
Profiling Underwater Swarm Robotic Shoaling
Performance using Simulation

Mark Read1,∗, Christoph Möslinger2, Tobias Dipper3, Daniela Kengyel2, James
Hilder1, Ronald Thenius2, Andy Tyrrell1, Jon Timmis1, and Thomas Schmickl2

1 Department of Electronics, the University of York, UK.
2 Artificial Life Laboratory, the University of Graz, Austria.

3 Institut für Parallele und Verteilte Systeme, Universität Stuttgart, Germany.
∗ mark.read@york.ac.uk

Abstract. Underwater exploration is important for mapping out the
oceans, environmental monitoring, and search and rescue, yet water rep-
resents one of the most challenging of operational environments. The Co-
CoRo project proposes to address these challenges using cognitive swarm
intelligent systems. We present here CoCoRoSim, an underwater swarm
robotics simulation used in designing underwater swarm robotic systems.
Collective coordination of robots represents principle challenge here, and
use simulation in evaluating shoaling algorithm performance given the
communication, localization and orientation challenges of underwater en-
vironments. We find communication to be essential for well-coordinated
shoals, and provided communication is possible, inexact localization does
not significantly impact performance. As a proof of concept simulation
is employed in evaluating shoaling performance in turbulent waters.

1 Introduction

The ocean remains the least explored habitat on earth, hosting undiscovered
organisms and resources of interest and value. The importance of addressing
underwater search and environmental monitoring is exemplified by events such
as the 2010 BP Deepwater Horizon oil spill and the 2009 Air France Flight
447 crash in the Atlantic ocean, where it took nearly 2 years to recover the
black boxes from the ocean floor. Water is an extremely challenging environ-
ment to operate within, visibility is poor, and electromagnetic signals are heavily
attenuated, complicating communication and GPS-based localization. The Co-
CoRo project1 seeks to advance underwater exploration capability through use
of swarm intelligent systems endowed with collective cognitive decision making
abilities [11]. Collective cognition is intended to assist swarms in coping with
a noisy and heterogeneous environment, identifying and discriminating between
multiple underwater targets, dynamically reallocating robots between tasks to
meet requirements, compensating for failed or lost swarm members, and main-
taining a communication network of robots between an exploratory swarm and
the water surface.
1 The EC funded CoCoRo Project, GA 270382; http://cocoro.uni-graz.at/



2 Mark Read et al.

Engineering swarm robotic systems is an inherently challenging field: the
robotic platforms are complex, as are the environments in which they are de-
ployed, and group behaviours must be engineered through the manipulation of
interactions between individuals. As such computational simulation is frequently
employed to aid in research, development and evaluation; the joint SYMBRION-
REPLICATOR projects have developed a sophisticated 3D robotics simulation,
Symbricator3D [13]. Symbricator3D employs highly realistic sensor and actua-
tor models, and robotic controllers developed on the simulation should migrate
directly onto real platforms. However it is a highly complex piece of software,
and its documentation is lacking in comparison to other simulations reviewed
here. The Jasmine swarm robotic platform is accompanied by a simulation of the
platforms2; this software simulates robots on a 2D plane. Simbad is a recently
developed 3D robotics simulation written in Java with a slant towards evolution-
ary robotics research [6]. Documentation is of a high quality, with a javadoc API
published online along with details of the simulation’s architecture and some
tutorials. The Stage simulation, developed under the Player/Stage project, has
been widely adopted for swarm robotic research and educational purposes [4, 5].
Stage is however restricted to simulating 2D environments, and in addressing 3D
environments the Gazebo simulation was developed [8]. Gazebo encompasses a
realistic physics engine, where simulated bodies have properties such as mass,
friction and bounce factors. However, due to its computational load Gazebo can
simulate at most 10 robots, limiting its application in swarm robotic systems.

In this paper we present the CoCoRoSim underwater robotics simulation,
developed by the CoCoRo project to facilitate controller conceptualization, de-
velopment and evaluation. CoCoRoSim is implemented in NetLogo 3D, and as
such can simulate large numbers of robots. Its Newtonian mechanics physics en-
gine simulates water drag forces, buoyancy, translational and rotational motion,
a variety of robotic sensor systems, and forces exerted on simulated bodies by
water currents. We present CoCoRoSim in section 2, and its calibration against
a CoCoRo robotic platform in section 4. CoCoRoSim’s use in adapting a generic
shoaling algorithm to the constraints of underwater environments and evalu-
ating its performance is detailed in section 5. T his section also explores how
CoCoRoSim can be used to evaluate controller performance in the presence of
water currents and turbulence. Lastly, section 6 concludes this paper.

2 The CoCoRoSim simulation

The CoCoRoSim simulation is implemented in NetLogo 3D3, a three dimen-
sional multi-agent modelling environment. The role of CoCoRoSim in the Co-
CoRo project is as a fast means of prototyping algorithms and AUV deployment
scenarios; the CoCoRo project’s ethos is to migrate ideas to real-world robots as
quickly as possible following their validation in simulation. As such, NetLogo 3D
was selected as an implementation platform: it provides a powerful integrated

2 http://www.swarmrobot.org/Simulation.html
3 http://ccl.northwestern.edu/netlogo/



Profiling Underwater Swarm Robotic Shoaling Performance using Simulation 3

(a) The Lily platform. (b) The Jeff platform, from the side
(top) and top (below).

Fig. 1: Two underwater robotic platforms developed in the CoCoRo project.

3D GUI interface, is well supported and documented, and using behaviorspace
can be executed on a computation cluster to facilitate large-scale experimenta-
tion. The language is well suited for non-programmers on the project to pick
up quickly with minimal effort, and its features have aided in minimising de-
velopment time, hence allowing a greater focus on algorithmic development and
real-world deployment. CoCoRoSim can be downloaded from http://cocoro.uni-
graz.at/drupal/media under ‘Software’.

2.1 Sensors, actuators, operating system and robots

CoCoRoSim provides representations of the sensors and actuators developed and
used within CoCoRo, and allows these to be configured and calibrated to reflect
the autonomous underwater vehicles (AUVs) developed in the project (figure 1).

Lily is a modified toy submarine, used to facilitate fast hardware and con-
troller prototyping. It has a relatively short operational life-span. In contrast,
Jeff is developed and manufactured over a longer term; it is more robust, maneu-
verable and has a greater number of more powerful sensor and actuator systems.
Both Lily and Jeff platforms are equipped with blue light sensor systems (BLSS),
each of which comprises multiple LEDs and a receiver. Lily has 5 BLSS systems
whereas Jeff has 6. BLSS receivers observe blue light within a cone of 120◦.
They can provide communication through the pulsing of LEDs, can be used for
distance sensing, and are capable of detecting obstacles by observing LED reflec-
tions. BLSS are implemented in CoCoRoSim by registering the nearest AUVs
within a cone of observation, centred according to the BLSS configurations on
the AUVs. Simulated BLSS detect proximity to obstacles such as tank walls and
floor by tracing rays projected along the centre and limits of the cone of obser-
vation. This implementation represents a compromise between computational
efficiency and accuracy. BLSS communication is implemented through direct
message passing to the nearest AUV within a sensor’s cone.

CoCoRo AUVs are equipped with radio transmitters and receivers to pro-
vide omni-directional communication. These are implemented by direct message



4 Mark Read et al.

passing between AUVs of sufficient proximities. Pressure sensor, compass, ac-
celerometer and gyroscope implementations are also provided.

Lily and Jeff platforms manoeuvre with propellor-based thrusters. These are
simulated as simply providing a force of movement on the AUV along the axis
in which they are oriented. Vertical manoeuvrability is provided by a buoyancy
pump which changes the volume of the AUV. In CoCoRoSim such actuators are
implemented as providing a vertical (in relation to the environment) force on
the AUV based on its density in relation to water.

Controller interaction with CoCoRo AUV platforms is provided through an
operating system based on FreeRTOS [1]. This OS’s functionality is reflected in
CoCoRoSim, with semantically similar functions being provided to ease migra-
tion of simulation algorithms to real-world platforms. The OS provides functions
that allow, for example, controllers to specify a particular depth or heading and
speed, and through the use of simple PD controllers the platform’s actuators are
manipulated to this end. The PD controller for heading adjusts the differential in
thruster settings around a specified percent of backwards or forwards maximum
thrust to maintain some specified forward speed and a particular heading based
on compass readings.

3 Physics engine

The CoCoRoSim physics engine discretizes time; the states of all simulated bod-
ies are updated in each time step. The physics engine implements Newtonian
mechanics with simulated bodies modelled as particles. The particles’ transla-
tional and rotational velocities and accelerations in the x, y and z axes are influ-
enced by forces acting on the body. There is currently no provision for simulated
bodies to change their pitch or roll.

The translational drag force of water Fdt on a simulated body moving at
velocity v is modelled using equation 1.

Fdt = 0.5 · ρ · v2 ·A · Cd (1)

Where ρ represents the density of water, 1000 kg/m3. A represents the cross
sectional area of body in the direction of its movement through the water, and
Cd represents the drag coefficient of the body. A ·Cd is specific to the body, and
these values are calibrated using the procedure outlined in section 4.

Rotational acceleration and rotational velocity are modelled as:

ar = τ/I and ω = ar · δ (2)

Where ar is rotational acceleration in radians/s2, τ is the net torque acting on
the AUV, and I is the mass moment of inertia. τ is the sum of torque delivered
by the thrusters, and rotational drag forces. ω represents rotational velocity in
radians/second, and δ is the length of time represented by a simulation time-
step. Rotational movement is countered by a drag torque τd arising from form
drag and skin frictions which have been abstracted into a single parameter Cr

that can be calibrated for a particular AUV:

τd = ω2 · Cr (3)



Profiling Underwater Swarm Robotic Shoaling Performance using Simulation 5

Vertical movement of the AUV is dictated by the net forces of the buoyancy
pump and gravity, and are subject to translational drag as in equation 1. A
submerged AUV that is stationary in the vertical plane exhibits an equilibrium
between gravity acting on the AUV’s mass and the upwards force resulting from
its buoyancy. Hence, the net vertical force, Fv, is:

Fv = (m · g) − (ρ · V · g) (4)

where ρ is the density of water, 1000, and m and V represent the AUV’s mass
and volume respectively. g represents acceleration under gravity. CoCoRoSim
models AUV buoyancy pumps as changing an AUV’s volume.

3.1 Simulation of water currents

CoCoRoSim can simulate water currents, represented as forces along each axis at
points in discretised space (patches), that influence AUV motion. They are gen-
erated by AUV thrusters, and by ‘cold-spots’: low pressure patches that generate
current forces towards them. Currents are subject to diffusion and to decay.

AUV thrusters suck water into them and propel it out the back, as depicted
in figure 2a. The current force being pulled into the thrusters is equal to that
pushed out, and is equivalent to the force the thrusters apply to the AUV. Each
thruster’s forces are considered individually. The left thruster creates a current
towards the AUV in the patch to the left of it. An equal force is created behind
the AUV: one fourth of this is created in each of the patches directly behind,
behind and up, behind and down, and behind and left the AUV. The same
applies, vice versa, to the right thruster.

A cold spot creates forces directed towards it in the patches surrounding it.
They persist for a period of time, with the current forces they generate rising
and falling in magnitude over this time to prevent any excessive force differ-
entials being generated from seemingly nowhere. The periodic turnover of cold
spots in randomly selected patches throughout the simulation creates dynamic
convections in the water.

Current forces are subject to logarithmic decay and to diffusion; each time
step the change in current component of each patch, Fc, is:

∆Fc =
((

(1 − κ) · avgN(Fc)
)
− (κ · Fc)

)
· γ (5)

where κ holds a value between 0 and 1 and represents the rate at which forces dif-
fuse; avgN is a function returning the mean of that current component amongst
the neighbouring 26 patches4, and γ is the decay rate.

Current forces affect both translational and rotational AUV movements (fig-
ure 2c). When calculating the net translational forces that dictate AUV accel-
eration, the forces on the patch that the AUV occupies are considered. The
differential between opposing patches in the 4-patch neighbourhood are used to
calculate a torque when calculating AUV rotational acceleration.

4 Or less if the patch being updated lies on the environment boundary.



6 Mark Read et al.

(a) Currents generated by AUV
thrusters.

(b) Cold-spots (blue arrow) act as sinks
for current forces.

(c) Current forces in the same patch as an AUV, and on the 4-neighbourhood
patches around it affect its translational and rotational accelerations.

Fig. 2: Currents are represented as forces in three dimensions in discretised space.

4 Calibration

This section reports the calibration of CoCoRoSim’s representation of the Lily
platform (figure 1a). The Jeff platform is still under development, and has not
yet been calibrated in CoCoRoSim; when it is complete, it will undergo a similar
calibration process in CoCoRoSim.

The Lily AUV weighs 0.44kg. It has two thrusters capable of propelling the
AUV forward, and has a buoyancy pump that provides vertical motion. Lily
is unable to change its pitch or roll. The two thrusters have been empirically
measured as able to deliver a combined maximum force of 0.01N, through their
ability to lift a weight (shown in figure 3a). The magnitude of the friction force
between the string and the pipes over which it runs was not known, and as such
two variations of the experiment were performed. Firstly the AUV is held by
hand, with the string taught, and then released. Secondly, the string is slack,
and the AUV accelerates to pull it taught. The direction of the frictional force
on the string is opposite in the two experiments, which gave readings of the AUV
lifting 0.8g and 1.2g respectively. The AUV was assumed to have lifted 1g when



Profiling Underwater Swarm Robotic Shoaling Performance using Simulation 7

(a) Empirically measuring Lily maxi-
mum thruster force in the tank, based
on its ability to lift a weight.

(b) The orientation of thrusters on Lily,
and their location with respect to the
centre of rotation (marked by an X).

Fig. 3: The calibration of Lily in CoCoRoSim.

calculating AUV maximum thrust force as being 0.01N. Hence, each individual
thruster can deliver 0.005N of thrust.

Lily’s translational cross-section and drag coefficient, A · Cd in equation 1,
are difficult to calculate. Instead, they have been deduced based on maximum
thrust and terminal velocity, given that:

vt =

√
2Fdt

ρ ·A · Cd
rearranges to: A · Cd =

2Fdt

ρ · v2t
(6)

Lily’s terminal velocity has been empirically measured at 7.5cm/s, and given
its maximum thruster force (Fdt) of 0.01N, A·Cd is 1.78. This provides simulated
behaviours corresponding with empirical measurements of Lily’s acceleration:
from a standing start at full thrust Lily moves 10cm in 3.03 seconds.

Using the buoyancy pump Lily can change its volume between 430 and
450cm3. A value of 440cm3 delivers a net vertical force Fv = 0. When Lily
has a volume of 450cm3, the net force Fv = 0.1N. Hence, the buoyancy pump
can deliver a vertical force of ±0.1N. The change in density of water over Lily’s
3m diving limit is deemed negligible. As such, the buoyancy pump is not used
to set a desired depth directly, but the buoyancy force, and hence the speed at
which an AUV descends or ascends.

Rotational torque is delivered through the differential between the AUV’s
thrusters. Empirical measurements taken of Lily in the water reveal that the
centre of rotation is the centre of the AUV, despite the thrusters being offset
from this point, as shown in figure 3b. The rotational torque resulting from the



8 Mark Read et al.

thrusters, τT , is calculated as:

τT = (Tl − Tr) · 0.055 · cos(63◦) (7)

where Tl and Tr represents the thruster force exerted by the left and right
thrusters respectively, the thrusters are 0.055m from the centre of rotation, and
oriented 63◦ from the perpendicular through which torque is applied. In cal-
culating rotational drag, Cr can be estimated given Lily’s terminal rotational
velocity, empirically measured as 1.48 rad/s. At rotational terminal velocity, ωt,
the torque provided by the thrusters is equal to the opposing torque originat-
ing from rotational drag forces. Using an equation of the form of translational
terminal velocity (equation 6 above), the following equation describing terminal
rotational velocity is formed:

ωt =
√
τmax/Cr (8)

Where τmax represents the maximum torque the thrusters can deliver. Re-
arranging to solve for Cr:

Cr =
(
(0.005 −−0.005) · 0.055 · cos(63◦)

)
/ω2

t (9)

Which solves to give Cr = 0.000114. Lily’s mass moment of inertia, I, is not
known. However, given that the coefficient of rotational drag and maximum
thruster forces are known, it can be calibrated in simulation to deliver similar
rotational accelerations to those empirically observed of Lily. A value of I =
0.0005 is used, as this matched observations that from a standing start Lily can
rotate 90◦ in 2.4 seconds, 180◦ after 3.7 seconds, 270◦ after 4.8 seconds, and
completes a full turn after 5.9 seconds.

5 Profiling controller behaviour

This section demonstrates CoCoRoSim’s use in controller design and evaluation.
A principle challenge in underwater swarm robotics is collective motion; AUVs
must be coordinated to efficiently explore the environment and not get lost in
the ocean. Reynold’s Boids algorithm is popular in computational simulations
requiring collective motion [10], for example coordinating dinosaurs and bats in
Jurassic Park and Batman Returns movies. Swarm member (termed a ‘boid’)
motion is dictated by three rules: cohesion attracts boids to their neighbours,
separation prevents them from colliding, and alignment promotes common ve-
locities within the group [10]. We report here preliminary investigations into the
suitability of the Boids algorithm for deployment on CoCoRo AUVs.

The principle challenges in real-world deployment are localization and com-
munication. Lily AUVs can localize one another through use of blue light sys-
tems, which have a range of around 50cm, and can detect distances to other
AUVs only within a cone of observation (120◦); exact triangulation is not pos-
sible. Furthermore it is likely that only the nearest neighbour will be detected.
Communication is provided through omni-directional radio-frequency (range
50cm), or directional-blue light systems where the nearest neighbour is the only
likely recipient of a message. We have performed a series of experiments to



Profiling Underwater Swarm Robotic Shoaling Performance using Simulation 9

examine how Boids’s performance in underwater shoaling is effected by these
constraints (figure 4). The Vanilla (Van) experiment refers to boids employing
exact triangulation, each boid knows the exact location of all neighbours within
50cm. This is impossible in real AUVs, but is performed in simulation as a base-
line against which to examine performance of various adaptations of Boids on
CoCoRo AUVs. In the blue light triangulation (BLT) group boids can only de-
tect whether or not an AUV lies within a 120◦ cone, and the distance within
that cone. If detected a neighbour is assumed to lie in the centre of the cone.
Boid velocities are communicated omni-directionally to all neighbours within
50cm using radio frequency. Blue light communication (BLC) extends BLT by
communicating velocities only with the nearest neighbours over blue light, this
leaves radio frequency communication free for other tasks CoCoRo shoals will
have to perform. Lastly, because communication underwater is problematic and
it will likely be needed for other swarm functions, no alignment (NA) exam-
ines shoal performance in absence of any velocity communication, effectively
nullifying the alignment rule. Both BLC and BLT simulated algorithms assume
noise-less loss-less instantaneous communication, implemented through direct
message passing. Given Lily’s relatively short sensor range in contrast to its ter-
minal velocity, these algorithms were limited to using only 10% of maximum
thruster force to prevent erratic shoaling behaviour.

Six metrics of shoaling performance are applied, and experiments are con-
ducted with 11 AUVs in total. Polarisation measures the degree to which all
boids are pointed in the same direction, calculated as in [7]. A polarisation of 1
indicates that all shoal members have the same orientations, whereas 0 indicates
a uniform spread of orientations; higher values are desirable. Angular momen-
tum measures the degree of shoal rotation around its centre, calculated as in
[7]. This measure complements polarisation: a shoal of boids rotating clockwise
around some point can have a very low polarisation, yet high angular velocities
indicate a shoal that is still well organized. Shoal speed measures the movement
of the shoal’s centre, a highly motile shoal is desirable. The number of times
that an AUV is lost from the shoal is counted, and the mean number of distinct
shoals throughout simulation time is also recorded. Fewer lost AUVs and low
numbers of shoals are desirable. Shoal separation represents the median sepa-
ration between AUVs in the shoal over the entire simulation time. Algorithms
that can provide both wide and narrow separations are desirable, provided no
more AUVs are lost. These metrics are shown as box plots in figure 4. The mag-
nitude of effect change in comparison with the Vanilla experiment is calculated
using the Vargha-Delaney A test [12], a non-parametric effect magnitude test
that calculates the probability that a randomly selected sample from population
A is larger than a randomly selected sample from population B. Values of ≥0.71
or ≤0.29 are assumed ‘large’. Each experimental group comprises 400 simula-
tions/samples, the number required to reduce the effect of stochastic variation
on results to a “small” effect (procedure described in [9]). The boid’s cohesion,
separation and alignment weights were assigned values of 1.0, 1.0 and 10.0 re-
spectively, a separation threshold of 15cm was used, and boids had a full 360◦



10 Mark Read et al.

vision around them. These values were identified through preliminary experi-
mentation to give stable shoaling behaviour. The simulation was executed for
25,000 time steps, which represents 12,500 seconds. The simulated environment
was 6m x 6m with a 2m depth.

A switch from the vanilla group’s perfect triangulation to blue-light based
triangulation (BLT and BLC groups) does not deteriorate shoal polarisation, in
fact it is increased. This is reflected in a reduced angular velocity in the BLT
and BLC groups. This result is unexpected, as blue light-based triangulation is
less precise. It may be explained through blue light’s consideration of only the
nearest neighbours, and boids thus perceiving swarm centres to be closer than
they in fact are. Hence the impetus to turn towards the centre is reduced in
contrast to the influences of alignment and separation. This may also explain
why BLT and BLC groups have significantly reduced separations in contrast to
the vanilla group: as demonstrated by the no alignment (NA) group, a lack of
alignment results in a more spread out shoal. The BLT group has a significant
reduction in the number of AUVs that lose the shoal, and in the number of shoals
that emerge. However this change is lost in the BLC group where velocities are
shared with only the nearest neighbours. It is clear from these results that no
significant detriment to shoal quality occurs when adapting the vanilla boids
algorithm to the constraints of CoCoRo platforms. It is also clear that although
communication on these platforms is a scarce resource, reserving it purely for
higher shoal functions at the expense of communicating velocities has a signif-
icantly detrimental impact on performance: the NA shoals were less polarised,
had lower velocities, and lost more AUVs.

5.1 Controller performance in turbulent waters

CoCoRoSim’s simulation of current forces in the water permits analysis of con-
troller performance in turbulent waters. This is demonstrated by examining the
deterioration of the BLT boids variant’s shoaling performance in increasingly
turbulent waters. These experiments are run for 5,000 simulated time steps, rep-
resenting 2,500 seconds, in a tank of 5×5×2m. A smaller simulated environment
and shorter runtime were selected to address the considerable computational re-
quirements of simulating currents. Three experiments are conducted, with tur-
bulence (represented by the maximum force a cold spot can exert) set at 0N (T0
in figure 4), 0.0005N (T5e-4 ) and 0.005N (T5e-3 ). The probability of any patch
of discretised space becoming a cold spot in a time step is 0.0015, and cold spots
persist for 12.5 seconds. 60% of the current force in a patch is diffused to sur-
rounding patches every time step, and the decay rate is set to 0.65. These values
have not been calibrated to any particular body of water, they were selected
on the basis that a 0.5kg floating simulated body exhibited visually appropri-
ate trajectories. These experiments are to demonstrate that CoCoRoSim can be
used to evaluate controller performance in the presence of water currents.

As shown in figure 4, shoaling performance is significantly altered in only 2 of
the 6 metrics for current sink forces of 0.0005N (T5e-4 ), and these changes are
comparatively minor in contrast with forces of 0.005N (T5e-3 ) where all metrics



Profiling Underwater Swarm Robotic Shoaling Performance using Simulation 11

(a) Shoal polarisation (b) Shoal angular velocity

(c) Shoal speed (d) Shoal separation

(e) Lost AUVs (f) Number of shoals

Fig. 4: The shoaling performance of various adaptations of boids and in the
presence of various levels of water turbulence. Experiments left of grey vertical
lines represent variations of boids, those to the right represent the BLT algorithm
running in the presence of water currents and varying degrees of turbulent water.
Effect magnitude is established through the A test [12], where red (∗) and blue
(−) boxes indicate the presence or absence of large effect magnitudes with respect
to the vanilla or T0 algorithm (depending on the experiment).



12 Mark Read et al.

reveal significant changes. Although Boids could use at most 10% of available
thrust, the OS may make full use of the thrusters in attempting to maintain a
particular heading. It is perhaps unsurprising that turbulence forces of 0.01N,
Lily’s maximum thrust force, cannot be tolerated. However, it is notable that the
shoaling algorithm tolerates, without significant deterioration of performance in
many cases, turbulences of 10% of the maximum available thrust.

6 Discussion and further work

This paper has presented the CoCoRoSim underwater swarm robotics simula-
tion, detailed its calibration against empirical data taken from a real-world robot,
and demonstrated its use in profiling robot controller behaviour. Collective co-
ordination in underwater swarms is a challenging task owing to low visibility,
the attenuation of electro-magnetic signals typically used for communication,
and current forces inherent in moving water. We have made use of simulation
in evaluating the quality of shoaling resulting from adapting Reynold’s Boids
algorithm to these underwater constraints. CoCoRo AUVs have limited com-
munication bandwidth, and this might ideally be reserved for higher swarm
functions when addressing a complex task of which shoaling is only one con-
stituent activity. However, the presented results clearly indicate that without
communication the coordination of shoals using Boids is problematic. Surpris-
ingly, given the ability to communicate velocities amongst shoal members, the
limited observational and triangulation capacity of CoCoRo AUVs does not have
as detrimental affect on coordination as might be expected. There exist other
flocking algorithms that are inherently communication-less, for example [3, 2],
however this algorithm has not been investigated in platforms with the present
number of degrees of freedom. Investigating the suitability of such algorithms in
controlling underwater shoals is left as further work, as is the deployment of the
present shoaling algorithm on real-world hardware.

Simulation can substantially aid underwater systems research and develop-
ment. The impracticalities of developing and calibrating algorithms on real-world
robotic platforms that must be removed from the water, opened for reprogram-
ming, charged, sealed, and redeployed prior to evaluation are prohibitive. Co-
CoRoSim facilitates must faster initial development of algorithms. Detailed pro-
filing and assessment of shoaling performance, as performed here in simulation,
would not be possible in the real platforms. Furthermore, CoCoRoSim permits
the environmental limits within which controllers can reliably operate to be as-
certained; we have examined how shoaling performance degrades in increasingly
turbulent waters. This is provided as a proof of concept, calibration of this water
currents simulation framework against a particular body of water is left as fur-
ther work. Simulation of water currents will lead into simulating the movement
of chemical plumes, useful in designing swarm-intelligence algorithms capable of
performing underwater plume tracking.



Profiling Underwater Swarm Robotic Shoaling Performance using Simulation 13

References

1. R Barry. The FreeRTOS Reference Manual. freertos.org , 2011.
2. C Moeslinger et al. A minimalist flocking algorithm for swarm robots. In Proceed-

ings of ECAL ’09, Springer LNCS series 5778, pages 375–382, 2009.
3. C Moeslinger et al. Emergent flocking with low-end swarm robotics. In Proceedings

of ANTS ’10, Springer LNCS 6234, pages 424–431, 2010.
4. B Gerkey, R Vaughan, and A Howard. The player/stage project: Tools for multi-

robot and distributed sensor systems. In Proceedings of the International Confer-
ence on Advanced Robotics, pages 317–323, 2003.

5. H Lau et al. Adaptive data-driven error detection in swarm robotics with statistical
classifiers. Robotics and Autonomous Systems, 59(12):1021–1035.

6. L Hugues, N Bredeche, and TI Futurs. Simbad: an autonomous robot simulation
package for education and research. In in Proceedings of SAB ’06. Springer LNAI
series 4095, pages 831–842, 2006.

7. I Couzin et al. Collective memory and spatial sorting in animal groups. Journal
of Theoretical Biology, 218:1–11, 2002.

8. N Koenig and A Howard. Design and use paradigms for gazebo, an open-source
multi-robot simulator. In In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2149–2154, 2004.

9. M Read et al. Techniques for grounding agent-based simulations in the real domain:
A case study in experimental autoimmune encephalomyelitis. MCMDS, 17(4):296–
302, 2011.

10. C Reynolds. Flocks, herts and schools: A distributed behavioral model. Computer
Graphics, 21(4):25–34, 1987.

11. T Schmickl et al. Cocoro - the self-aware underwater swarm. In Proceedings of the
SASO ’11, 2011.

12. A Vargha and HD Delaney. A critique and improvement of the cl common language
effect size statistics of McGraw and Wong. Journal of Educational and Behavioral
Statistics, 25(2):101–132, 2000.

13. L Winkler and H Wörn. Symbricator3D - A Distributed Simulation Environment
for Modular Robots. In Proceedings of ICIRA ’09, pages 1266–1277, 2009.


