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Abstract. Experimentation with simulations of complex sys-
tems can be used to gain insights into those systems’ nature
and operation. Such in silico experimentation represents a valu-
able tool that can complement conventional in vivo experimenta-
tion. Validation of a simulation’s representation of the real world
system remains an open question in complex systems research.
As the engineer of a complex system simulation, demonstrating
one’s understanding of the complex system through the creation
of models which can be validated by a domain expert affords
some degree of confidence that the results obtained through in
silico experimentation are representative of the real world sys-
tem. As a precursor to the creation of simulations of experi-
mental autoimmune encephalomyelitis, a complex autoimmune
disease in mice, we present here a model of the disease. The
models are expressed using UML, and their construction has af-
forded insight into UML’s expressive capabilities when applied
to complex system modelling.

1 Introduction

Experimental Autoimmune Encephalomyelitis (EAE) [14, 15] is an au-
toimmune disease in mice that serves as a model for multiple sclerosis in
humans. The disease, and its subsequent spontaneous recovery, is com-
plex. A large number of immune system cells interact with one another
across several bodily compartments to mediate both EAE autoimmunity
and its recovery. As is the case with many complex systems EAE is diffi-
cult to understand through a reductionist scientific approach alone. The
construction of models and simulations of the disease can afford insights
into the disease’s behaviour and can guide wet-lab experimentation to
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points of interest. Experiments that would be difficult to engineer in vivo

can be engineered into a simulation with relative ease. Simulations per-
mit the investigation of hypotheses concerning the disease’s operation
within the context of known biological data.

A major concern for in silico experimentation using a simulation
is the simulation’s validity. It is important that one can demonstrate
that the results obtained through experimentation with a simulation are
representative of the in vivo system. How to demonstrate the validity
of a simulation remains an open question in complex systems research.
The CoSMoS project4 [1] purposes to develop general principles for the
creation and validation of models and simulations of complex systems
[2]. The project is developing “the CoSMoS process”, an approach to
the engineering of complex systems that proposes the construction of
models of the complex system as a prerequisite to the construction of
any simulations of it.

It is critical that the developers of a complex system simulation pos-
sess a decent5 understanding of how the system works. By developing
models of the complex system this understanding can be demonstrated,
and can be validated by a domain expert. The construction of such mod-
els frequently necessitates examination of the complex system from an-
gles that might not otherwise be considered, and can raise further ques-
tions of its operation. The models themselves can form a specification
for the construction of a complex system simulation. Validation of a
simulation’s specification (models) by a domain expert can go some way
towards instilling confidence that the simulation is representative of the
real world system.

The unified modelling language (UML) is a collection of diagram-
matic tools that are were designed for the purpose of specifying software
systems. It has been suggested that UML holds potential for modelling
biological systems [6]. In this paper we present a model of EAE expressed
using UML. By employing UML in this fashion we have identified several
strengths and weaknesses of the language when expressing complex bio-
logical systems, some of which are outlined in [19]. We find that although
UML incorporates several mechanisms that are useful in expressing EAE,
such as activity diagrams and state machine diagrams, there are aspects
of the biological system that UML cannot satisfactorily communicate.
For example, feedback mechanisms that manifest through populations

4 The CoSMoS project, EPSRC grants EP/E053505/1 and EP/E049419/1,
http://www.cosmos-reseach.org.

5 A “complete” or “detailed” understanding is not always possible, since at-
tempting to resolve uncertainty concerning the system’s nature is one mo-
tivation for developing the simulation in the first place.
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of cells that amplify and counteract each other’s operation. Through
constructing the present domain model of EAE we have identified some
general principles and approaches for applying UML to modelling com-
plex systems. The models we present here serve as an example of how
to create a domain model of a complex biological system.

Section 2 details the CoSMoS approach to developing models and
simulations of complex systems. Section 3 provides a detailed account
of EAE and its recovery. Section 4 introduces UML. In Section 5 we
present the model of EAE, highlighting the assumptions we have made
in its creation, and how UML has been employed in the generation of
the models. Section 6 concludes the paper.

2 CoSMoS Process and the Domain Model

The CoSMoS project is concerned with the development of a modelling
and simulation infrastructure that facilitates the design and analysis of
complex systems [3]. Ongoing work within CoSMoS seeks to develop
a “minimal process” for the development of models and simulations of
complex systems. The creation of accurate models and simulations is
non-trivial, and demonstrating that they are representative of the real
complex systems that they attempt to capture is critical to their use in
research. The minimal process represents a first step towards building
validated models of complex systems.

Figure 1 shows the minimal process as it currently stands. The do-
main represents the real-world system of interest, in this case EAE. The
models and simulations constructed attempt to capture behaviours and
properties exhibited by this real world system.

The domain model details the current understanding of the biological
domain as held by the modeller. It captures the behaviours present in
the biological domain that the modelling and simulation process hopes
to investigate. A domain model may span multiple levels of abstraction,
from the high level depiction of perceived emergent behaviours exhib-
ited at a system-wide level, to the low-level entities of the system and
how they interact with one another. The model should be free from any
implementation-specific bias. Validation of the domain model is impor-
tant, and is carried out by a domain expert. If the domain model is
invalid, then the understanding that the modeller has of the system is
most likely incorrect, and any simulation built upon that understanding
is unlikely to be representative of the real biological domain.

The software model is constructed from the concepts captured in the
domain model. It is tailored toward the design and implementation of the
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Fig. 1. The CoSMoS minimal process for the development of complex systems
simulations [4].

simulator itself; explicit notions of emergent properties and behaviours
are removed, and implementation specific concepts may be introduced.

The simulation model is derived through observations of and experi-
mentation with the simulation. The simulation model is to the simulation
what the domain model is the domain. Validation can be performed be-
tween the domain model and the simulation model; if the simulation
correctly captures the desired behaviours present in the domain, then
the simulation model should closely resemble the domain model.

The nature of complex systems research dictates that there will ex-
ist unknown aspects of the system that no domain expert can be sure
of. One of the motivations in creating models and simulations of the
system is to bring these areas to light, but where no certain answer
currently exists an assumption must be made. Likewise, it is infeasible
to model and hence reason about every aspect of a complex system sys-
tem; abstracting away from complexity believed not to be integral to the
system’s behavioural dynamics is essential. Whenever an abstraction is
made to simplify the system there entails an implicit assumption that the
abstraction will not compromise the simulation/model’s capture of the
behaviours present in the real-world system. These assumptions should
be recorded and validated by the domain expert as being appropriate
and sensible. If the simulation fails to properly capture the behaviours
of interest, then it is likely that an assumption was inappropriate, and
it should be readdressed. Thus, the minimal process is iterative.

It is important to recognise and document the questions and issues
that one hopes to address through modelling and simulating a complex
system. The nature of the assumptions and abstractions that are made
in constructing models and simulations of a complex system are moti-



A Domain Model of EAE 13

vated by what those models and simulations are to be used for. The
assumptions and abstractions must be appropriate for the problem at
hand.

In the event that a simulation fails to capture a complex system’s
emergent properties, yet all abstractions and transitions between the
minimal process’s models were deemed just and appropriate by a do-
main expert, then it may hold that some higher level hypothesis upon
which the simulation was built is incorrect. It is essential that the sim-
ulation’s world be properly delineated. There exists a huge variety of
interacting elements in a biological system, and accurately simulating
all of them is impractical. At its highest level the domain model assumes
a hypothesis over which elements in the complex system are responsible
for the manifestation of some target abstract behaviour, and thus which
elements it will represent. It is plausible that this hypothesis itself will
prove to be incorrect, hence the importance of documenting it.

3 Experimental Autoimmune Encephalomyelitis

In this section we provide a detailed description of experimental autoim-
mune encephalomyelitis and its subsequent recovery. The information
provided here provides the basis for the domain model that follows.

3.1 Autoimmunity

Experimental autoimmune encephalomyelitis (EAE) is an autoimmune
disease in mice that serves as a model for multiple sclerosis in hu-
mans [14, 15]. The disease constitutes the body’s immune system attack-
ing myelin, an insulator material that covers the neurons of the central
nervous system (CNS) and is essential to their function. Damage to the
CNS through demyelination can lead to paralysis and death [16].

Figure 2 presents an informal depiction of how EAE is induced thr-
ough immunisation with MBP, a myelin derivative. The immunisation
is accompanied by complete Freund’s adjuvant (CFA) and pertussis
toxin, both immunopotentiators which stimulate the immune system.
The immunisation occurs subcutaneously. The phagocytosis of MBP
by dendritic cells (DCs) resident in the periphery leads to its presen-
tation as MHC-I-MBP and MHC-II-MBP molecules on the DCs. The
CFA and pertussis toxin stimulate the DCs, and they up-regulate co-
stimulatory molecule expression and migrate to the secondary lymphoid
organs. There populations of naive autoimmune MBP-reactive CD4Th1
and CD4Th2 cells bind with MHC-I-MBP as expressed on the immi-
grant DCs and derive signal 1. The high level of co-stimulatory molecule



14 Read, Timmis, Andrews and Kumar

Fig. 2. An informal depiction of how EAE is induced.

expression by these DCs delivers signal 2 to the CD4Th1 and CD4Th2
cells resulting in their activation. MHC-I-MBP molecules, as expressed
by these same DCs, are bound by MBP reactive CD8 cytotoxic T (Tc)
cells. With help of the MBP-reactive CD4Th1 cells these Tc cells become
fully activated.

The now activated CD4Th1, CD4Th2, and CD8Tc cells migrate
to the CNS compartment. The CD4Th1 and CD8Tc cells secrete pro-
inflammatory type 1 cytokines such as IL-2, INF-γ, and TNF-β [13].
These cytokines represent an inflammatory context to resident antigen
presenting cells (APCs) such as macrophages and microglia which be-
come stimulated. When stimulated these CNS APCs secrete TNF-α,
reactive oxygen species (ROS), and nitric oxide (NO), all of which are
toxic to neurons in high doses [11, 18, 22]. Neurons contain MBP, and
those that are killed in this manner are subsequently phagocytosed by
CNS APCs, which then express MHC-I-MBP and MHC-II-MBP. The
inflammatory conditions in the CNS prompt these APCs to upregulate
co-stimulatory molecules, and hence induce the full activation of naive
CD4Th1, CD4Th2, and CD8Tc cells that result from proliferation in the
CNS.

The CD4Th2 cells secrete type 2 cytokines such as IL-4, IL-5, and
IL-10. Type 1 cytokines suppress Th2 cell activity, and type 2 cytokines
suppress that of Th1 cells, reducing the cells’ proliferative and differenti-
ation capabilities [13]. During the course of EAE autoimmunity the Th1
cell population is dominant, they have a higher affinity for MHC-I-MBP
(bindings are stronger and last longer, resulting in less failings to receive
signal 1 before the bindings are broken) and proliferate more quickly.
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3.2 Regulation-mediated recovery

A network of immune cell interactions can mediate recovery from EAE,
and is depicted (at an abstract level) in Figure 3. The physiological
turnover of CD4Th1 cells results in their apoptotic death, and subse-
quent phagocytosis by APCs (such as the dendritic cell) in the CNS
draining lymph nodes. Two regions of the T cell receptor (TCR) of
MBP-reactive CD4Th1 cells form peptides that are presented on MHC
molecules by the APC to prime two populations of regulatory T cell
(Treg). These two regions are complementarity determining region 1/2
(CDR1/2) and Fr3, which are presented on non-classical MHC-I (Qa-
1) and MHC-II respectively. Binding of MHC-II-Fr3 by Fr3-reactive
CD4Treg cells leads to their receipt of signal 1. Molecules generated by
the inflammation in the CNS drain into the draining lymph nodes and
stimulate the APCs that reside there to upregulate their expression of
co-stimulatory molecules. This upregulated expression of co-stimulatory
molecules delivers signal 2 to the CD4Treg cells. When activated, and
upon binding with MHC-II-Fr3, CD4Treg cells secrete INF-γ, which is
required for the processing and presentation of CDR1/2 on non-classical
MHC-I (Qa-1) molecules by the APC [23]. This phenomenon is called
“licensing” of the APC by the CD4Treg.

CD8Treg cells bind with MHC-I-CDR1/2 as expressed on APCs res-
ident in the CNS’s draining lymph nodes and derive signal 1. The high
level of co-stimulatory molecule expression on these APCs allows the
CD8Treg cells to derive signal 2, becoming fully activated. For a short
period of time, around eight hours, following their initial activation
CD4Th1 cells express MHC-I-CDR1/2. If this is bound by a fully ac-
tivated CD8Treg cell the Treg cell can induce the apoptotic death of the
CD4Th1 cell.

On a population-wide scale this rise in CD8Treg cell population num-
ber leads to a reduction of CD4Th1 number. This occurs in the circu-
latory system and lymphoid organs such as the spleen; however, Treg
cells have not been identified in the CNS, hence this regulation is not
assumed to occur there. The transient expression of MHC-I-CDR1/2 by
CD4Th1 cells renders them susceptible to regulation for only a short pe-
riod of time into their full activation. Once this period of time has passed
these cells are still susceptible to death through the Fas-FasL pathway.
Once activated T cells begin to upregulate their expression of both Fas
and FasL on their cell membranes. Sufficient bindings between these two
types of molecule can induce a cell’s death. Apoptotic death though the
Fas-FasL pathway is called activation induced cell death (AICD). The
decline in CD4Th1 population number through regulation results in a
global reduction of type 1 cytokines being produced. This reduction al-
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Fig. 3. An informal depiction of all the cells involved in EAE and its
regulation-mediated recovery, and their relations to one another.

leviates the suppression of the CD4Th2 population, which then expands
and assumes dominant status. The activity of MBP-reactive CD4Th2
cells is not toxic to neurons, and their population expansion does not
result in EAE.

4 The Unified Modelling Language

The unified modelling language (UML) [17] is a collection of diagram-
matic modelling tools designed to aid the specification and construction
of software systems. The diagrammatic tools incorporated within UML
provide a wide range of specification scopes, from the relationships held
across an entire software system, to full low-level expression of a single
system entity. UML diagrams can represent both static and dynamic
views of a system. Static views depict the relationships that system enti-
ties may hold with one another, whilst dynamic views express the collab-
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orations between system entities and the changes to their internal states
(which influence their external behaviours).

This multi-viewed approach to specifying systems has made UML a
popular modelling tool, and it finds application outside of the software
domain within which it was conceived. There have been numerous at-
tempts to model biological systems using UML, for example, [2, 6, 9, 20]
[7, 12]6.

In total UML describes 13 different modelling notations [8]. In the
domain model presented here we make use of class diagrams, activity
diagrams, and state machine diagrams. An assessment of the use of var-
ious UML diagram notations in creating the present domain model is to
appear in ICARIS 2009 [19].

Class digrams depict the static relationships between entities in the
system. Relationships can be assigned a role name, and cardinalities at
both ends of the relationship indicate how many instances of each entity
may partake in a relationship at any one point in time.

Activity diagrams represent a dynamic view of a system, and indicate
an ordering of events between instances of system entities that occur
within a particular scenario. The events (called activities) depicted in
an activity diagram may be any abstract concept.

State machine diagrams are a dynamic view of individual entity types
in the system. All instances of a particular entity follow the dynamics
defined for their type. State machine diagrams describe the states that
an entity may exist in. An entity’s state determines which events and in-
teractions it is capable of partaking in. States can be mutually exclusive,
orthogonal, and hierarchical.

5 Domain Model of EAE

This section presents the domain model of EAE and its regulation. As
detailed in section 2, the abstractions and assumptions that are made
in arriving at a simulation of a complex system are heavily dependent
on the intended purposes of the simulation, and so we document these
purposes here.

The models and simulations we are constructing are for the purposes
of conducting in silico experimentation. Through construction of a sim-
ulation of EAE that intergrates known biological data about the disease
we hope to extrapolate the potential values of otherwise unknown biolog-
ical parameters. This is elaborated upon in section 5.2. Once constructed,

6 These works used state charts [10] as their modelling medium. State charts
are very similar to the state machine diagrams of UML.
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it is trivial to remove or alter the nature of entities in the simulation.
By observing the altered dynamic of the system we hope to ascertain
the importance of those entities to the system’s behaviour. As an ex-
ample, we can experiment with the length of time that a recently acti-
vated CD4Th1 cell expresses MHC-I-CDR1/2 for, and observe how the
system’s behavioural dynamics are affected by this change. Such exper-
imentation is extremely challenging to engineer into an in vivo system,
yet is relatively trivial to perform through simulation. By performing in

silico experimentation we hope to highlight areas of significance within
the system that can then be used to direct wet-lab experimentation to
points of interest.

5.1 Delineating the system

As detailed in section 2, it is essential to delineate the system of inter-
est; modelling and simulating an entire biological system is intractable.
Figure 4 denotes the observable phenomena of the real-world domain.
Argument over these phenomena is deemed to be outside the scope of
this modelling work. “Autoimmunity” is an overloaded term which im-
munologists may disagree over the exact origins of; there is more than
one form of autoimmunity. This diagram delineates the system we in-
tend to model in exact terms, both the physical entities within it and the
behaviours we expect them to manifest, omitting overloaded definitions
such as “autoimmunity”. Note that Figure 4 does not conform to any
UML notation.

The diagram explicitly depicts several levels of hypothesis that the
model and simulation will incorporate. The transitions across the dotted
line depict our hypotheses concerning those abstract behaviours/events
that we believe to be responsible for the observable phenomenon. These
transitions delineate the outer bounds of our investigations; we will not
attempt to investigate whether anything other than our “expected be-
haviours” are responsible for the observable phenomenon. Our investi-
gations are scoped within the context of these expected behaviours, as
indicated on the diagram. It is these expected behaviours that we are at-
tempting to capture in our models and simulations. The transitions over
the dotted line indicate how the work carried out with our simulations
fits into the wider context of study on EAE and autoimmunity.

Further hypotheses are detailed in the links between the expected
behaviours and the real physical entities of the system. These links indi-
cate which entities in the real-world system we believe to be responsible
for manifesting the expected behaviours, and will thus find explicit rep-
resentation within our system. The “expected behaviours” are so named
because we expect these system-wide behaviours to manifest from the
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lower level entities and their interactions, as depicted on the diagram
(albeit at an abstract level).

In our case the observed phenomena are that mice experience paraly-
sis from EAE, and that the immune system is regarded as being respon-
sible for carrying out damage to the central nervous system. Mice can
recover from EAE spontaneously. Following recovery mice are typically
insusceptible to further attempts to induce EAE autoimmunity in them.

We hypothesise that “autoimmunity against the CNS” is caused by
the behaviour of immune cells harming central nervous system (CNS)
cells. This behaviour manifests through the actions of several immune
cells. Dendritic cells activate auto-reactive CD4 Th1 cells, which in turn
facilitate the activation of CD8 Tc cells, which together stimulate CNS
Macrophages into secreting molecules that are toxic to neurons (CNS
Cells). These actions are all quite abstract, and are expanded upon in
other diagrams, as discussed below.

Of note is that one of the observable phenomena is not linked to an
expected behaviour. We are unsure as to what is responsible for “protec-
tion against subsequent attempts to induce autoimmunity against CNS”.
Two possibilities include the establishment of an equilibrium between
the rise of CD4Th1 cells and their apoptotic death through regulation,
or the action of memory Treg cells that efficiently subvert the onset of
autoimmunity before significant damage is caused.

Figure 4 is an alternative to another technique of expressing the ex-
pected behaviours or emergent properties of a system; Garnett et al. [9]
have represented the emergent property that their simulations attempted
to capture as a first class entity on a class diagram. We have found this
technique unsuitable for EAE; a class labelled “autoimmunity” or “reg-
ulation” cannot be instantiated in the same manner that class labelled
“dendritic cell” can be, yet their representation as such would imply
same semantic behaviour. Instead, through Figure 4, we have captured
the system-wide behaviours of autoimmunity and regulation as unique
abstract entities and linked them to the physical components in the sys-
tem responsible for their manifestation.

5.2 Validating models and simulations

A central issue for validation of a simulation of a complex system, and re-
sults obtained thereof, is identifying how well it captures the behaviours
exhibited by the real world system. In the case of EAE there is no avail-
able metric to measure how well “autoimmunity” has been captured. In

vivo experimentation defines a scale based upon the degree of paraly-
sis experienced by a subject. Since modelling and simulating the entire
mouse is unmanageable, a parallel of this metric for the simulation is not
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possible. It is unknown how much “damage” to a central nervous system
in terms of neuron death corresponds to a particular degree of paralysis,
so although neurons can find explicit representation within a simulation
the extent to which they are attacked by the immune system cannot be
used as a metric either.

Through interaction with a domain expert a timeline of significant
events that can be observed within the in vivo system can be devised. In
the case of EAE these events are depicted in Table 1. They correspond
with observations made at the cell population level. This timeline can
potentially be used to validate a simulation’s capture of EAE; if the
population dynamics within the simulation match those of the timeline,
and if the the behaviours of entities represented within the simulation
are validated by the domain expert, then some level of confidence that
the simulation is representative of EAE can be obtained.

The nature of current immunological research dictates that not all
biological parameters are known, and some will be subject to controversy
within the field. This is the case with EAE, and presents a problem for
any simulation that attempts to capture it. The present domain model
details which biological parameters are and are not known; see Table 2.
Those that are known can be incorporated into a simulation, whilst those
that are not will be subject to experimentation. Given the timeline of in

vivo EAE, and that the behavioural dynamics of the cells that mediate
it are validated by a domain expert, correct values for the unknown
biological parameters should recreate the timeline within the simulation.
This hinders on the assumptions that have been made in arriving at the
simulation being appropriate and valid, as indicated by a domain expert.
Documenting these assumptions is critical for determining the validation
of models and simulations. Appendix A captures the assumptions made
in the present domain model.
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Fig. 4. This diagram details: the observable phenomenon of the biological domain; the behaviours that we hypothesise to be
responsible for those phenomenon; and, at an abstract level, which physical entities of the real-world biological domain we
believe to be responsible for manifesting those behaviours. Note that there are not formal semantics attached to this diagram.
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Time Event

0 days Immunisation with MBP, CFA, and pertussis toxin
in the periphery

3-5 days Detectable proliferation of CD4Th1, CD4Th2, and CD8Tc
cells in the secondary lymphoid organs

5-7 days Detectable proliferation of CD4Th1, CD4Th2, and CD8Tc
cells in the CNS

10-15 days Visible paralysis of mouse
10 days Detectable proliferation of CD4Treg and CD8Treg cells

in secondary lymphoid organs
30-40 Recovery from EAE.

Table 1. The key population level events in EAE and its regulation-mediated
recovery.

Event Time

Delay in phagocytosis of substance to its
appearance on MHC 1-2days
Delay in upregulation of co-stimulatory
molecules following stimulation of APC ∼2 hours
Persistence of Qa-1-CDR1/2 on CD4Th1 cell
following activation ∼8 hours
CD4Th2 cell dies from AICD after initial
activation after ∼8 days
Stimulated, activated CD4Th2 cell
proliferates every ∼3 days
Other T cells die from AICD after
initial activation after ∼5 days
Other activated T cells, given sufficient
stimulation, proliferate every ∼2 days

Persistence of MHC-peptide on APC membrane unknown
Lifetime of DC unknown
Half life of cytokine (this is the case
for all cytokines in the domain model) unknown

Table 2. The time taken for key events within EAE to occur. Some of these
biological parameters are not known.
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5.3 Modelling expected behaviours

The expected behaviours of autoimmunity (“Immune system cells harm
CNS cells”) and regulation, as depicted on Figure 4, represent system-
wide behaviours that manifest from low-level interactions between cells.
Activity diagrams represent a powerful medium in which to express how
these scenarios occur. The activity diagrams in Figures 5 and 6 depict the
order in which events at the individual cell level occur for autoimmunity
and regulation to manifest. Figure 7 shows how the single cell events in
regulation (Figure 6) translate to deviation from autoimmunity at the
system-wide level.

The events depicted as activities in these activity diagrams are ab-
stract concepts. They do not themselves specify the behavioural dynam-
ics of individual cells given a range of scenarios; that is accomplished
through use of state machine diagrams, discussed below. The activity
diagrams are very effective at showing how the individual cell-level dy-
namics expressed in state machine diagrams integrate to constitute a
system-wide dynamic. EAE contains many cascades of events, and the
top level behaviours manifest from the interactions of population dynam-
ics which themselves manifest through the concurrent actions of many
individual cells. Of all the diagrams defined within UML, activity di-
agrams are the most expressive in terms of depicting a break down of
system-wide dynamics.

From the activity diagrams that depict scenarios within the system,
class diagrams that represent a static perspective of the scenario can
be created. Figures 8 and 9 represent class diagrams of EAE and reg-
ulation respectively. Class diagrams are concerned with expressing the
relationships that entities in the system hold with one another, and the
number of entities that take part in those relationships at any particular
point in time. These diagrams are somewhat informative for EAE and
its recovery; however, reasoning about the system in a static manner
is not as informative to its operation as is examination from a dynamic
viewpoint. Ordinarily there is little to constrain the number of biological
entities that attempt (either successfully or not) to partake in a partic-
ular interaction at a time, and this can potentially manifest in “0..*”
cardinalities on class diagrams (note that in diagrams 8 and 9 this is not
the case, due to assumption 1). “0..*” cardinalities appearing all over a
diagram can perhaps convey that the system is complicated, but they do
not highlight how the system operates. Furthermore, in biology there is
relatively little to stop anything from attempting to interact with any-
thing else, and many such interactions produce effects. This can lead
to highly connected class diagrams that are difficult to interpret in a
meaningful manner. The approach taken in Figures 8 and 9 has been to
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represent partial class diagrams that depict a subset of the entire system;
in this case delineated by how low level entities manifest different high
level system-wide behaviours.

5.4 Capturing low-level dynamics of system entities

State machine diagrams are used to depict low-level behavioural dynam-
ics, and are constructed for all entities that either actively change the
state of the system, or those that play important roles in mediating
system dynamics.

Correctly capturing the dynamics of a complex biological entity, such
as a cell, on a two dimensional diagram can prove challenging. The dy-
namics of a cell exhibit high dimensionality, and the dimensions are not
necessarily completely independent. As an example, Figure 10 shows the
state machine diagram for a CD4Th1 cell. The locations in which the
CD4Th1 cell may reside are depicted as a mutually exclusive set of states
that are orthogonal to the rest of the cell’s behaviour; however this is
not really the case. The state transitions that depend on binding with
MHC-II-MBP complexes can only occur when the cell is in the SLO
or CNS compartments, since these are the only locations in the model
where APCs reside. Depicting this diagrammatically would make the di-
agram very cluttered. The use of guards for relationships such as this
would add to the complexity of the diagram. This particular example
is covered by the case that the state machine diagrams of the dendritic
cell and CNS macrophage (Figures 15 and 16) indicate where they can
reside. However, the purpose of these models is to be informative and
transparent; excess complexity should be avoided.

There are behavioural aspects that are impossible to represent thr-
ough conventional use of state machine diagrams. For example, Figure
15 presents the state machine diagram for a dendritic cell. The levels
of MHC-I-peptide presentation are dependent on: being licensed by a
CD4 T cell; the quantity of peptide available within the cell for presen-
tation; the level of stimulation within the cell, which is itself dependent
on the perception of CFA and type 1 cytokines. Exactly how these vari-
ables interact with one another to dictate MHC-I-peptide presentation
is not completely clear; resolution of these unknowns will require exper-
imentation with the simulation and interaction with the domain expert.
However, even if this were not the case, state machine diagrams incorpo-
rate no way for us to represent these complex relationships and variable
values without the use of equations or significant quantities of text.

Several of the state machine diagrams presented here incorporate a
single state with no transitions to alternative states that is orthogonal
to the others, for example “express MHC-II-peptides” on Figure 16. It
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Fig. 5. Activity diagram representing the order of low-level inter-cellular
events that lead to EAE.
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Fig. 6. Activity diagram representing the order of low-level inter-cellular
events that lead to regulation mediated recovery from EAE. This diagram
leads into Figure 7
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Fig. 7. Activity diagram representing regulation mediated recovery from EAE.
This diagram follows from Figure 6.

Fig. 8. Class diagram depicting the entities responsible for EAE.
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Fig. 9. Class diagram depicting the entities responsible for regulation mediated
recovery from EAE.

is unconventional to express only one state in this manner, but the ap-
proach has been useful in depicting certain activities of cells.

It has proven useful to construct state machine diagrams of entities
that do not necessarily carry state. For example, Figures 19 and 18 re-
spectively show the locations in which MBP molecules may reside, and
the effects that INF-γ has on cells the perceive them. These aspects do
not necessarily comprise internal states of the molecules portrayed in
the state machine diagrams. However, since these system elements me-
diate the actions of other elements that do carry state, then it can be
informative to depict the system from their perspective.

Several of the state machine diagrams in this model depict the physi-
cal locations in the model where a cell may reside. It can be argued that
a cell’s physical location is not part of its internal state, but depicting it
in this manner is informative. A similar approach has been used by [9].
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Fig. 10. State machine diagram of a CD4 Th1 cell.
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Fig. 11. State machine diagram of a CD4 Th2 cell.
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Fig. 12. State machine diagram of a CD8 Tc cell.
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Fig. 13. State machine diagram of a CD4 Treg cell.
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Fig. 14. State machine diagram of a CD8 Treg cell.
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Fig. 15. State machine diagram of a dendritic cell.
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Fig. 16. State machine diagram of a CNS macrophage.
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Fig. 17. State machine diagram of a CNS cell.

Fig. 18. State machine diagram of INF-γ, a cytokine.
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Fig. 19. State machine diagram of MBP.
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5.5 Representing feedback

Activity diagrams can demonstrate the order in which critical interac-
tions and events must take place for a high level behaviour to manifest.
However they (incorrectly) imply that one activity stops and another
starts. In reality the entity responsible for a preceding activity does not
hand off control to that which follows, it continues and can potentially
perform the same activity again. This concurrency amongst system ele-
ments can manifest in feedback, where an increasing number of elements
engage in some activity.

To give two examples in the context of Figure 5, a fully activated
CD4Th1 will not stimulate a single CNS macrophage and then stop, it
will repeat this process. Likewise, the death of a CNS cell (through the
secretion of TNF-α, ROS, and NO by a CNS macrophage) will lead to
its phagocytosis by a CNS Macrophage, which then presents MBP to
additional naive CD4Th1 cells, facilitating their activation and accel-
erating the progress of EAE. This latter feedback can further amplify
the effect of the former. Relative population dynamics play a significant
role in EAE (for example, consider the interplay between CD4Th1 and
CD4Th2 cells) and it is important to communicate this information in
the domain model. Depicting these feedbacks, and others like them, on
the activity diagrams will significantly clutter it; as yet we have found
no mechanism within UML to satisfactorily express these feedbacks and
the interplay between them.

6 Conclusion

We believe that the modelling of a complex system is a necessary pre-
cursor to the implementation of a simulation of that complex system.
It is necessary to demonstrate a detailed understanding of the complex
system of interest and have this validated by a domain expert. If one’s
understanding of the system is incorrect then the simulation will not be
representative of the real world system; uncovering such errors can be
difficult and time consuming. A model of a complex system can serve as
a specification for a simulation, and its validation by a domain expert
can deliver some measure of confidence in the simulation’s own validity.

We have presented here a domain model of experimental autoimmune
encephalomyelitis (EAE), a complex autoimmune disease in mice, and
its regulatory T cell mediated recovery. The models are expressed using
UML, and the creation of the present domain model has afforded insights
into UML’s expressive capabilities when applied to complex systems.

Complex systems tend to exhibit many interactions between enti-
ties within the system. Attempting to capture all this interaction in one
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diagram that fully describes the system renders the diagram cluttered
and illegible. Since a primary purpose of creating a domain model is to
communicate one’s understanding of a complex system a balance must
be struck between fully specifying the system where ever possible and
maintaining informative diagrams. We have found it useful to identify
the scenarios in EAE, being autoimmunity and recovery, and depict these
separately using activity diagrams. Class diagrams of the entities that
partake in a scenario have been constructed, but we have found their
contribution to the model to be minor; diagrams that depict system dy-
namics and the order in which events that comprise a scenario take place
have been more relevant than a static depiction of all the interactions
that are possible. UML state machine diagrams of system entities that
don’t themselves carry state or instigate interactions, but do mediate
interactions between other entities have been informative.

The dynamics of EAE are heavily dependent on the interplay be-
tween cell populations and feedback mechanisms. We have found no sat-
isfactory method to use UML in expressing these aspects of the system.
Biological cells incorporate many features that are subject to continuous
domains, such as variable levels of stimulation or molecule expression.
These aspects cannot be expressed through state transitions alone, and
require either textual explanation or use of equations to specify. UML
encompasses several mechanisms that have proven useful in modelling
EAE; however, in its current form, UML alone is insufficient to fully
specify the system.

The CoSMoS minimal process, the principled approach to complex
system simulation development that we are following, is iterative. As we
explore EAE through simulation and investigate alternative hypothe-
ses concerning its operation our domain model may require amendment.
Should we wish to investigate the effect that a cell previously not repre-
sented in the simulation has on EAE our domain model will be modified
to reflect its incorporation into the system. Validation of the domain
model by a domain expert is intended to provide some measure of con-
fidence in the results of experimentation with a simulation. The model
must be maintained to reflect the experiments we conduct, and changes
must be validated.

The next stage in our work is to refactor the domain model into
an implementation specific simulation model. The simulation model will
form the specification for the construction of a simulation, and will be
used to conduct in silico experimentation with the intention of gaining
insights into EAE’s nature and operation.
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A Domain Model Assumptions

This appendix details the assumptions that have been made in creating
the present domain model of EAE. Assumptions are labelled with the
cell or phenomenon that they correspond to, and are numbered.

CD4Th1-1. All CD4Th1 cells considered in this domain model are spe-
cific for MHC-II-MBP complexes only, though their individual affini-
ties for the complex may vary. An implication of this assumption is
that the spatial/binding events brought about by Th cells of other
specificities are absent.

CD4Th2-1. All CD4Th2 cells considered in this domain model are spe-
cific for MHC-II-MBP complexes only, though their individual affini-
ties for the complex may vary.
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CD4Th2-2. CD4Th2 cells do not license APCs in this model, and they
do not provide “help” to any cell (the model contains no B cells).

CD4Treg-1. All CD4Treg cells considered in this domain model are spe-
cific for MHC-II-Fr3 complexes only, though their individual affinities
for the complex may vary.

CD8Tc-1. All CD8 Tc cells considered in this domain model are specific
for MHC-I-MBP complexes only, though their individual affinities
for the complex may very.

CD8Tc-2. A single CD8 Tc cell can induce apoptosis in at most one
CNS cell at any specific point in time.

CD8Treg-1. All CD8 Treg cells considered in this domain model are
specific for MHC-I-CDR1/2 complexes only, though their individual
affinities for the complex may vary.

CD8Treg-2. A CD8 Treg can induce the apoptotic death of at most one
CD4Th1 cell at any point in time.

CD8Treg-3. CD8Treg cells as represented in this model cannot induce
apoptosis in APCs that express MHC-I-CDR1/2, although this is
potentially possible in vivo.

TCell-1. Cytokine secretion by a T cell is assumed to have only two
rates of secretion: none at all, or a steady rate of secretion. There is
no notion of variable secretion based on a cell’s stimulation, or any
other effect.

TCell-2. Activated T cells have associated with them an “excitation”
level. This is an abstraction of the cell’s internal metabolic activity.

TCell-3. Signal 1 and 2, delivered through bindings with MHC and co-
stimula-tory molecules, can only be derived through simultaneously

binding sufficient such molecules; there is no notion of how many
molecules were “recently” bound. In vivo this may not necessarily
be the case.

TCell-4. Where applicable, a CD4 T cell cannot simultaneously license
an APC and proliferate.

Cell-1. A cell can interact with at most one other cell at any point in
time. For example, a T cell can bind with molecules expressed on
only one APC at a time. In vivo these aspects are dictated by the
physical space surrounding a cell, and what occupies that space.

CNS-1. The “CNS Cell” of this domain model is an abstract represention
of the various MBP-expressing cells of the in vivo central nervous
system.
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CNS-2. An apoptotic CNS cell can be phagocytosed by only a single
dendritic cell.

CNS-3. CNS cells do not reproduce/divide.
CNS-4. CNS cells do not incur natural death.
CNS-5. Upon phagocytosis by an APC only MBP is received by that

APC. No other molecules that might stimulate the APC are derived
from phagocytosis of a CNS cell.

CNSMacrophage-1. CNS Macrophage is an abstraction of microglia and
macrophages that reside within the CNS during EAE. A study of
the literature has revealed that there is currently no consensus from
which the functions of macrophages and microglia can be distin-
guished within the context of EAE [5, 11, 18, 22]

CNSMacrophage-2. Secretion of TNF-α, ROS, and NO by CNS macro-
phages is at a constant rate, and occurs only when the cell is heavily
stimulated.

CNSMacrophage-3. CNS macrophages in this model do not secrete any
cytokines, other than TNF-γ.

Cytokine-1. This domain model represents all type 1 and pro-inflamm-
atory cytokines as one cytokine abstraction, called “type1”. Where
a specific cytokine (for example INF-γ) exhibits some function that
is not well represented by this abstraction, that specific cytokine is
explicitly represented, but only to serve the concerned function.

Cytokine-2. The model represents all type 2 cytokines as one cytokine
abstraction, called “type2”.

Cytokine-3. Despite being a pro-inflammatory type 1 cytokine, INF-γ is
not depicted in this model to suppress CD4Th2 cell activity, since
that is already handled by assumption 1.

DC-1. A dendritic cell can provide signal 2 to only a single T cell at a
time.

DC-2. A dendritic cell in this domain model will never die, though its
expression of MHC-peptide levels is variable.

DC-3. Dendritic cells in this model do not secrete any cytokines.

MHC-1. The only MHC-peptide complexes considered in this domain
model are: MHC-I-MBP; MHC-II-MBP; MHC-I-CDR1/2; MHC-II-
Fr3. No other MHC-peptide complexes are considered integral to
EAE or its recovery.

Co-stimulatory-1. CD4Th1, CD4Th2, and CD8Tc cells all require equal
quantities of co-stimulatory molecule bindings to derive signal 2.
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Apoptosis-1. We have omitted any notion of an “anergy” state, since
anergic cells can be rescued though receipt of signal 2. T cells that
spend sufficient time in a “partially activated” state will become
apoptotic.

Apoptosis-2. In vivo, interaction between an anergic T cell and an APC
can have a regulatory effect on the APC. This is not represented in
this domain model.


