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Abstract

The field of artificial immune systems (AIS) comprises two threads of research: the employ-

ment of mathematical and computational techniques in the modeling of immunology, and the

incorporation of immune system metaphors in the development of engineering solutions.

The former permits the integration of immunological data and sub-models into a coherent

whole, which can be of value to immunologists in the facilitation of immunological under-

standing, hypothesis testing, and the direction of future research. The latter attempts to

harness the perceived properties of the immune system in the solving of engineering

problems. This chapter concentrates on the latter: the development and application of

immune inspiration to engineering solutions.
1 Introduction

Artificial Immune Systems (AIS) is a branch of biologically inspired computation focusing on

many aspects of immune systems. AIS development can be seen as having two target domains:

the provision of solutions to engineering problems through the adoption of immune system

inspired concepts; and the provision of models and simulations with which to study immune

system theories.

The motivation for building immune-inspired solutions to engineering problems arises

from the identification of properties within the immune system that are attractive from an

engineering perspective. These include (de Castro and Timmis 2002a): the self-organization of

huge numbers of immune cells; the distributed operation of the immune system through-

out the body; pattern recognition and anomaly detection to enable the immune system to

recognize pathogens; and optimization and memory to improve and remember immune

responses. AIS take inspiration from these properties and associated immune processes, and

have been defined as:

" ‘‘adaptive systems, inspired by theoretical immunology and observed immune function, princi-

ples and models, which are applied to problem solving.’’ (de Castro and Timmis 2002a)

The field of AIS also encompasses modeling and simulation techniques to understand the

immune system in general (see Timmis et al. (2008a) for a review), however, this chapter

focuses on immune-inspired systems for engineering problems.

This chapter is not intended as an extensive review chapter, but its purpose is to present a

general introduction to the area and provide discussion on the major research issues relating

to the field of AIS. Therefore, in this chapter we briefly explore the underlying immunology

that has served as an inspiration for the development of immune-inspired algorithms. We

have chosen not to focus on the modeling aspect of AIS, but rather on the main algorithms

that have been developed over recent years. This is undertaken in > Sect. 3 where we discuss

four main immune-inspired algorithms that dominate the literature, namely, clonal selection,

immune networks, negative selection, and dendritic cell algorithms, and highlight their

usage in terms of applications. > Section 4 follows with a discussion on AIS and how

researchers have begun to evaluate current AIS and describes new frameworks and methodol-

ogies that aim to help develop AIS in a more principled manner. We also briefly discuss the

application of AIS to a variety of different domains and the types of applications that AIS

might be better suited to, and finally we provide a very brief outline of the modeling
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approaches that can be found in the literature that are employed to help further our

understanding of immunology. > Section 5 provides a chapter summary.
2 The Immune System

Immunology concerns the study of the immune system and the effects of its operation on the

body. The immune system is normally defined in relation to its perceived function: a defense

system that has evolved to protect its host from pathogens (harmful microorganisms such as

bacteria, viruses, and parasites) (Goldsby et al. 2003). It comprises a variety of specialized cells

that circulate and monitor the body, various extracellular molecules, and immune organs that

provide an environment within which immune cells interact, mature, and respond. The

collective action of immune cells and molecules forms a complex network leading to the

detection and recognition of pathogens within the body. This is followed by a specific effector

response aimed at eliminating the pathogen. This recognition and response process is very

complicated with many details not yet properly understood.

In mammals, the immune system can be classified into two components based on function-

ality: a less specific component termed innate immunity and a more specific component

termed adaptive (or acquired) immunity. The mechanisms of innate immunity are generic

defense mechanisms that are nonspecific to particular examples of pathogen, but act against

general classes of pathogen. They are encoded within the genes of the species, and do not adapt

during the lifetime of the individual. Examples include the inflammatory response, phagocytic

immune cells (those that can ingest and kill pathogens), anatomic barriers such as skin, and

physiologic barriers such as temperature.

By contrast, the mechanisms of adaptive immunity enable the immune system to adapt to

previously unseen pathogens based upon exposure to them (Goldsby et al. 2003). This is

achieved through a learning mechanism that operates during the lifetime of the individual.

Additionally, once exposed to a pathogen, memory mechanisms exist to allow the immune

system to remember the shape of the pathogen. This enables a faster and more effective

secondary response that can be elicited against the pathogen if it is encountered again. The

adaptive and innate arms of the immune system interact to provide the body with a compre-

hensive defense mechanism against pathogens.

All immune cells, and the majority of other cells of the body, possess protein molecules

on their surface that act as receptors to other extracellular molecules. When a sufficiently

strong chemical bond occurs between a receptor and another molecule (a ligand), a cascade of

intracellular signals is initiated, the outcome of which depends on the initiating receptors. This

process provides the immune system with a mechanism for recognition at the molecular level.

Two types of immune cell receptors exist: innate receptors that have evolved to recognize

specific molecules; and the unique receptors of lymphocytes that are generated during the life

time of the individual to recognize previously unseen molecules. The latter of these molecules

are generically known as antigens, a term given to any molecular structure that can chemically

bind to the unique receptors of adaptive immune cells, known as T and B-cells. The antigen

receptors of the B-cell are called antibodies, and those of the T-cell are called T cell receptors

(TCR). They are both generated via a stochastic process, and are vital to the body’s adaptive

immune response. Communication between immune cells involves a number of immune

molecules. They include cytokines, immune cell receptors, antibodies, enzymes, plasma

proteins, and adhesion molecules. The cytokines, for example, are signaling molecules
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secreted by both immune and other bodily cells, which are then detected via specific cellular

receptors. Many different types of cytokine exist and their effects include the activation,

differentiation, growth, movement, and death of many types of cells (Cohen 2000).
2.1 Motivation for Immune Inspired Engineering Solutions

Why is it that engineers are attracted to the immune system for inspiration? The immune

system exhibits several properties that engineers recognize as being desirable in their systems.

Timmis and Andrews (2007), Timmis et al. (2008a), de Castro and Timmis (2002a) have

identified these as the following.

Distribution and self-organization. The behavior of the immune system is deployed through

the actions of billions of agents (cells and molecules) distributed throughout the

body. Their collective effects can be highly complex with no central controller. An

organized response emerges as a system-wide property derived from the low-level agent

behaviors. These immune agents act concurrently making immune processes naturally

parallelized.

Learning, adaption, and memory. The immune system is capable of recognizing previously

unseen pathogens, thus exhibiting the ability to learn. Learning implies the presence of

memory, and the immune system is able to ‘‘remember’’ previously encountered patho-

gens, as demonstrated by the phenomenon of primary and secondary immune responses.

The first time a pathogen is encountered, an immune response (the primary response) is

elicited; the next time that pathogen is encountered, a faster and often more aggressive

response is mounted (the secondary response).

Pattern recognition. Through its various receptors and molecules, the immune system is

capable of recognizing a diverse range of patterns. This is accomplished through receptors

that perceive antigenic materials in differing contexts (processed molecules, whole mole-

cules, additional signals, etc.). Receptors of the innate immune system vary little, whilst

receptors of the adaptive immune system, such as antibodies and T-cell receptors, are

subject to huge diversity.

Classification. The immune system is very effective at distinguishing harmful substances (typi-

cally viewed as nonself ) from the body’s own tissues (typically viewed as self ), and directing

its actions accordingly. From a computational perspective, it does this with access to only a

single class of data, self-molecules (Stibor et al. 2005). The creation of a system that

effectively classifies data into two classes, having been trained on examples from only one,

is a challenging task.
3 Engineering Artificial Immune Systems

de Castro and Timmis (2002a) have proposed a flexible and generic layered approach to the

development of immune-inspired engineering solutions, shown in > Fig. 1. This framework

identifies the main design decisions that need to be addressed in the deployment of an

immune-inspired engineering solution: representations, affinity measures, and immune

algorithms.



. Fig. 1

The layered framework approach to constructing AIS solutions. (Taken from de Castro and

Timmis (2002a).)
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Given a particular application domain, an appropriate representation of the data must be

chosen. In AIS, this typically follows the notion of shape-space (Perelson and Oster 1979).

Here, molecules m (such as receptors and antigen) exist as points in a shape space S, and can

be represented as a string of attributes m = <m1,m2,. . .,mL> in an L dimensional space,

m 2 SL. The attributes mi will represent aspects of a problem domain: patterns to be

recognized, functional values to be optimized, combinations of input and proposed actions,

etc. de Castro and Timmis (2002a) suggest four data types of which these attributes may

belong: real valued; integer valued; hamming valued, finite length strings composed of digits

with a finite alphabet; and categorically valued, where values include items such as ‘‘name,’’ or

‘‘color.’’ The affinity measures are functions or criteria through which interactions of the AIS

elements are quantified. They are highly dependent on the representation chosen, for example,

continuous variables typically employ the Euclidean distance measure, whereas bit string

representations may use the hamming distance. Work in McEwan et al. (2008) provides a

convincing critique of the shape-space paradigm and discusses the limitations of such an

approach. Their paper is discussed in more detail in > Sect. 4.1.

The highest layer of the framework details the selection of an immune-inspired algorithm

to operate over the immune elements of the system. Various types of immune-inspired

algorithms exist, which can operate independently of the choice of representation and affinity

measure, adding dynamics to the algorithm populations based on measurements that the

affinity functions provide. Despite this, immune algorithms should be chosen with care based

on the problem’s data (Freitas and Timmis 2007).

In what is considered to be one of the first papers in AIS, Farmer et al. (1986) examined the

immune system in the context of classifier systems, essentially highlighting the parallels of the

immune network theory (Jerne 1974) and artificial intelligence. AIS has since been applied to a

large range of domains that can broadly be classified as learning, anomaly detection, and

optimization problems (Hart and Timmis 2008). Four main classes of AIS algorithm have

been applied to these problems and each is outlined below.
3.1 Clonal Selection Theory-Inspired AIS

Clonal selection-based algorithms attempt to capture mechanisms of the antigen-driven

proliferation of B-cells that results in their improved binding abilities. Using a process

known as affinity maturation, the receptors of B-cell are mutated and subsequent B-cell

selection results in a population of B-cells with better overall affinity for the antigen.
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Clonal selection algorithms capture the properties of learning, memory, adaption, and pattern

recognition (Timmis et al. 2008a).

A generic clonal selection inspired algorithm, based on CLONALG (de Castro and Von

Zuben 2002, 2000), is presented in >Algorithm 1. A set of patterns (antigens) is input to the

algorithm, and output is a set of memory B-cells capable of recognizing unseen patterns.

A randomly initialized set of B-cells are preferentially selected based on their affinity for the

antigen. The higher affinity cells are cloned proportionally to their affinity, and mutated at a

rate inversely proportional to affinity. The higher affinity clones will replace the lower affinity

cells of the previous generation. Very high affinity clones compete for a place in the set of

memory cells. This algorithm can be tailored toward optimization problems by removing the

antigen set S, and directly representing the function or domain to be optimized as the affinity

function. As clonal selection algorithms employ mutation and selection of a population of

candidate solutions, they tend to be similar to other evolutionary algorithms (Newborough

and Stepney 2005).

In >Algorithm 1, a generic clonal selection algorithm is outlined, however, there are many

variants in the literature that have been augmented and altered to fit specific application areas.

For example, work in Watkins et al. (2004) developed a reinforcement learning approach

known as AIRS (artificial immune recognition system), based on the ideas of clonal selection

for the classification of unseen data items. In effect AIRS is an instance creation algorithm

which acts as a preprocessor to the k-nearest neighbor approach that has been found to

perform well on certain types of classification problems (Secker and Freitas 2007). In the

context of dynamic learning, work by Kim and Bentley (2002a, b, c) developed a network

intrusion detection system based on a dynamic variant of the clonal selection paradigm

that was capable of identifying potential attacks to computer networks in an online

manner and then be able to, in a limited manner, adapt to new types of attacks. As a final

example, work by Kelsey and Timmis (2003), and Cutello et al. (2004a, b, 2005) have

developed particularly effective optimization algorithms based on variants of clonal selection
Algorithm 1 A generic clonal selection algorithm, based on CLONALG (de Castro and Von

Zuben 2000, 2002)

input: S ¼ a set of antigens, representing data elements to be recognized.

output: M ¼ set of memory B-cells capable of classifying unseen data elements.

begin

Generate set of random specificity B-cells B.

for all antigens ag 2 S do

Calculate affinity of all B-cells b 2 B with ag.

Select highest affinity B-cells, perform affinity proportional cloning, place clones in C.

for all B-cell clones c 2 C do

Mutate c at rate inversely proportional to affinity.

Determine affinity of c with ag.

end for

Copy all c 2 C into B.

Copy the highest affinity clones c 2 C into memory set M.

Replace lowest affinity B-cells b 2 B with randomly generated alternatives.

end for
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by making use of novel selection and mutation mechanisms tailored specifically for certain

types of optimization problems.
3.2 Immune Network Theory AIS

The immune network theory as proposed by Jerne (1974) views the immune system as a

regulated network of molecules and cells that recognize each other which acts in a self-

organizing manner to produce memory, even in the absence of antigen. B-cells interact via

receptors to stimulate and suppress each other. This forms a regulatory network that repre-

sents an internal image of the antigenic patterns that the immune system observes (Farmer

et al. 1986).

As with clonal selection, the immune network theory has provided inspiration for many

algorithms ranging from optimization to machine learning (de Castro and Timmis 2002b;

Honorio et al. 2007; Timmis and Neal 2000; de Castro and Von Zuben 2001; Bezerra et al.

2004). From a machine learning perspective, many of the systems are unsupervised and

produce an instant reduction of the data space. They present clusters of this reduced data as

networks of connected B-cells, where a B-cell may be considered a point m in the shape

space SL discussed above. The motivation for such algorithms is that the resulting networks

highlight structures inherent in the data set and reduce the dimensionality and complexity of

the data (Neal 2003). A generic immune network algorithm, based on aiNet (de Castro and

Von Zuben 2001), is presented in >Algorithm 2. It is a modified version of CLONALG that

incorporates a mechanism of suppression amongst B-cells.

In aiNet, data items are represented as antigen which B-cells (detectors) recognize. Like

clonal section algorithms (>Algorithm 1), affinity maturation produces B-cells with differing

specificities, and competition removes the worst of these cells from the population. A suppres-

sive mechanism then prunes cells of similar specificities from the population. The resulting

network of B-cells is then representative of clusters within the data.

Despite possessing suppressive mechanisms, early immune network algorithms suffered

from an excess of B-cells, which hindered run time efficiency and rendered the result-

ing networks overly complex (Timmis and Neal 2000). To address this, work by Timmis and

Neal (2000) incorporated the notion of an artificial recognition ball (ARB), a bounded area

surrounding a point in antigenic space. All B-cells exhibiting specificities within an ARB’s area

are represented by that ARB, thus removing the requirement to explicitly represent each of

them. To further regulate the network’s population size, ARBs lie in competition with one

another for a share of finite system-wide resource; ARBs that are unable to claim sufficient

resource are removed from the network. Resource is allocated on the basis of ARB stimulation,

derived from antigen affinity, and from low affinity to the other ABRs with which they are

linked. Hence, the pressures of the algorithm are to derive clusters of linked but well spread out

ARBs that represent structure in the data.

A similar, but modified, immune network algorithm was published by Neal (2003). Both

cloning and hypermutation are absent in this algorithm; new ARBs are created from antigen

that fall outside the range of existing ARBs in the network. The algorithm does not incorporate

any stopping criteria, and can be used to create cluster-based representations of dynamically

changing data. This algorithm removed the requirement for central control over the alloca-

tion of resources; ARBs are responsible for determining their own stimulation and acting

accordingly. The nature of the stimulation calculation prevents ARB population explosion and



Algorithm 2 A generic immune network algorithm, based on aiNet (de Castro and Von Zuben

2001) (Taken from Timmis et al. (2008a).)

input: S ¼ a set of antigens, representing data elements to be clustered, nt network affinity

threshold, ct clonal pool threshold, h number of highest affinity clones, a number of new

antibodies to introduce.

output: N ¼ set of memory detectors capable of classifying unseen patterns.

begin

Generate set of random specificity B-cells N.

repeat

for all antigens ag 2 S do

Calculate affinity of all B-cells b 2 N with ag.

Select highest affinity B-cells, perform affinity proportional cloning, place clones in C.

for all B- cell clones c 2 C do

Mutate c at rate inversely proportional to affinity.

Determine affinity of c with ag.

end for

Select h highest affinity clones c 2 C and place in D.

Remove all elements of D whose affinity with ag is less than ct.

Remove elements of D whose affinity with other elements in D is less than ct.

Insert remaining elements of D into N.

end for

Determine affinity between each pair of B-cells in N.

Systemically remove all B cells whose affinity to another B cell is less than nt.

Introduce a new, randomly generated, B-cells into N.

until a stopping condition has been satisfied
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renders the algorithm robust regarding exact parameter values. The algorithm captures well

the properties of self-organization and population regulation as exhibited by the immune

system. Galeano et al. (2005) provides a good review of many other immune networks that

appear in the literature.
3.3 Negative Selection AIS

Inspired by the observation that the immune system protects the host body from invading

pathogens, early AIS mapped these qualities to the invasion of computers and computer

networks by viruses, worms, and intruders. The concept of self–nonself discrimination

provided the basis for the development of various security-based AIS algorithms. Specifically,

a process called negative selection was used, as inspiration, to derive a set of detectors capable

of recognizing only nonself. An example of an algorithm based on Forrest et al. (1994) is

shown in >Algorithm 3.

This algorithm was applied to protecting a computer from unauthorized changes, such as

infection with a virus. There are two main stages to the algorithm: the generation of detectors;

and the online monitoring of data and programs for changes. In the detector-generation stage,

the collection of self strings S represents data and programs stored on the computer. The

randomly generated detectors D are matched against elements in S, and those d 2 D that

match (based on an affinity function) are removed. In Forrest et al. (1994) (this work was the



Algorithm 3 Generic negative selection algorithm (Based on Forrest et al. (1994).)

input: S ¼ set of self strings characterizing benign, normal data.

output: A ¼ Stream of nonself strings detected.

begin

Create empty set of detector strings D . Generation of detector strings

Generate random strings C.

for all random strings c 2 C do

for all self strings s 2 S do

if c matches s then

Discard c

else

Place c in D

end if

end for

end for

while There exist protected strings p to check do . Detection stage

Retrieve protected string p

for all detector strings d 2 D do

if p matches d then

Place p in A and output. . Nonself string detected

end if

end for

end while
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first instance of negative selection being employed in the context of computer security) an

affinity function that checked for the similarity of r consecutive characters at any point in the

detector and self strings, called the r-contiguous matching rule, was used. The randomly

generated detectors that are not removed from the detector collection are used to check for

alterations to the system.

Negative selection algorithms have not been constrained to detection of viruses; they have

also found application as intrusion detection systems. In this context the self strings S could be

a concatenation of source IP, destination IP, and port addresses (Forrest and Beauchemin

2007). The detector-generation stage would be executed during a time when the network

was known to be secure. Consequently, a match during the monitoring phase could indi-

cate an anomalous connection, an intrusion. A large amount of work has been dedicated to

the development of negative selection algorithms in a variety of application areas and from

a theoretical perspective (Balthrop et al. 2002; Gonzalez and Dasgupta 2003; Esponda

et al. 2004).

Despite a considerable amount of examples in the literature, it has been argued that

negative selection suffers several drawbacks. Defining self can prove problematic; in the case

of a network the total variety of safe packets can be enormous, the logistics of capturing this

self set can prove difficult. In deriving the set D a huge quantity of randomly generated

detectors that match self will have been deleted, thus it can become very inefficient (Freitas and

Timmis 2007). Furthermore, algorithms of this variety have been seen to suffer certain scaling

problems: as the universe in which self and nonself elements are defined grows (reflecting the

complexity of the detection problem), the number of detectors required to effectively cover the

nonself space becomes difficult to generate (Stibor et al. 2005; Timmis et al. 2008b).
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3.4 Danger Theory AIS

It has been suggested that the integration of mechanisms derived from danger theory

(Matzinger 1994) could provide for more effective intrusion detection algorithms than

traditional negative selection approaches (Aickelin and Cayzer 2002). Rather than monitor

for the explicit presence of the intruder, danger-theory-inspired systems could be alerted by

the anomalous intruder behavior. The shift in emphasis is subtle, but significant. Such an

intrusion detection system would monitor for signs of ‘‘danger,’’ such as abnormalities

in memory usage or disk activity, unexpected or unwarranted frequencies of file changes

(Aickelin and Cayzer 2002; Aickelin et al. 2003).

An interesting consequence of danger-inspired AIS lies in the interpretation of the danger

zone. In vivo, this is the spatial neighborhood from where the danger signals originate. In the

artificial domain, this concept need not be spatial, Secker et al. (2003) place the danger zone in

the temporal domain. The concept of danger signals provides danger-theory-inspired engi-

neering solutions with several advantages over self- and nonself-inspired approaches. Danger

signals restrict the domain of nonself to a manageable size, remove the requirement to observe

all self, and instill adaptability regarding scenarios where self and nonself boundaries are

dynamic (Aickelin and Cayzer 2002).

The main danger-theory-inspired algorithm that has been developed is the dendritic cell

algorithm (DCA) (Greensmith et al. 2005, 2006a). The DCA is a signal-processing algorithm,

inspired by the behavior of dendritic cells. These reside in the body tissues and collect antigen and

other (danger) signals that provide a picture of the current state of the tissues. This picture

determines whether the antigen has been collected in a safe or dangerous context, and causes

dendritic cells to change into a semi-mature ormature state. The task of theDCA is to classify data

items (antigens) as being either benign or malignant in nature. Antigen are associated with

concentrations of pathogen associated molecular pattern (PAMP) signal, danger signal, safe

signal, and pro-inflammatory signals. These signals are derived from real biological signals and

are mapped onto attributes associated with the data items as follows (Greensmith et al. 2006a):

� PAMP. A known signature of abnormal behavior. This attribute of the data item is highly

indicative of an anomaly.

� Danger signal. A moderate degree of confidence that this attribute of the data item is

associated with abnormal behavior.

� Safe signal. Indicative of normal system operation.

� Pro-inflammatory signal. A general sign of system distress.

The main challenge in implementing the DCA is defining how these signals map onto the data

items derived from the problem domain (Greensmith et al. 2006a).

The DCA, shown in >Algorithm 4, operates by maintaining a pool of dendritic cells

(DCs). From this pool, dendritic cells are randomly selected to sample data items (and related

signals) that are presented to the algorithm in a sequential manner. Based on the signals

received, dendritic cells produce semi-mature and mature cytokines (immune signaling mole-

cules). At the end of antigen processing, DCs are assigned semi-mature or mature status

according to the levels of the cytokines produced. Every data item is then classified as being

benign or malignant on the basis of a majority vote amongst the DCs that sampled it, each

voting in accordance to its level of maturity.

Through its focus on behavioral consequences (derived from the signals described

above) as opposed to physical presence (in the case of negative selection algorithms), the



Algorithm 4 The Dendritic Cell Algorithm (DCA) (Greensmith et al. 2005)

input: S ¼ a set of antigens, representing data elements classified as safe or dangerous.

output: K ¼ set of antigens classified as safe.

L ¼ set of antigens classified as dangerous.

begin

Create DC pool of 100 dendritic cells.

for all antigen ag 2 S do . Perform signal processing on ag

for 10 randomly selected dendritic cells dc 2 DC do

Sample ag.

Update dc.danger, dc. PAMP, and dc.safe signals based on ag.

Calculate and update concentration of dc.semimatureCytokine output cytokine.

Calculate and update concentration of dc.matureCytokine output cytokine.

Calculate and update concentration of dc.coStimulatory output molecules.

if concentration of dc.coStimulatory > threshold then

Remove dc from DC and place in M.

Insert new dc into DC.

end if

end for

end for

for all dendritic cells dc 2 M do . Differentiation of dendritic cells.

if concentration of dc.semimatureCytokine > dc.matureCytokine then

dc.class ¼ semi/mature.

else

dc.class ¼ mature.

end if

end for

for all antigen ag 2 S do . Classification of antigens

for all dendritic cells dc 2 M that sampled ag do

Calculate if ag presented in mature or semimature context by dc.

end for

if ag presented as semimature majority of time then

Place ag in K. . ag is benign

else

Place ag in L. . ag is malignant

end if

end for
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DCA is able to operate in the presence of dynamically changing environments. However, in

its current state (Greensmith et al. 2005, 2006a, b), the DCA is not able to operate in a true

online fashion; data must be collected a priori and classification is performed as a final batch

operation. Hence, anomalies cannot be detected as they occur. A second potential problem for

the DCA is that misclassification can occur around the boundaries where data items switch

between safe and dangerous contexts. This is due to multiple sampling of antigen by each DC.

The consequence is that the DCA will exhibit significant misclassification when applied to

problems where context switches in the data items are frequent (Greensmith et al. 2005). In

order to overcome the limitation of operating in an off-line manner, Lay and Bate (2007) have
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developed a real-time, online DCA that is capable of altering schedule overruns in real-time

operating systems. The DCA has also been used for behavior classification on a robotics

platform (de Castro et al. 2007a).
4 Reflections and Projections

Artificial immune systems has matured into a well recognized field that tackles a broad range

of problem domains. This is best illustrated from the proceedings of the International

Conference of Artificial Immune Systems ICARIS (Timmis et al. 2003; Nicosia et al. 2004;

Jacob et al. 2005; Bersini and Carneiro 2006; de Castro et al. 2007b; Bentley et al. 2008). The

field is now at a stage where a number of researchers are reflecting upon its contributions to

the wider academic and engineering communities. A number of these reflections and pro-

posed future directions for AIS are assessed here.
4.1 Evaluation of Current AIS

Hart and Timmis (2008) analyze a large collection of AIS engineering applications and cate-

gorize these into three classes of problem: anomaly detection, optimization, and clustering and

classification. Considering key works from each class in turn, they attempt to assess and

evaluate whether the application of AIS brings any benefits that could not be derived from

applying alternative, existing techniques to the problem. Their criteria asserts that it is not

sufficient to simply outperform other algorithms on benchmark tests; to be truly successful,

the AIS must contain features that are not present in alternative paradigms.

Anomaly detection AIS are assessed by Hart and Timmis (2008) as having had limited

success, but the authors make note of recent advances that danger-theory-inspired algorithms

have provided, and state that significant breakthroughs are still possible. For optimization

problems, it is concluded that although optimization-based AIS can and will provide compa-

rable performance to existing methods, they will not offer any distinguishing features that

cannot be found elsewhere. For classification and clustering applications, the authors conclude

that the naturally distributed nature of some AIS algorithms allows for natural parallelization

and distribution across several processors, offering something potentially distinctive. Regard-

ing operation over dynamic data sets, the authors state that by definition, AIS algorithms

incorporate some notion of memory, and could therefore outperform alternative learning

systems which are purely reactive in nature.

Though their assessment of AIS accomplishments concludes that many are not truly

successful, the authors note that this is partly due to several shortcomings that have char-

acterized AIS design and application to date (Hart and Timmis 2008). These include: the

methodology through which AIS algorithms capture their inspiring immunology; the atten-

tion paid to the effects that certain design decisions impose when engineering AIS systems;

the theoretical understanding of AIS algorithms; and the nature of the problems to which AIS

have been applied.

In a similar vein to Hart and Timmis (2008), Garrett (2005) studies various AIS

to attempt to answer the question of whether AIS research has delivered anything useful

to date. A useful algorithm in this context is defined by being distinct and effective.

An algorithm’s distinctiveness is assessed through criteria covering the algorithm’s internal
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representation of the problem and potential solutions, and its computational components.

Effectiveness is assessed on the algorithm’s performance, including the path through which

solutions are obtained, the quality of results obtained through its application to benchmark

problems, and the speed at which results can be obtained. In combining the two sets of criteria,

an algorithm is said to be useful if it is both effective and distinctive.

The fact that work reflecting on the state of AIS is being conducted is encouraging, and is

healthy for the discipline. However, it should be noted that the method and criteria employed

by Garrett (2005) in arriving at its conclusions has been criticized for being more of an exercise

in classification than in detailed evaluation, and for being highly subjective in nature

(Timmis et al. 2008a). Additionally, the criteria focuses on performance in relation to

benchmark problems. It has been suggested that a downfall of AIS research to date has been

its repeated application to benchmark problems, and to areas for which many quality solu-

tions already exist (Hart and Timmis 2008; Timmis et al. 2008a). The effectiveness criteria do

not reflect the need for AIS to carve its own niche (Hart and Timmis 2008; Timmis et al.

2008a), and provide quality solutions in a problem domain that no other technique

can match.

McEwan et al. (2008) question the appropriateness of the shape space representation

for AIS with respect to machine-learning problems. Typical machine-learning problems entail

data sets of very high dimensionality. In such a scenario, the adoption of the shape space

representation can lead to the ‘‘curse of dimensionality’’: as the dimension of the space increases

linearly, its volume increases exponentially, and the quality of locality that affinity measures

attempt to discern becomes meaningless as all points approach in equidistance to one another.

It has been noted by Stibor et al. (2005) that the task of generating, maintaining, and exploit-

ing an effective set of detectors within such a high-dimensional space is computationally

intractable.

As an alternative, McEwan et al. (2008) propose marrying the machine-learning technique

of boosting with immune inspiration. Boosting proposes a strong learning strategy that is

derived as a compound decision between multiple (slightly better than random) weak learners.

The authors draw analogy to the cooperative nature in which many varieties of immune cells

with differing specificities and recognition targets are able to cooperatively mount an effective

immune response that hones on a specific target (Cohen’s correspondence (Cohen 2000)).
4.2 Inspiration, Frameworks, and Methodologies

In recent years, there has been a gradual shift in some AIS toward paying more attention to the

underlying biological system that serves as inspiration. For example, the development of the

DCA (see > Sect. 3.4) involved the input from real biological experimentation as inspiration.

However, there was no reported sophisticated biological modeling to understand the under-

lying biology as is suggested by Stepney et al. (2005) and Timmis et al. (2006). Other examples

of this shift back to the underlying biology include Wilson and Garrett (2004) and Jacob et al.

(2004), who have used modeling techniques to build AIS in order to understand underlying

immune properties.

The majority of AIS such as those detailed in > Sects. 3.1–3.3 have taken their inspiration

from well-established immunological perspectives. In contrast, Andrews and Timmis (2005,

2007) advocate exploiting conflicting immune theories as a rich source of potential ideas

for the engineer. This is an approach that has been successfully carried out by Aickelin and
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Cayzer (2002), Secker et al. (2003), and Greensmith et al. (2005) in exploiting danger theory

and the development of the DCA. AIS can draw significantly more inspiration from the

immune system, and the immunological debate surrounding its higher functions, than the

relatively simplistic subset of concepts that have served thus far.

Taking this approach, the AIS engineer enjoys the freedom of adopting various immuno-

logical models and concepts that best suit the application domain. It is, however, essential to

ensure that the concepts employed are correctly abstracted and reasoned about to accurately

capture the emergent phenomena from which they are inspired. It has been argued that

various immune-inspired algorithms have been hampered with a lack of biological accu-

racy (Timmis 2007). Typically, immune-inspired algorithms have fallen prey to ‘‘reasoning by

metaphor,’’ wherein their operation and structures bear only a weak resemblance to the bio-

logical phenomenon that inspired them (Stepney et al. 2005), and, thus, consequentially fail to

unlock their full potential (Hart and Timmis 2008).

To combat the problems associated with this apparent weakness in biological metaphors, a

conceptual framework approach to the development of bio-inspired algorithms has been

proposed (Stepney et al. 2005), shown in > Fig. 2. This provides a structure and methodology

for biological investigation, abstraction, modeling, and ultimately the construction of algo-

rithms. The process should be interdisciplinary, involving at the very least biologists, math-

ematicians, and computer scientists. The framework aims to facilitate a better understanding

of the targeted underlying biological concepts and to ultimately build more powerful bio-

inspired algorithms whilst simultaneously gaining a better understanding of which application

domains these algorithms are best suited to.

The first step in the conceptual framework approach is to probe the biological system

through observation and experimentation. These probes are biased toward extracting informa-

tion concerning the particular biological phenomena of interest. From the information gained,

careful abstraction and mathematical modeling will highlight the central processes responsible

for the observed biological phenomena. Analytical computational models may be con-

structed, which allow for the execution and animation of any underlying model, and can
. Fig. 2

The conceptual framework approach to deriving biologically inspired algorithms (Stepney et al.

2005).
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provide a deeper insight into its workings. The observations and mechanisms perceived at this

stage will be free from any particular application bias. Finally, these insights can serve as design

principles for bio-inspired algorithms, which may be applied to non-biological problems

(Stepney et al. 2005; Hart and Timmis 2008).

A number of AIS works have been inspired by the conceptual framework principles. These

include: a computational model of degenerate T-cell receptors (Andrews and Timmis 2006)

and adaptable degenerate immune cell receptors (Andrews and Timmis 2008); and an ins-

tantiation of an artificial cytokine network (Hone and van den Berg 2007), which examined

the behavior of the network to elicit any useful properties that could be applied to solving

engineering problems (Read et al. 2008). Newborough and Stepney (2005) also apply many of

the conceptual framework ideas to produce a generic framework for population-based bio-

inspired algorithms including genetic algorithms, negative selection, clonal selection, particle

swarm optimization, and ant colony optimization.

The conceptual framework of Stepney et al. (2005) also influenced Twycross and Aickelin

(2005) who present a general meta-framework for models incorporating innate immunity.

A table of six general properties of the innate immune system is presented and it is claimed

that AIS will need to incorporate properties such as these to realize functions of the immune

system. Similarly, Guzella et al. (2007) highlight a class of T cell, T regulatory cells, as

inspiration for AIS. They suggest that incorporating these cells might lead to more biologi-

cally plausible models and algorithms that achieve better results in real-life problems.

While the conceptual framework offers a structured methodology for the development

of immune- (and other biologically) inspired algorithms, the deployment of these AIS in a

particular engineering context also requires careful consideration. Through their examination

of AIS application to classification problems Freitas and Timmis (2007) note several con-

siderations, frequently overlooked, which can significantly affect an algorithm’s suitability and

performance. They state that the implementor of an AIS algorithm should note the nature

of the problem’s data, and chose a representation that intuitively maps the data’s character-

istics. Altering the data to suit a particular representation, in particular, discarding data that is

of a different type (e.g., disposing of categorical data to fit a continuous valued representa-

tion), is bad practice. Rather, the immune-inspired algorithm’s representation should be

tailored to suit the problem’s data.

Freitas and Timmis (2007) also advise careful consideration of the choice of affinity

measure for the chosen representation. An affinity measure can be associated with an in-

ductive bias: some basis through which one hypothesis will be favored over another. An

inductive bias is not an undesirable trait, it forms the basis of learning. Yet, care must be

taken to ensure that the inductive bias incurred is appropriate for the problem at hand. For

example, certain affinity measures have a positional bias, whereby the order of data within the

representation can affect the outcome of the affinity measure. If the order of the data is

irrelevant to the problem being tackled, then an affinity measure yielding a positional bias

might be an inappropriate choice. This work is supported by empirical investigations into the

effects of different affinity measures by Hart and Ross (2004) and Hart (2005).
4.3 Application Domains

It has been suggested by Hart and Timmis (2008) that there will be little benefit from applying

AIS algorithms to problems of a static nature, over existing and established paradigms. The
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authors conjecture that the distinctive ‘‘killer application’’ niche for AIS will require algo-

rithms to exhibit the following properties (quoted verbatim):

� They will be embodied.

� They will exhibit homeostasis.

� They will benefit from interactions between innate and adaptive immune models.

� They will consist of multiple, heterogeneous interacting, communicating components.

� Components can be easily and naturally distributed.

� They will be required to perform life-long learning.

Recent applications of AIS in novel problem domains have started to show indications of

satisfying these properties, which are reviewed here.

A central function of the immune system is its cooperation with the endocrine and neural

systems in the provision of homeostasis to the host (Hart and Timmis 2008). Homeostasis is

‘‘the tendency of a system, esp. the physiological system of higher animals, to maintain internal

stability, owing to the coordinated response of its parts to any situation or stimulus tending

to disturb its normal condition or function’’ American Psychological Association (APA).

Hence, since the domain in which in vivo immune systems operate is inherently dynamic; it

is not unreasonable to surmise that immune-inspired algorithms might be particularly well

suited to operation in dynamic environments. The immune system’s potential as inspiration

for homeostasis in robotics is investigated by Owens et al. (2007). Here, homeostasis requires:

the system to perceive the environment from multiple perspectives to overcome the inherent

problems of sensory malfunction; a repertoire of innate responses that can affect change in the

environment or the system directly; the cognition that facilitates the selection of an appropri-

ate effector action in response to perceived input state; and the ability to adaptively correlate

sensory information and effector mechanisms, such that its actions can dynamically evolve

with a changing environment. Similarly, Neal et al. (2006) outline an endocrine-immune-

inspired homeostatic control system. The artificial immune system allows for low-level faults

(e.g., an overheating motor) to be corrected locally (e.g., by turning on a local fan), while

integration with an artificial endocrine system allows for chronic faults to propagate inflam-

mation throughout the robot’s systems. System-wide inflammation influences the higher level

function of the robot in a global attempt to rectify the fault, for example, the decision by the

robot to stop moving, thus allowing the motor to cool down.

The potential for AIS application in the domain of real-time systems was demonstrated by

Lay and Bate (2007), who employed the dendritic cell algorithm in the detection of process

deadline over runs in an embedded system. The analysis of process executions, and the

insurance that all deadlines are met is typically performed statically during the development

process. By incorporating adaptive AIS techniques, it is hoped that the system is rendered

robust, while simultaneously reducing development time and costs.

Embodiment in bio-inspired engineering has been investigated by Stepney (2007), who

examines the intimate coupled nature of a system and its environment. This includes their

perceptions and consequent reactions in perturbing one another through complex high

bandwidth feedback networks. The environment is open, with a quantitatively large and

rich variety of information flowing through it, while the system exhibits highly nonlinear

dynamics; small input perturbations need not equate to small behavioral modifications.

A consequence of embodiment is the coevolution of the environment with the system.

In the context of the danger theory of the immune system (Matzinger 2002), immune cells

(system) have learnt to perceive danger signals just as the body (environment) has learnt to



An Introduction to Artificial Immune Systems 47 1591
provide them. Pathogens experience evolutionary pressure to evade detection, thus contribut-

ing to the environment’s dynamics (Stepney 2007). Thus, the two are intimately bound. This

concurs with the argument for the complex systems view of immunology presented by Cohen

(2000). Thus, for engineers to truly capture the complexity of the biology from which they

derive their inspiration, they must embody the artificial system within its artificial environ-

ment, rather than deliberately engineer the interfaces, sensors, and actuators through which

the system interacts with its environment.

Though no AIS currently satisfies the conceptual features of embodiment as outlined in

Stepney (2007), Bentley et al. (2005) go some way in addressing similar issues by suggesting

that a layer is missing from AIS design. They outline the concept of an artificial tissue layer

acting as an interface between a problem space and an AIS. The tissue layer performs some

data preprocessing before presenting it to the AIS, allowing for the incorporation of domain-

specific knowledge and the integration of several data sources, and is the medium through

which the AIS responds. An analogy is drawn by Bentley et al. (2005) between the artificial

tissue providing an innate response and the AIS providing the adaptive response. As a prelimi-

nary investigation, two tissue algorithms are presented by Bentley et al. (2005). In a similar

work, Twycross and Aickelin (2006) present a framework that facilitates the complete encap-

sulation of an AIS, providing: artificial anatomical compartments within which the AISs

immune elements may operate; and generic receptors for other immune cells, antigens, and

cytokines contained within the compartment. The framework was partially motivated through

the possibility to evaluate the performance of several alternative AIS algorithms on the same

problem, but the manner in which it interfaces the AIS with the environment, and performs

preprocessing is interesting from the perspective of embodiment.
4.4 Modeling and Simulating the Immune System

In recent years, building models and simulations of the immune system have become an

important aspect of AIS, both as stand-alone pieces of work, and as steps toward producing

engineering applications using methodologies such as the conceptual framework approach

of Stepney et al. (2005). Forrest and Beauchemin (2007) note that there is a vast range of

modeling approaches applicable to modeling the immune system, each with their own

advantages and disadvantages operating at different levels of abstraction.

An overview of many mathematical techniques used for modeling the immune system is

provided by Perelson and Weisbuch (1997). A large number of these approaches involve the

use of differential equations, although other techniques can be applied, such as Boolean

networks (Weisbuch and Atlan 1988) and the work of Kelsey et al. (2008) which present and

analyze a Markov chain model of a cytokine network. Recently, process calculi have been

applied to models of the immune system such as Owens et al. (2008). Process calculi are

formal languages from computer science that are used to specify concurrent systems. As

biological systems are inherently concurrent, these types of languages seem well suited to bio-

logical modeling.

Forrest and Beauchemin (2007) provide a review of many of the modeling approaches

in immunology, with a focus on agent based modeling (ABM). In ABM, components such

as cells (and sometimes molecules) are represented individually as agents, rather than as

homogenous populations such as in differential equation techniques. Different agent types

typically represent different immune cell types. These agent types are encoded with simple
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rules extracted from the real biology that govern how they behave and interact. ABM techni-

ques typically employ an explicit notion of space, such as that used in cellular automata-like

models (Kleinstein and Seiden 2000). The advantage of ABM is that it allows the observation

of agent population dynamics as they emerge from the interactions of individual agents. An

example of ABM is Beauchemin et al. (2006) who investigate the dynamics of in vitro infection

with a strain of influenza. ABM has also been used to study more computational aspects of

applied AIS such as a series of work by Hart and Ross (2004), Hart (2005, 2006), and Hart et al.

(2006). These works use a simulation of an idiotypic network to investigate how different

models of shape-space and affinity affect the dynamics of the network, such as memory

capacity and the structures formed, emphasizing the need for careful choice of parameters

in the engineered systems.

Diagramatic tools have also been used to model the immune system, the most widely

used being the unified modeling language (UML) (Fowler 2000), which consists of a set of

13 different types of diagram that can model different aspects of structure and behavior. The

advantage of the UML is its non-domain-specific nature and subsequent ability to capture

abstractions. The UML (and related diagrams such as statecharts) have started to become a

powerful tool in modeling aspects of biological systems. By far the most advanced use of the

UML and statecharts in immunology is that of Efroni et al. (2003), who have built a

sophisticated and predictive model of T cell maturation in the thymus using a tool called

reactive animation, which combines the use of statecharts and other UML diagrams. In

addition to the UML, there are other techniques used in software engineering, which Bersini

(2006) suggests can facilitate the development and communication of immune modeling.

These include object-oriented technologies such as object-oriented programming and design

patterns (Gamma et al. 1995). The perceived benefit is the clarification of immune objects and

their relationships. To support this, Bersini (2006) provides an example of how clonal selection

can be modeled with a simple state diagram.
5 Summary

This chapter is intended as an overview of the area of artificial immune systems (AIS),

predominantly from an engineering solutions perspective. It is not meant to be an exhaustive

bibliography, but serves to illustrate that AIS is an area of great diversity, actively reflecting

upon itself, and expanding into new areas and meeting new challenges. The spectrum of AIS

research ranges from the modeling of immune systems in aid of immunological study, to the

development of algorithms for specific engineering applications. While the predominant focus

of this chapter has been on the algorithmic aspect of AIS, the other aspects of AIS research are

no less significant. The principled development of immune-inspired algorithms that capture,

in a more than superficial manner, the properties and characteristics of the immune system

are equally valuable to the discipline’s continuing success. This is highlighted to different

degrees in Stepney et al. (2005) and Timmis et al. (2006) who advocate the careful consider-

ation of the underlying biological system, the use of modeling to help understand that system,

and the principled abstraction of algorithms and general frameworks from those models.

It is worth noting that there are many different aspects of the immune system that have

served as inspiration for AIS. Only the main strands have been reviewed in this chapter,

namely: clonal selection, immune networks, negative selection, and danger theory. However,

there remain many untapped possibilities that are worthy of consideration and study within
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principled frameworks, such as the conceptual framework of Stepney et al. (2005). In addition,

the area of AIS should seek out challenging application areas that exploit the immune

metaphor further than it has to date.

As pointed out by Timmis et al. (2008a), a recent paper by Cohen (2007) identifies three

types of AIS researcher. The first type he calls the literal school, they build artificial systems

that attempt to perform analogous tasks to the actual immune system (e.g., build computer

security systems that discriminate between self and nonself); the second type are those of the

metaphorical school who take inspiration from the immune system and build artificial

systems based on analogies (so the application may be far from analogous to what the immune

system does); and a third type of researcher aims to understand immunity through the

development of computational and mathematical models. This goes to illustrate the diversity

of research that lies within the discipline of AIS, and renders it a promising avenue for truly

interdisciplinary research.
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