the loss of functioning nephrons [40].

3.5. Vasopressin is a key regulator of postnatal renal 
cyst growth

Arginine vasopressin (AVP) has a well-established as the key 
extracellular growth factor for kidney cysts in ADPKD. In nor-
mal physiology, AVP is released from posterior pituitary in 
response to serum hyperosmolality, and binds to V2 receptors 
on the basolateral membrane of collecting duct principal cells, 
causing the apical insertion of aquaporin-2 channels and the 
reabsorption of water from the lumen [51]. In ADPKD, AVP 
increases intracellular cAMP (by 147%) which mediates CFTR- 
mediated trans-epithelial fluid secretion (~6-fold) and the pro-
liferation of cyst-forming renal epithelial, [9,52]. In vivo the 
absence of AVP completely abrogated renal cyst formation in 
rats [53], and V2RAs attenuated renal cyst growth in multiple 
genetic orthologs of PKD [8,53–56].

4. Medical management of ESKD due to ADPKD

4.1. Overview

ADPKD is a chronic disease and treatment can be challenging 
and complex due to several factors [57,58]: (i) the phenotypic 
heterogeneity creates uncertainties in predicting life-time out-
comes and the decision to use DMDs; (ii) the long latent 
period of having few clinical symptoms which leads to 
young adults ignoring their disease; (iii) the risk for systemic 
complications and the need for specific counseling (in parti-
cular intracranial aneurysms); (iv) under-appreciation by 
healthcare workers of psychosocial impacts (such as anticipa-
tion of end-stage kidney disease, guilt and fear, particularly in 
light of perceived lack of treatment options; pain); and (v) 
finally, being a genetic disease, the clinical care involves not 
only the patient but also their immediate family.

The main principles and goals of medical management, 
based on clinical practice guidelines position statements [57– 
62], are summarized in Table 2, and include: (i) the prediction 
of renal prognosis using either/or: a) simple readily accessible 
clinical tools, such as age of onset of ESKD in 1st degree family 
members [4]; rate of decline in renal function using historical 
and prospective eGFR measurements [61]; renal length on 
ultrasound [63]; b) other clinical measurements that may not 
be readily available, such as total kidney volume measurement 
by MRI [64] and Mayo Imaging Classification [49] and 
Predicting Renal Outcomes in ADPKD (PROPKD) Risk 
Prediction Score (which, in part, requires the results of PKD 
DNA sequencing) [65]; (ii) the preservation of quality of life 
and restoration of normal health-span by reducing the life- 

time risk of ESKD and cardiovascular disease; and; (iii) the 
detection and appropriate management of extrarenal disease 
manifestations [66].

The specific strategies to prevent ESKD may be grouped as 
either primordial, primary, secondary or tertiary (Table 3). 
These can be further sub-divided into treatments that are 
current, emerging (presently in development in clinical trials) 
and future (those that might be developed in the future) 
(Table 3) [67].

5. Current treatment options to prevent ESKD

5.1. First-line treatments to prevent ESKD

5.1.1. Diet
Dietary care is the foundation of current treatment, and 
detailed narrative reviews and clinical practice guidelines are 
reviewed elsewhere [68,69]. In brief, patients with ADPKD 
should minimize the dietary intake of salt, as additional obser-
vational data suggests that this is likely to reduce renal cyst 
growth and cardiovascular disease complications [70]. In the 
HALT-PKD trial, for every 18mEq increase in the mean urinary 
sodium excretion there was a 0.43%/year rise in ht-TKV (in 
patients with eGFR>60 ml/min/1.73 m2) and faster decline in 
eGFR (−0.09 ml/min/1.73 m2) in patients with advanced dis-
ease (an eGFR between 25–60 ml/min/1.73 m2) [71]. In addi-
tion, a small randomized controlled trial (n = 34) of 2 weeks 
duration in patients with eGFR>60 ml/min, a ~ 30% reduction 
in sodium intake with a ~ 40% increase in fluid intake caused 
a small reduction in serum copeptin (~1 pmol/L) (a surrogate 
marker of AVP) [72].

In contrast, the restriction of dietary protein intake does not 
benefit disease outcomes and should be avoided [73]. With 
regard to caffeine intake, previous studies in animal models 
and clinical studies have shown the potential harmful effects 
of caffeine but recent data does not supported this findings 
[68,69,74–77]. Therefore, caffeine is not contraindicated in 
ADPKD, but patients may avoid excessive intake. The role of 
fluid intake and ketone diets are not known and will be 
discussed in the ‘emerging treatment’ section.

5.1.2. Bodyweight
A post-hoc analysis of the HALT study showed that being 
overweight and obese was independently associated with 
2–3 fold increased risk of rapid kidney cyst growth (TKV≥7% 
per year) and greater eGFR decline [70].

5.1.3. Management of blood pressure
The KDIGO Controversy Conference on ADPKD suggested 
a target BP of ≤130/80 mm Hg in patients with macroalbumi-
nuria (≥25 mg/mmol in males and ≥35 mg/mmol in females) 
or ≤140/90 mm Hg if no macroalbuminuria [59]. The findings 
of the subsequent HALT-PKD clinical trial refined this recom-
mendation and found that a target BP of 95/60 to 110/75 mm 
Hg (vs. 120/70 to 130/80) was associated with a small (1.1%/ 
year) but significant reduction in TKV in young ADPKD 
patients (15–49 yrs old with preserved renal function) over 
8 years (147). Unfortunately, the lower BP target was asso-
ciated with a 16% increase in dizziness and light-headedness, 
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and thus the KHA-CARI ADPKD Clinical Practice Guidelines 
agreed with KDIGO guidelines, and suggested that a lower 
target blood pressure could be considered in selected patients 
[78,79].

Inhibitors of renin angiotensin system (RAS), namely angio-
tensin converting enzyme inhibitors or angiotensin II receptor 
blockers are preferred first-line agents for blood pressure 
reduction [78]. There is limited evidence to guide second-line 
anti-hypertensive choice but the step-wise use of a cardio- 
selective beta blocker; dihydropyridine calcium channel 
blocker and/or or a diuretic, is suggested [79]. In addition, it 
has been shown that nitric oxide (NO) bioavailability is 
impaired in ADPKD and together with oxidative stress 

mediates endothelial dysfunction [80–84]. Thus, future clinical 
trials may investigate NO releasing 3rd generation beta- 
blockers (such as nebivolol) for evaluation in the ADPKD 
population [80–84]

5.1.4. Other first-line interventions
All ADPKD patients should avoid their exposure to nephrotox-
ins (non-steroidal anti-inflammatory drugs, aminoglycosides, 
radiocontrast] or procedures that increase the risk of acute 
kidney injury as experimental data shows that it increase risk 
of renal cyst growth [85]. A single randomized controlled trial 
in young patients (8–22 years) showed that pravastatin mildly 
attenuated TKV over 3 years (21% vs. 30% from baseline, 

Table 2. Seven key elements of medical management in ADPKD.

Reference

1 Provision of comprehensive and multi-disciplinary care involving relevant specialists (primary care provider, nephrologist, 
geneticist, genetic counselor, hepatologist, neurologist, neurosurgeon)

[57]

2 Assessment of high-risk for development of ESKD using factors: 
a. History (family history of ESKD <58 years old; history of hypertension or urological event <35 years old)
b. Renal Function: Stage 2–3 CKD with declining estimated glomerular filtration rate (eGFR)

(i) > 5 ml/min/1.73 m2 or
(ii) >2.5 ml/min1.73 m2 per year over 5 years

c. Imaging data
(i) Renal length > 16.5 centrimetres or

(ii) Height-corrected total kidney volume (Ht-TKV) > 650 millilitres/meter
(iii) Mayo Subclass IC to IE

d. Genetic testing results: Truncating mutation in PKD1 (if known)

[4, 61, 63–65, 65, 
65]

3. Reduce kidney cyst growth and prevent eGFR decline and hypertension 
a. Review life-style factors

(i) Smoking cessation
(ii) Diet: Salt restriction (80–100 mmol/d) and moderate protein intake

(iii) Maintain BMI<25 kg/m2

b. Maintain BP<130/80 mm Hg with Renin Angiotensin System Blocker
c. Maintain total cholesterol <4.0 mmol with diet± drug
d. If diabetic, maintain glycosylated hemoglobin < 53 mmol/mol or 7.0%
e. Avoid nephrotoxic drugs

[57–62]

4 Evaluate for other renal complications 
a. Plan for end-stage kidney if eGFR<30 ml/min
b. Assessment of chronic kidney pain
c. Evaluation of acute kidney pain (cyst infection, cyst hemorrhage, nephrolithiasis, urinary tract infection)

[57–62]

5 Evaluate for eligibility and risk-benefit for treatment with disease modifying treatment (currently tolvaptan) [61]
6 Evaluate for extra-renal complications (cardiovascular disease, intracranial aneurysm) [66]
7 Consider referral to a clinical trial

Table 3. Current, emerging and possible future treatment strategies to prevent ESKD due to ADPKD.

Prevention 
Category Definition in ADPKD Current Treatments

Under Investigation 
(Emerging Treatments) Possible Future Treatments

Primordial Elimination of mutation in genes that cause 
ADPKD

PGD but long-term risks 
unknown

PGD with known long-term risk Advanced and well established 
PGD

Primary Reduce risk of ESKD in patients with 
a mutation in PKD by reducing the 
formation and growth renal cyst growth

Standard Care: Blood 
pressure lowering; Dietary 
modification; Lifestyle 
interventions.

Early Diagnosis 
Standard care ± validated public 
health interventions (vitamin B3, 
prescribed water intake, ketone 
diet)

Diagnosis at birth; Established 
Prediction tools; Established 
treatment pathways

Secondary Reduce the progression of CKD in patients 
with ADPKD by decreasing the rate of 
renal cyst growth, fibrosis and 
inflammation

DMD (Tolvaptan) DMDs (Lixivaptan, Venglustat, 
Bardoxolone, Pravastatin, 
Tesevatinib, Metformin)

Highly effective treatments 
targeting specific pathways 
that are safe, tolerable with 
few side-effects

Tertiary Prevent death due to kidney failure Dialysis (Peritoneal Dialysis 
and Hemodialysis) and 
Transplantation

New technologies in dialysis; 
Engineered organ replacement in 
development

New technologies in dialysis; 
Engineered organ replacement 
established

Abbreviations: PGD, pre-implantation genetic diagnosis; DMD, disease-modifying drug 
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P = 0.02), independent of serum cholesterol [86] but this 
finding was not confirmed in a post-hoc analysis of the HALT 
trial [87]. At present, lipid lowering drugs are not recom-
mended specifically for reducing renal cyst growth and further 
clinical trial data is required.

5.1.5. Effectiveness of first-line treatments
The long-term effectiveness of the combined effects of first- 
line treatments has not been formally investigated. However, 
in patients with a low to moderate risk of renal disease pro-
gression (which may be up to 50–75% of the total ADPKD 
population) the application of first-line interventions may 
potentially curtail the life-time development of ESKD and 
cardiovascular morbidity, if commenced during the first few 
decades of life [88].

5.2. Disease-modifying drugs (DMDs) for patients at 
high-risk for ESKD

DMDs are designed to alter the specific pathobiology of 
ADPKD. Due to the high frequency of adverse events and 
uncertainty of efficacy, current DMDs are restricted to clinical 
trials or in patients at high-risk for ESKD (possibly ~25% of 
patients) who exhibit features of rapid progression (e.g. ‘rapid 
progressor’ or other prognostic factors) despite receiving max-
imal first-line management. To date, three classes of small 
molecule drugs (SMD) have been re-purposed for evaluation 
as DMDs for ADPKD (V2RAs, somatostatin analogs and TORC1 
inhibitors), but only V2RAs have achieved regulatory approval 
for use in ADPKD.

5.2.1. Vasopressin type 2 receptor antagonists (Tolvaptan)
5.2.1.1. Efficacy of tolvaptan in ADPKD. Tolvaptan is an 
orally active V2RA that has regulatory approval in several 
countries for selected patients with ADPKD. Two large multi-
centre RCTs (1–3 years in duration) demonstrated that chronic 
treatment with tolvaptan for up to 3 years reduced decline in 
eGFR (by ~1 ml/min/1.73 m2) and attenuated the increase in 
ht-TKV [89,90] (see Table 4). Tolvaptan reduced the urine 
osmolality to less than 300 mosmol/L (a biomarker of V2 
suppression) [91] but interestingly, the effect on attenuating 
the increase in TKV was not sustained after 1 year of treatment 
[92]. A post-hoc analysis of the TEMPO 3:4 trial showed that 
tolvaptan was also associated with reduction in kidney pain 
events (10.1% vs 16.8% in placebo; P <0.001), largely due to 
a decrease in acute episodes of urinary tract infection, kidney 
stone and hematuria [93].

5.2.1.2. Adverse effects of tolvaptan. Due to off-target sup-
pression of water reabsorption in the distal nephron, the 
universal adverse effect of tolvaptan is aquaresis resulting in 
massive polyuria, pollakiuria, nocturia, thirst and polydipsia. In 
ADPKD clinical studies, the split-dose twice daily dosing of 
tolvaptan (90/30 mg) in patients with CKD Stage 1 or 2, caused 
a mean total daily volume of 7 liters (or a 4 liter increase above 
baseline urine output), and in Stage 4 patients, this was lower 
at 5 liters per day (or a 2 liter increase above baseline urine 
output). The aquaresis requires chronic adaptation in fluid 
intake behavior to avoid dehydration and may be tolerated 

in the long-term by up to 60–75% of motivated patients (e.g, 
those enrolled in clinicals) [94,95]. In addition, in the TEMPO 
3:4 trial, 4.9% of ADPKD patients treated with tolvaptan devel-
oped clinically important idiosyncratic hepatic toxicity (ALT 
levels> 3 times the upper limit of normal) compared to 1.2% 
in the placebo [89]. All episodes were reversible (up to 
4 months later) with interruption or drug withdrawal; unlikely 
to result in chronic hepatocellular injury; and occurred during 
the first 3 to 18 months of treatment [89,96]. A post-hoc 
analysis of the TEMPO and REPRISE trials showed that there 
was a small increased risk for liver function test abnormalities 
when statins are concurrently prescribed with tolvaptan [97].

5.2.1.3. Uncertainties regarding the efficacy of tolvaptan 
in ADPKD. Several publications have raised questions regard-
ing the effectiveness of tolvaptan in ADPKD [98]: (i) first, one 
question raised is that the improvement in eGFR in the tol-
vaptan group in REPRISE was apparent only after drug 

Table 4. Summary of the two key landmark tolvaptan randomized controlled 
trials in ADPKD [89,90].

Study 
Acronym

Study 
Parameters Details References

TEMPO 
3:4

Study 
Population 
Sample 
Size 
Study 
Design 
Primary 
Endpoint 
Secondary 
Endpoints 
Adverse 
Events

18–50 yrs old, TKV>750 ml, 
eGFR>60 ml/min/1.73 m2 

N = 1445 
3 yr, Phase 3, double-blind, 
placebo-controlled randomized 
(2:1) multi-center trial 
TKV: Increase 2.8%/yr in the 
tolvaptan group vs. 5.5%/year in 
the placebo 
Slower decline in kidney function 
(reciprocal of the serum creatinine 
−2.61 mg/ml/yr vs. −3.81 mg/ml/yr; 
P <0.001); lower rates of worsening 
kidney function (2 vs. 5 events per 
100 person-yr, P <0.001) & kidney 
pain (5 vs. 7 events/100 person-yrs 
follow-up P = 0.007) 
Tolvaptan associated with 
aquaresis, hepatic injury and higher 
discontinuation rate (23%, vs. 14% 
in the placebo group).

[89]

REPRISE Study 
Population 
Sample 
Size 
Study 
Design 
Primary 
Endpoint 
Secondary 
Endpoints 
Adverse 
Events

18–55 yrs old (eGFR 25–65 ml/min/ 
1.73 m2) and 56–65 (eGFR 
25–44 ml/min/1.73 m2); and ability 
to tolerate tolvaptan after an 
8-week pre-randomization period 
N = 1370 
1 yr, Phase 3, double-blind, 
randomized placebo-controlled 
(1:1), multi-center trial 
Change from baseline to 1 yr eGFR: 
−2.34 1.73 ml/min/m2 in the 
tolvaptan vs. −3.61 ml/min/1.73 m2 

in placebo, equal to difference of 
1.27 ml/min1.73 m2 P <0.001) 
Sub-groups: benefit highest in 
Stage 3A CKD (eGFR difference 
2.34 ml/min1.73 m2) vs. Stage 3B/4 
(2.34 ml/min1.73 m2), Caucasian 
and age<55 years old 
Overall >80% of participants 
experienced; 10% unable to 
tolerate aquaretic side effects 
during run-in; hepatic Injury (5.6% 
in tolvaptan group vs. 1.2% in the 
placebo group); drug 
discontinuation (9.5% vs 2.2%)

[90]
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discontinuation, raising the possibility that hemodynamic and 
other cofounding factors may partly explain this result [99]; 
(ii) second, the magnitude of the effect size on renal function 
(a difference of ~1 ml/min/1.73 m2) was smaller than tradi-
tional reno-protective therapies, such as angiotensin convert-
ing enzyme inhibitors (e.g. in the REIN study ramipril reduced 
the annual rate of decline in GFR by ~4 ml/min) [100]; (iii) 
third, the reduction in TKV occurs within weeks of administra-
tion but not sustained beyond 12 months [92]; (iv) fourth, the 
long-term benefits of tolvaptan on the hard end-point of 
preventing ESKD is unknown and the data is limited to uncon-
trolled historical cohort analysis [101] or in silico modeling 
studies [99,102]; and (v) fifth, sub-groups (non-Caucasians, 
age> 55 years) may have less or no benefit in reducing renal 
function decline [90]. In addition, other mechanistic questions 
remain: (i) preclinical studies in pck rats suggest that both 
increased water intake and V2RAs could have similar efficacy 
on reducing the kidney enlargement by ~30% [54,103] but 
this has not been addressed in clinical trials; (ii) in vitro studies 
support a direct role for inhibition of AVP on renal cyst 
growth, but it is not known if human renal cysts express V2 

receptors on their basolateral membrane, as hypothesized in 
clinical trials. Thus, further post-marketing cohort studies are 
needed to improve understanding of tolvaptan in ADPKD.

5.2.1.4. Indications for tolvaptan use in ADPKD. Due to 
the adverse effects and uncertainties in the evidence, in 
most countries the prescribing of tolvaptan in ADPKD is 
restricted to those at high-risk of developing ESKD. In 
Australia, patient eligibility for tolvaptan is based, in part, on 
the ERA-EDTA Guidelines [61], and requires three criteria to be 
met: (i) age≥18 years of age; (ii) CKD stage 2–3 (eGFR 
30–89 ml/min/1.73 m2) and (iii) evidence of rapid decline, 
defined as either an eGFR decline of ≥5 ml/min/1.73 m2 in 
one year or ≥2.5 ml/min/1.73 m2 per year over a period of 
5 years. Nephrologists are required to obtain informed con-
sent regarding efficacy and adverse effects, and, the Australian 
Therapeutic Goods Administration mandated that liver func-
tion tests should be checked monthly for the first 1.5 years of 
treatment and then every 3-months thereafter, for the detec-
tion of idiosyncratic hepatic toxicity.

5.2.2. Somatostatin analogs
Although somatostatin analogs (octreotide, lanreotide, pasir-
eotide) reduced renal cyst growth in animal models [104,105], 
current evidence does not support their use to delay ESKD due 
to ADPKD. The ALADIN study (a RCT of 75 patients) showed 
that octreotide transiently reduced the increase in TKV at 
1 year but this benefit was maintained after 3 years 
[104,105]. Moreover, the DIPAK-1 study (191), which compared 
monthly lanreotide (120 mg; n = 153) with standard care over 
2.5 years, showed that there was no change in the decline in 
eGFR (−3.56 vs. −3.46 ml/min/1.73 m2 per year), though the 
rate of increase in TKV was reduced slightly (4.2% vs. 5.6%) 
(192) [104,105]. These data together with the high rate of 
gastrointestinal side-effects and the monthly intramuscular 
route of injections (requiring 18 G needles) does not support 
use of somatostatin analog monotherapy in ADPKD. 
Interestingly, in a genetic mouse model of ADPKD, the 

combination of somatastatin analog with a V2RA was syner-
gistic in reducing cystic disease progression [106] and this 
hypothesis is currently being evaluated in a small quadruple- 
blind single-arm crossover design clinical trial (n = 20) in 
humans (NCT03541447) [107].

5.2.3. TORC1 and src inhibitors
Based on current evidence, TORC1 and Src inhibitors are not 
recommended for the prevention of ESKD. In the case of 
TORC1 inhibitors (everolimus, sirolimus), preclinical studies 
in animal models conclusively demonstrated potent suppres-
sion of proliferation of cystic epithelial cells and reduction of 
renal cyst growth [108]. However, subsequent human clinical 
trials were associated with minimal efficacy [109] due to 
a number of factors: (i) patient drop-outs from adverse events 
(mouth ulcers); (ii) insufficient drug delivered to target tissue 
[110]; and (iii) trial design, as the intervention was initiated 
when kidneys had reached their near-maximal volume [111] 
when efficacy is reduced [108]. Moreover, an additional trial 
testing the efficacy of sirolimus in ADPKD patients with CKD 
stage 3B-4 was terminated prematurely due to multiple safety 
events [112] Nevertheless, as TORC signaling has a critical role 
in mediating kidney cyst growth, perhaps innovative 
approaches to dosing (such as pulsed dose of 3 mg sirolimus 
per week in the Vienna RAP study; NCT020550279 2014–19) 
[113] and/or drug delivery might allow TORC1 inhibitors to be 
re-considered in the future [114,115]. Bosutinib is an oral dual 
Src/Bcr-Abl tyrosine kinase inhibitor used to treat 
Philadelphia chromosome-positive chronic myeloid leukemia 
patients, and reduced renal cyst growth in preclinical models 
[116]. However, in a single phase 2 RCT (n = 172) of ADPKD 
patients, 68% of patients did not complete the study due to 
high rate of drug-related adverse effects (primarily diar-
rhea) [116].

6. Emerging treatment options for the prevention of 
ESKD due to ADPKD

6.1. Public health interventions in the ADPKD 
population

6.1.1. Niacinamide
High-dose niacinamide (vitamin B3) (30 mg/kg/day) reduces 
renal cyst growth in preclinical models of ADPKD by suppres-
sing the sirtuin family of signaling proteins [12]. Two single 
center clinical trials (n = 10, NCT02140814; n = 36, 
NCT02558595) [117,118] evaluating the safety and tolerability 
of niacinamide, have been completed and final results are 
awaited [12].

6.1.2. Water intake
It has been hypothesized that maintaining a water intake of 
greater than three liters per day may reduce the progression 
of renal cyst growth in ADPKD by suppressing AVP release 
[119], and this is supported by preclinical data [120]. However, 
the volume of water required to suppress AVP is dependent 
on amount of dietary solute intake and should be persona-
lized [119]. Although this intervention is low-cost and simple, 
there is no high-level evidence to support this as 
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a recommendation for clinical practice [69]. To date, short- 
term studies (<2 months in duration) demonstrate that vaso-
pressin activation could be reduced at consumption volumes 
that are tolerable to patients [69,72,121]. However, the long- 
term efficacy (on renal function decline and renal cyst growth), 
safety and feasibility of this approach are not known. The only 
available long-term data in humans is a small non-randomized 
observational cohort study (n = 33) which showed that the 
progression of TKV or decline in eGFR in patients who drank 
2.5–3.0 L per day was not different to those who consumed 
lower amounts over 1 year period [122]. This study was non- 
randomized and of insufficient duration and power [69]. 
Currently, two clinical trials are currently in progress to evalu-
ate the long-term efficacy and safety of increased fluid intake 
in PKD [123,124] (Table 5).

6.1.3. Ketone diet, intermittent fasting and/or ketone 
supplementation
There is significant interest in ketone diet and ketogenesis in 
ADPKD. The ketone diet [low carbohydrate (5%) and high fat 
(70%) content] utilizes ketone bodies from the metabolic 
breakdown of fat to generate energy [125]. Alternatively, keto-
sis can be induced by intermittent fasting or administration of 
exogenous ketones [125]. This diet has been popular due to its 

ability to accelerate weight loss and treatment for epilepsies 
and neurological disorders [126]. Recent preclinical studies 
have found that renal cyst formation is largely glucose- 
dependent [127]. Acute fasting in rat, mouse, and feline mod-
els of PKD reduced cyst volume, while oral administration of 
the ketone β-hydroxybutyrate (BHB) in rats strongly inhibited 
PKD progression [127]. Time-restricted feeding, without caloric 
reduction, strongly inhibited TORC1 signaling, proliferation, 
and fibrosis in kidneys in a PKD rat model [127]. These results 
confirmed that cystic cells in PKD are metabolically inflexible 
(Warburg Effect), which could be exploited by dietary inter-
ventions or supplementation with BHB [128]. Moreover, 
a short-term study has concluded that in humans, intermit-
tent-fasting interventions improves insulin resistance, hyper-
tension, and inflammation (but only in the context of 
restricted feeding) [129]. On the other hand, ketogenic diets 
increase the risk of nephrolithiasis [130] and are heavily restric-
tive and difficult to follow for extended periods [131]. Thus, 
the long-term safety, efficacy and feasibility of a ketone diet 
and intermittent fasting needs careful evaluation in clinical 
trials in ADPKD. In this regard, the study protocol of an 
Italian RCT to assess the effect of a ketogenic diet (modified 
Atkins diet vs. normo-caloric diet) (n = 90) on the progression 
of ADPKD was published in early 2020 [132] and others are 
expected.

6.2. Small molecule drugs (SMD) re-purposed for ADPKD

At least eight SMDs (lixivaptan, tesevatinib, venglustat, bar-
doxolone, pravastatin, hydralazine, pioglitazone, metformin) 
are currently under evaluation in clinical trials [133] (Table 
6). Lixivaptan is an orally active and selective V2 receptor 
antagonist that has pharmacological effects identical to tol-
vaptan but predicted to have a lower risk for hepatotoxicity 
[134]. Preclinical studies in the pck rat demonstrate that lix-
ivaptan reduces renal cyst growth [135] and a 1-year double- 
blind randomized clinical trial to evaluate safety and efficacy 
in human ADPKD is anticipated to start in April 2021 and 
finish in 2024 (NCT04064346) [136]. (or KD019) is an orally 
active novel kinase inhibitor that suppresses multiple signal 
pathways regulating mitosis (tyrosine kinase, EGFR) and 
angiogenesis (VEGF-2) and under investigation for the treat-
ment of cancer [137]. Preclinical studies in the pck rat and bpk 
mice support the efficacy of tesevatinib in PKD [138], and 
presently in Phase 2 randomized controlled clinical trial 
(50 mg vs. placebo n = 80) with Ht-TKV as the primary end-
point with the final data expected in 2022 
(NCT03203642) [139].

Tesevatinib (or KD019) is an orally active novel kinase 
inhibitor that suppresses multiple signal pathways regulating 
mitosis (tyrosine kinase, EGFR) and angiogenesis (VEGF-2) and 
under investigation for the treatment of cancer [137]. 
Preclinical studies in the pck rat and bpk mice support the 
efficacy of tesevatinib in PKD [138], and presently in Phase 2 
randomized controlled clinical trial (50 mg vs. placebo n = 80) 
with Ht-TKV as the primary endpoint with the final data 
expected in 2022 (NCT03203642) [139].

Tesevatinib (or KD019) is an orally active novel kinase 
inhibitor that suppresses multiple signal pathways regulating 

Table 5. Long-term clinical trials on water intake in ADPKD.

PREVENT-ADPKD 
STUDY ROGOSIN STUDY References

Trial Registration ACTRN12614001216606 NCT03102632 [123,124]
Nature Multi-center (13 sites) Single center
Rationale Chronic Feasibility, 

Efficacy, Safety 
(Chronic)

Chronic Feasibility, 
Efficacy, Safety

Funding NHMRC 
Danone Nutricia 
The University of 
Sydney, 
PKD Australia 
Westmead Hospital

The Rogosin 
Institute

Sponsor Westmead Hospital The Rogosin 
Institute

Sample size N = 180 N = 32
ADPKD 

Population
18–67 years old 

eGFR≥30 ml/min/ 
1.73 m2

18–65 years old 
eGFR>40 ml/ 
min/1.73 m2 

Urine 
osmolality>400 
mOsm/L

Exclusion Mayo Subclass IA Tolvaptan
Allocation Randomized Sequential, single 

arm
Control Arm Ad libitum water intake Usual water intake 

for 1st 6 months
Treatment Arm Prescribed water intake 

(Personalized to 
achieve target urine 
osmolality < 270 
mOsm/L) + Dietary 
intervention to 
reduce solute intake)

High water intake 
for next 
12 months

Start Date December 2015 June 2017
Finish Date May 2021 December 2021
Follow-up period 36 months 18 months
Primary Outcome Change in Ht-TKV Change in TKV

Abbreviations: NHMRC, National Health and Medical Research Council of 
Australia; PKD, Polycystic kidney disease, Ht-TKV, height-adjusted total kidney 
volume 
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mitosis (tyrosine kinase, EGFR) and angiogenesis (VEGF-2) and 
under investigation for the treatment of cancer [137]. 
Preclinical studies in the pck rat and bpk mice support the 
efficacy of tesevatinib in PKD [138], and presently in Phase 2 
randomized controlled clinical trial (50 mg vs. placebo n = 80) 
with Ht-TKV as the primary endpoint with the final data 
expected in 2022 (NCT03203642) [139].

Tesevatinib (or KD019) is an orally active novel kinase 
inhibitor that suppresses multiple signal pathways regulating 
mitosis (tyrosine kinase, EGFR) and angiogenesis (VEGF-2) and 
under investigation for the treatment of cancer [137]. 
Preclinical studies in the PCK rat and bpk mice support the 
efficacy of tesevatinib in PKD [138], and presently in phase 2 
randomized controlled clinical trial (50 mg vs. placebo n = 80) 
with Ht-TKV as the primary endpoint with the final data 
expected in 2022 (NCT03203642) [139].

Glycosphingolipids (GSLs) are structural components of cell 
membranes that regulate Akt-TORC1 signaling and accumu-
late in experimental models of PKD [140]. Pharmacological 
inhibition reduces cystogenesis in jck, pcy and Pkd1-null mice 
[141]. Currently venglustat, an orally active glucosylceramide 
synthase inhibitor which has been re-purposed from trials in 
Fabry and Gaucher Disease, is in Phase 2/3 clinic trials in 
human ADPKD with final data expected in late 2023 
(NCT03523728; STAGED-PKD Study) [142].

Bardoxolone is a potent antioxidant activator of the Nrf2 
pathway (and suppresses NF-κB) which was initially evaluated 
in Stage 4 CKD due to diabetic nephropathy but a 1.8-fold 
increase in cardiovascular events (due to heart failure possibly 
due to suppression of endothelin signaling) led to early termi-
nation [143,144]. However, the sponsor subsequently 
hypothesized that it may be beneficial in preserving eGFR in 
patients with rare inherited kidney diseases (Alport Syndrome 
and ADPKD) who do not have preexisting significant cardio-
vascular disease [145]. Thus, clinical trials examining this 
hypothesis are concurrently in progress in both Alport 

Syndrome (NCT03019185; the CARDINAL Study) [146], and 
ADPKD (NCT03918447, the FALCON study) [147] and the 
safety of bardoxolone (especially on cardiovascular events 
and effects of increasing eGFR, such as increased albuminuria) 
will be carefully assessed [145].

Several other SMDs (pravastatin, hydralazine, pioglitazone, 
metformin) used widely in clinical practice for managing com-
mon condition have also been repurposed for evaluation in 
clinical trials in ADPKD. For example, preclinical studies 
demonstrate that statins reduce G-protein mediated cell pro-
liferation and renal cyst growth in animal models, and feasi-
bility studies support this hypothesis [86]. Consequently, 
a 2-year randomized controlled trial (n = 200) comparing 
pravastatin (40 mg/day) to placebo is in progress and will 
report on the efficacy on change in TKV (NCT03273413) 
[148]. A smaller open-label study (n = 30) of pravastatin 
(40 mg/day) with or without sodium citrate is also in progress 
and will be completed in December 2020 (NCT04284657) 
[149]. Hydralazine is a well-known anti-hypertensive agent 
that has DNA demethylating properties which may be relevant 
in the pathogenesis of ADPKD [48,150,151]. Thus, a single-arm 
open label pilot study (n = 14) will assess the dose-response 
relationship between hydralazine (5 to 50 mg bd) and DNA 
methyltransferase in PKD patients to determine if urinary poly-
cystin-1 levels will be altered after 6 weeks of treatment 
(NCT03423810) [152]. Pioglitazone is an oral thiazolidinedione 
antidiabetic agent used for adjunctive treatment to type 2 
diabetes, and is a potent agonist of peroxisome proliferator 
activated receptor gamma (PPARγ) [11,13]. Preclinical studies 
demonstrated that thiazolidinediones attenuate renal cyst 
growth in several rat models of PKD (PCK, Wpk and Han:Sprd 
rat) though not in iKspCre-Pkd1del mice [153]. Currently, 
a Phase-2 double-blind cross-over safety trial (n = 18) using 
is in progress with pioglitazone in ADPKD adults and will be 
competed in late 2020 (NCT02697617) [154]. Metformin is 
a well-known anti-diabetic biguanide derivative [155], and 

Table 6. Small molecule drugs in clinical trials in ADPKD.

Study ID SMD MOA
Re- 

purposed Phase n Years Sponsor Reference

NCT04064346 Lixivaptan V2 receptor antagonist Yes 3 Planned 
(n = 1200)

Planned 
(2021–24)

Palladio Bio [136]

NCT03541447 Tolvaptan with 
octreotide

V2 receptor antagonist and 
somatostatin analog

Yes 2 N = 20 2018–2020 Mario Negri Institute for 
Pharmacological  
Research, Italy

[107]

NCT03203642 Tesevatinib Multi-Kinase Inhibitor Yes 2 N = 80 2017–2022 Kadmon Corporation [139,142]
NCT03523728 

(STAGED-PKD)
Venglustat Glucosylceramide 

synthase inhibitor
Yes 2/3 N = 640 2018–23 Sanofi-Genzyme [142]

NCT03918447 
(FALCON)

Bardoxolone Nrf2 activator Yes 3 N = 300 2019–23 Reata Pharmaceuticals [147]

NCT03273413 Pravastatin HMG CoA Inhibitor Yes 4 N = 200 2017–21 University of Colorado, 
Denver, USA

[148]

NCT04284657 
(ADPKD-SAT)

Pravastatin and 
Sodium Citrate

HMG CoA Inhibitor and oral 
alkali

Yes 2 N = 30 2019–20 University of Southern 
California, USA

[149]

NCT03423810 Hydralazine DNA methyltransferase 
inhibitor

Yes 1 N = 14 2018- 
Jan 2020 
(Results 

pending)

University of Kansas 
Medical Center

[152]

NCT02697617 Pioglitazone PPAR-γ agonist Yes 2 N = 18 2016–2020 Indiana University [154]

Abbreviations: PPAR-γ, peroxisome proliferator-activated receptor-gamma; HMG CoA, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase 
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hypothesized to be candidate for the treatment of ADPKD as it 
suppresses cystic fibrosis transmembrane and TORC1 signaling 
[156]. There are some inconsistencies in the preclinical data 
and clinical trial data is needed to evaluate the hypothesis 
[157,158]. Presently two safety and tolerability clinical trials are 
in progress [159,160] and another two trials are expected to 
commence recruiting in 2021 [161,162], including a large 
multi-center international RCT (IMPEDE-PKD) (see Table 7 for 
details).

6.3. Strategies to reduce tolvaptan-induced aquaresis

Reducing the dietary intake of solutes may be a partial determi-
nant of 24-hour urine volume with tolvaptan but this interven-
tion requires repeated educational counseling to implement 
[163,164]. Two studies are currently evaluating the role of redu-
cing dietary sodium and intake tolvaptan-induced aquaresis. 
The Wishing to Decrease Aquaresis in ADPKD Patients Treated 
with a V2Ra trial is a n = 12 cross-over study of 8 weeks will 
examine the effect of regulating dietary salt and protein on 
aquaresis; NCT043102319) [165]. The other is the Dietary 
Intervention in ADPKD on Tolvaptan trial which is a n = 15 single- 
arm study of 3 month duration (NCT03858439) [166]. 
Observational data also indicates that the combined administra-
tion of hydrochlorothiazide may also reduce the severity of 
tolvaptan-induced aquaresis [167]. On the other hand, data 
from the PCK rat suggests that the addition of hydrochlorothia-
zide might also offset the effectiveness of tolvaptan on slowing 
renal cyst growth [168], and therefore prospective study in 
humans is required to evaluate this question.

6.4. Other therapies in development (Other SMDs, stem 
cell-based therapies, 2-deoxyg-glucose)

RGLS4326 (Regulus Therapeutics) is a first-in-class short oligonu-
cleotide that suppresses miR-17 (and de-represses Pkd1/Pkd2), 
localizes preferentially to the kidney and collecting duct-derived 

cells in preclinical studies [169], and currently under review for 
evaluation in human ADPKD. Lumacaftor (VX-809, Vertex 
Pharmaceuticals) is augments CFTR and in preclinical studies 
reduced cyst growth probably through a novel mechanism of 
action of reducing renal cyst fluid secretion [170]. MR-L2 
(Mironid Ltd, UK) is allosteric activator of phosphodiesterase-4 
family that lowers intracellular cAMP levels, and reduces cyst 
growth in vitro [171]. The efficacy of cell-based therapies, such as 
autologous mesenchymal stromal cells (MSCs) and other genetic 
approaches remain unclear. A single-arm phase 1 1 year trial in 
human ADPKD in 6 ADPKD patients [172] revealed no safety 
issues but an experimental data from PCK rats suggest that 
a single dose of MSCs was insufficient to alter the chronic and 
life-long process of cystogenesis [173]. Lastly, a 3-month phase 1 
trial involving 18 ADPKD using 2-deoxy-glucose, based on the 
principal that cystic-lining epithelial cells are predominantly reli-
ant on aerobic glycolysis (Warburg Effect) is in development [11].

6.5. Preimplantation genetic diagnosis (PGD) and In 
vitro fertilization (IVF)

PGD has been increasingly considered and utilized as an 
approach to prevent genetic transmission in families with 
a generational history of severe kidney disease [174]. In 
a survey of 96 UK patients with ADPKD, the majority (>95%) 
were concerned about the risk of genetic transmission and most 
(>80%) were interested in PGD [175]. In China, 40% of ADPKD 
patients (18–45 years old; n = 260 total) did not intend to have 
a family due to fear of genetic transmission but ~80% wished to 
consider PGD [176]. However, there are several questions in the 
use of PGD in ADPKD: (i) the pyschological acceptance by 
patients and availability/affordibility of centers with expertise 
in PGD may be variable [176]; (ii) the ethical dilemma of the 
use of PGD in families predicted to have benign clinical out-
comes in ADPKD requires broader discussion [177]; and. (iii) 
finally, the long-term outcomes of PGD in ADPKD are unknown 

Table 7. Clinical trials of metformin in ADPKD.

Study ID Phase n Design Centers
Expected 

Completion References

NCT02656017 
(TAME)

2 97 RCT: Metformin (1 g/d) vs. Placebo) 
18–60 yrs old; Primary Outcome: Safety 
and Tolerability

University of Maryland,  
Baltimore, USA 
Tufts Medical Center,  
Boston, USA

Dec 2020 [159]

NCT02903511 2 50 RCT: Metformin (1 g/d) vs. Placebo) 
30–60 yrs old; eGFR 50–80 ml/min/ 
1.73 m2; Primary Outcome: Safety and 
Tolerability

University of Colorado,  
Denver, USA

Oct 2020 [160]

NCT03764605 
(METROPOLIS)

3a 150 RCT: Metformin (1 g/d) vs. Tolvaptan (up to 
90/30 mg/d): 18–50 yrs old, PKD1 
truncating mutation, eGFR≥45 ml/min/ 
1.73 m2; Primary outcome: change in 
eGFR over 25 months

Azienda Ospedaliero-Universitaria  
Consorziale Policlinico  
(AOUC), Bari, Italy

Planned 
(2018–2022)

[161]

AKTN 16.01 
(IMPEDE-PKD)

3a 1164 RCT: Metformin (1 g) vs. standard of care in 
adults with CKD Stages 2–3a and rapidly 
progressing ADPKD; Primary outcome: 
Change in eFDR at 104 weeks; 
Commencing early 2021

Royal Brisbane Hospital, University of 
Queensland, Australasian Kidney 
Trials Network and multipe centers 
in Australia, Europe, USA and Asia

Planned (2021–25) [162]
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but will be informed by an ongoing multi-center ESPERANCE 
observational cohort study in China (NCT02948179) [176].

7. concluding

This review, outlining the current and emerging treatments for 
the prevention of ESKD due to ADPKD, has revealed that an era 
of immense translational discovery is unfolding. While current 
treatments are imperfect, in our opinion, the simple approaches, 
such as early diagnosis together with effective implementation 
of proven first-line treatments and validated interventions with 
few side-effects (primary prevention), will probably be sufficient 
to curtail life-time risk of ESKD in individuals with favorable 
prognostic features that are identified during the pre- 
symptomatic stage. In contrast, more complex interventions 
involving DMDs and other specific approaches likely to be 
required for those with markers of rapid disease progression. 
Together these strategies will allow ESKD due to ADPKD to 
become an ultra-rare complication during the 21st Century.

8. Expert opinion on treatment options for the 
prevention of ESKD due to ADPKD

8.1. Expansion of treatment options and refinement of 
V2RAs in ADPKD clinical care

V2RAs have generated renewed interest in ADPKD, leading to 
an abundance of new interventions being evaluated in clinical 
trials, as discussed earlier. Thus, over the next decade, the 
number of proven treatments will expand, providing opportu-
nities to individualize therapy based on personal preferences 
and disease ontology. Moreover, over the next 5 years, ongoing 
post-market cohort studies such as the German ADPKD 
Tolvaptan Treatment Registry (2015–27, NCT02497521); the 
Canadian Medical Assessment of JINARC Outcomes Registry 
(C-MAJOR study, 2016–22, NCT02925221) [178,179] will allow 
the long-term uncertainties of V2Ras in ADPKD to be addressed. 
In addition, studies in sub-groups, such as pediatric ADPKD 
patients [180] and in Korea (the ESSENTIAL trial, 
NCT03949894) [181], will provide much needed data.

8.2. Major barriers in clinical translational research in 
ADPKD can be addressed

The development of tolvaptan required nearly two decades of 
research effort with considerable resource investment but it is 
anticipated future therapeutic advances will be accomplished 
in a more efficient manner. One of the main challenges, of 
course, is that ADPKD is a chronic life-long disease with 
‘deferred consequences’ [182] with a long asymptomatic 
phase [183–185]. The latter situation means that that success 
and adherence to treatment will be influenced by the degree 
of change in behavior required to implement the treatment. 
Moreover, Smith and Sautenet have also emphasized the tre-
mendous research waste associated with non-standardized 
clinical trial designs [186,187]. In this regard, to conduct an 
objective analysis of the research that has been undertaken in 
ADPKD, we performed a preliminary analysis of the character-
istics of clinical trials conducted in PKD over the last 20 years. 
Two surprising observations are important to mention: (i) the 
final results were reported in only ~20% of studies (Figure 2); 
(ii) the global inequity of clinical trials in PKD is shown in 
Figure 3, with the majority of PKD trials performed over the 
last 20 years have been undertaken in North America and 
Europe.

There are several solutions for accelerating research out-
comes and address the challenges mentioned in the above 
paragraph: (i) the core unmet need is an urgent need to 
develop short-term disease-specific biomarkers trial outcomes 
and other computational models that accurately predict long- 
term outcome of ESKD [12,186]; (ii) a second but equally 
important unmet need are ADPKD Registries (such as that 
developed by U.S. PKD Foundation, NCT04039061 which will 
enroll 3000 patients over 10 years) [188] to enable accurate 
tracking of disease outcomes as new treatments are intro-
duced, reveal unmet disease-specific needs and more efficient 
recruitment to clinical trials; (iii) the selection of re-purposed 
drugs for clinical trials must be based on compelling preclini-
cal and pilot data (as it was for V2RAs) together with better 
understanding of long-term tolerability; (iv) new trials should 
increase efficiency through innovative design (such as prog-
nostic enrichment, cross-over, adaptive, platform, pragmatic, 
N-of-1) together with consideration of convenience to 

Figure 2. Characteristics of clinical trials performed in ADPKD in the clinicaltrials.gov database [14] between 2000 to 2020. A total of 126 clinical trials in ADPKD were 
recorded during this period involving 53,942 patients. The majority of studies were interventional (n = 90) (Panel A) and had been completed (n = 63) (Panel B) but 
only 21 studies had results reported (Panel C). The hatched areas indicate the studies which have results reported. The data was accessed from ClinicalTrials.gov 
website in September 2019 and analyzed using Excel and JMP Statistical Software (version 14.0).
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participants (e.g. using remote and virtual monitoring of end-
points, simplification of outcome measures) [189]; (v) govern-
ment funding to support interventions without commercial 
value (e.g. vitamin B3, fluid intake, re-purposed drugs); (vi) 
perhaps in the long-term re-configuration of roles played by 
industry and government in drug development for rare inher-
ited diseases is needed, as suggested by Chandra [190]; and 
finally, (vii) given that treatment responses to DMDs vary 
across populations [89], the establishment of global research 
networks, such as the RAPID-ADPKD consortium in the Asia- 
Pacific, are needed to address this problem [191].

8.3. Need for earlier pre-symptomatic diagnosis and 
enhanced health-service delivery

Finally, while the current treatments to prevent ESKD due to 
ADPKD are not ideal, better outcomes could also be also 
achieved by implementing two high-value strategies: (i) 
enhancement of the delivery of medical care [192]; and (ii) ear-
lier diagnosis and follow-up (e.g. reducing the average age of 
diagnosis from 35 years old [30]). In this regard, policy initiatives, 
such as the ADPKD Road Map by PKD International, and govern-
ment-ADPKD community partnerships will ensure that these 
strategies remain at the forefront [193].
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