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For computational agent-based simulation, to become a serious tool for investigating
biological systems requires the implications of simulation-derived results to be appreci-
ated in terms of the original system. However, epistemic uncertainty regarding the exact
nature of biological systems can complicate the calibration of models and simulations
that attempt to capture their structure and behaviour, and can obscure the interpretation
of simulation-derived experimental results with respect to the real domain. We present
an approach to the calibration of an agent-based model of experimental autoimmune
encephalomyelitis (EAE), a mouse proxy for multiple sclerosis (MS), which harnesses
interaction between a modeller and domain expert in mitigating uncertainty in the data
derived from the real domain. A novel uncertainty analysis technique is presented that,
in conjunction with a latin hypercube-based global sensitivity analysis, can indicate the
implications of epistemic uncertainty in the real domain. These analyses may be con-
sidered in the context of domain-specific knowledge to qualify the certainty placed on
the results of in silico experimentation.

Keywords: in silico experimentation; agent-based simulation; sensitivity analysis;
uncertainty analysis; calibration; stochasticity; computational immunology; experimen-
tal autoimmune encophalomyelitis; interpretation of simulation results

1. Introduction

Computational agent-based techniques are finding increasing application in the modelling
and simulation of complex systems. For biological research they offer a complement to tra-
ditional wet-lab research techniques, enabling experimentation that is impractical or even
impossible in the real domain [1]. Within agent-based models and simulations (ABMS),
individual elements of a system can be explicitly represented and carry their own state [2].
For example, an agent-based model of an infection in a body compartment might explic-
itly represent individual immune system cells as discrete elements in the model, rather
than capturing entire cell populations as single model elements. Agent-based models
often explicitly represent the environment (such as spatial orderings) in which agents are
placed, which determine the movement and interaction dynamics of the agents [3]. The
agent-based simulations that we consider in this article are stochastic in nature; repeated
simulation runs with the same parameters will not necessarily yield identical dynamics, as
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68 M. Read et al.

the determination of an agent’s behaviour (such as movement) is subject to the generation
of pseudo-random numbers from a given distribution.

Our work concerns computational immunology: the modelling and simulation of the
immune system. Advances in traditional wet-lab techniques are resulting in vast quantities
of data pertaining to the behaviour of very specific system elements under very specific
conditions [4]. Modelling and simulation attempts to integrate these data into a coherent
whole [5,6], indicating inconsistencies within the data and areas where understanding is
lacking. This can often feed back into the wet-lab by directing avenues for experimen-
tation [7]. It allows for the formulation and evaluation of hypotheses concerning system
behaviour and provides a means through which these hypotheses can be evaluated in the
context of established knowledge [8,9]. Owing to the flexibility of computer code, simula-
tion can facilitate experiments that are impossible to perform in the real domain as a result
of either ethical considerations or issues in accessibility [3,10].

The work presented here is conducted in the context of the CoSMoS project,1 which
seeks to build capacity in complex system simulation construction and analysis. It is
developing the CoSMoS process, an approach investigating complex domains through sim-
ulation that places emphasis on capturing the domain, and subsequent transitions from
explicit models of a domain to executable simulations [11]. Though agent-based modelling
and simulation offers great potential in assisting scientific experimentation, its success
ultimately depends on the ability to interpret simulation-based results in terms of the orig-
inal domain. Simulations, however, are artificial and abstract representations of the real
domains on which they are based, and hence results do not necessarily translate directly
from one domain into the other.

The goal of this article is to explore the problem of relating simulation results back
to domain reality, and by way of a case study provide examples of how calibration and
statistical techniques can be used to explore uncertainty in simulation results. In doing
this, we provide an example of how to qualify the significance of simulation-derived
results in terms of the original domain. Like any type of model, ABMS are simplifi-
cations; it is intractable to represent every aspect of the real domain in a model, both
computationally and because the domain is often not sufficiently well understood. There
are many aspects of biological systems for which there exists no consensus in the lit-
erature or that remain to be investigated. For example, in 2000 the journal Seminars
in Immunology [12] dedicated an entire issue to a debate among leading immunolo-
gists regarding the function of the immune system in directing bio-destructive activities
towards pathogenic invaders, and not the host [12]. Highlighted was a lack of consen-
sus among leaders in immunology with regard to this fundamental and essential aspect
of immune system function. In the context of modelling and simulation, the lack of
knowledge regarding a particular aspect of the domain is referred to as epistemic uncer-
tainty [13]. Epistemic uncertainty presents a challenge to the construction, calibration and
interpretation of simulations, since the exact nature of a phenomenon of interest may be
unclear.

Taken together, abstraction (which dictates that all aspects of the domain that are rep-
resented in the simulation must compensate for the actions of those that are not) and
epistemic uncertainty complicate the relationship between the real domain and the simula-
tion. Understanding this relationship is critical to relating predictive results2 arising from
ABMS back to the real domain, hence it is important that the implications of epistemic
uncertainty and abstraction be appreciated. If the validity of AMBS-generated predic-
tions hinges on aspects of the domain that are not well understood, then caution must be
exercised in the interpretation of results.
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Mathematical and Computer Modelling of Dynamical Systems 69

In the vast majority of cases where simulation results are reported in the computational
immunology literature, either the results are assumed to be absolutely representative of
the target domain, or no effort to indicate the significance of simulation-derived results in
terms of the original domain is made. To the best knowledge of the authors, we present
here an original approach to qualify the significance of simulation-derived results in terms
of the real domain through the use of uncertainty and sensitivity analyses [14], statisti-
cal techniques that elucidate the relationship between a system’s inputs and its output.
Uncertainty and sensitivity analyses have found recent application in exploring immune
system models and simulations, indicating parameters that are influential in dictating sim-
ulation behaviours [3,15,16]; however, the use of these techniques in linking simulation
results back into the original domain is novel.

Our work is grounded in an immunological case study for the modelling and simula-
tion of experimental autoimmune encephalomyelitis (EAE), a mouse proxy for multiple
sclerosis (MS). We make extensive use of a domain expert in mitigating uncertainty in
data derived from the real domain. A novel uncertainty analysis technique that exam-
ines the simulation’s robustness to parameter perturbation is presented, indicating how
far a parameter may be perturbed before a scientifically significant change in simulation
behaviour is observed. A latin hypercube global sensitivity analysis that determines sim-
ulation sensitivity with respect to its various parameters is presented. When considered
in the context of domain-specific knowledge, these two analyses can qualify the implica-
tions of epistemic uncertainty on simulation-derived predictive results and will contribute
to further work in identifying the confidence that may be placed on simulation-derived
predictions.

The article is organized as follows: Section 2 describes EAE, a mouse proxy for MS,
which constitutes the domain for this case study. Section 3 describes our calibration tech-
nique, along with examples of real domain data that demonstrate epistemic uncertainty
and motivate our approach. Section 4 presents the uncertainty and sensitivity analyses
employed in this work. Section 5 concludes this article.

2. Experimental autoimmune encephalomyelitis

EAE is an autoimmune disease in mice that serves as a proxy for MS in humans [17,18].
The disease results in the stripping of the insulatory myelin sheath from the neurons of
the central nervous system (CNS). An abstract representation of the key cells involved
in EAE, and their relationship to one another is presented in Figure 1. EAE is induced
in mice by injecting myelin basic protein (MBP – a myelin derivative). MBP is ingested
by dendritic cells (DCs) which induce a population of MBP-specific autoimmune CD4 T
helper 1 (CD4Th1) cells. The CD4Th1 cell population infiltrates the CNS and secretes
molecules that prompt local microglia cells to kill neurons. Neurons killed in this manner
are ingested by DCs resident in the CNS. DCs then derive and present MBP from neurons
and further induce and activate MBP-specific CD4Th1 cells. In this manner autoimmunity
self-perpetuates.

The physiological death of CD4Th1 cells, which occurs some time after their acti-
vation, leads to their digestion by DCs. Such DCs are then able to induce and activate
CD4 regulatory T cells (CD4Treg) and CD8 regulatory T cells (CD8Treg), the former
being required for the activation of the latter. Activated CD8Treg cells kill MBP-specific
CD4Th1 cells upon direct cell contact. The population-level deletion of CD4Th1 cells per-
mits the expansion of a competing, but normally suppressed, CD4 T helper 2 (CD4Th2)
cell population [19], which does not promote autoimmunity.
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Figure 1. An abstract depiction of the major cells involved in EAE and its associated regula-
tory recovery. MBP is the target of autoimmunity and is a protein expressed in the CNS. Adapted
from [20].

Note: EAE, experimental autoimmune encephalomyelitis.

EAE is a complex disease, characterized by the interaction of two coupled feedback
mechanisms: self-perpetuating autoimmunity and the regulation that it promotes. Disease
and recovery arise as emergent properties resulting from the interactions of millions of
cells of many different types. These interactions between cells occur across several bod-
ily compartments. The complexities of this disease make reasoning about its nature and
predicting the result of a particular intervention challenging. EAE is amenable to computa-
tional modelling and simulation techniques, where established knowledge and data can be
integrated with hypotheses of system operation and executed in the presence of different
interventions to indicate how the real system might respond.

3. Calibration

Calibration is an important aspect of in silico experimentation, it seeks to align a simula-
tion’s behaviour with that of the target domain, by adjusting parameters and manipulating
the simulation’s mechanics. However, there exists significant uncertainty and variance in
data from the real domain. The stochastic nature of the immune system results in individ-
ual experimental animals experiencing vastly different progressions of EAE. Identifying
immunological data in a format that a simulation can be calibrated against, and with
sufficient samples to constitute a fine-grained representation, can be a challenging task.

Figure 2 highlights the type of data typically derived from EAE experiments with real
mice in the laboratory. Figure 2(a) shows the mean severity of EAE, measured on a five
point scale [21], experienced by groups of 6–8 mice of different strains following the same
induction of EAE administered in each group. There is considerable variation in EAE pro-
gression experienced by each species of mouse. Figure 2(b) shows the severity of EAE
experienced by groups of five mice, with each group undergoing a different intervention. It
can be seen that within groups of exactly the same experimental animal undergoing exactly
the same intervention, there is considerable variation in the severities of EAE experienced.
Figure 2(c) indicates the number of CD4Th1 cells found in different bodily compartments
at various times following immunization in several experimental animals. It can be seen
that there is once again significant spread in the data, with several examples where there
are no data points lying on the calculated mean values. Acquiring data such as these can
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Mathematical and Computer Modelling of Dynamical Systems 71

require the killing of an experimental animal, and since genetically identical animals under-
going exactly the same EAE induction can experience significantly different responses
(Figure 2(b)), it is difficult to compile a representative progression of EAE in terms of
individual cell population number.

Data of this nature can be challenging to calibrate a simulation against. A stochastic
computer simulation can be run many hundreds or thousands of times in order to obtain
highly representative averaged values for a particular metric of interest. The same fidelity of
data is not available in the immunological literature, where the number of samples obtained
in acquiring an average rarely exceeds 10. Whereas a computational simulation can readily
provide exact numbers of a particular cell type over time, the data of Figure 2(c) only
indicate their number, there is not an easily established exact mapping between the metric
used and the actual number of cells observed by the instrument.
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Figure 2. Examples of clinical data pertaining to the progression of EAE in mice. EAE severity is
scored on a scale of 0–5, ‘1, flaccid tail; 2, hind limb weakness; 3, hind limb paralysis; 4, whole body
paralysis; 5, death’ [21]. (a) The mean EAE severity experienced by groups of 6–8 mice of different
strains following the same induction of EAE administered in each group. Adapted from [22]. (b) EAE
severity experienced by each of 5 mice under different interventions (boxes A–C), over time (in
days). Taken from [21]. The interventions involve injecting mice experiencing EAE with varying
quantities of Treg cells. (c) An indication of the number of CD4Th1 cells (EI on the y-axis) residing
in a selection of organs at various times following the induction of EAE from [23]. Organs examined
were lymph nodes (LN), spleen (Sp), blood (Bl), lungs (Lu), bone marrow (BM), liver(Li), mesenteric
lymph nodes (mLN) and thymus (Thy).

Note: EAE, experimental autoimmune encephalomyelitis.
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Figure 2. (Continued).

3.1. Calibration process

Calibration of the EAE simulator was undertaken as a collaborative effort between the
modeller (Mark Read) and the domain expert (Vipin Kumar). The domain expert provides
a consistent and comprehensive single source of data against which to calibrate, which
helps mitigate the uncertainty and variation in the data surrounding EAE. In this manner,
the simulation is calibrated against the domain expert’s understanding of EAE. The input of
the domain expert in this calibration procedure serves to keep the simulation well grounded
in the domain.

The process through which the simulation was calibrated is as follows: The simulation
is executed with a ‘best guess’ set of parameters and representative median results are col-
lected. The domain expert identifies aspects of simulation dynamics that deviate from his
perspective of the real system. Both domain expert and modeller discuss to identify the
source of the deviation in the simulation. Both parties’ input are invaluable: the domain
expert brings a wealth of domain-specific understanding, whilst the modeller, having built
the simulation, has a detailed understanding and intuition of how this information has been
abstracted and how the simulation operates. Potential avenues of model and simulation
amendment and development are identified, and each one is independently integrated into
the simulation in turn. In each case the simulation is then executed once more to obtain rep-
resentative median results. Subsequent interactions between domain expert and modeller
re-examine the results and decide upon which amendments are to be permanently adopted
into the simulation. As such, the calibration process is iterative.
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Throughout this calibration process, the simulation’s behaviour is examined under two
circumstances: that of normal EAE progression and recovery following induction of EAE;
and the progression of EAE with the regulatory network disabled.3 It is important to cal-
ibrate the simulation against these two different circumstances. An incorrect model can
be fitted to the data derived from a single biological circumstance, such that its dynamics
reflect that observed in vivo. We believe it is less likely that an incorrect model can repli-
cate in vivo dynamics of several different biological circumstances in turn without having
to drastically manipulate its parameters or change the underlying model. The parameter
manipulations would reflect a need to compensate for the model’s incomplete capture of
the real domain. If the complexities and mechanics of the real domain are adequately rep-
resented in the simulation, then both biological circumstances (presence and absence of
regulatory activity) should be replicated without having to tweak parameters. The end goal
of simulating EAE is to use the simulation to perform experimentation that are intractable
in the real domain. More confidence can be held in the results of predictive in silico experi-
mentation if the simulation correctly represents multiple disparate real-world experimental
circumstances.

3.2. Baseline behaviour

The calibration process results in the simulation being brought into a state that both domain
expert and modeller accept as representing a normal, baseline behaviour. This baseline
behaviour, shown for both the presence and absence of regulatory activity in Figure 3, is
generated by both a set of parameter values and the simulation mechanics for which they
are appropriate. As explained in Section 1, the simulation is an abstract representation
of the real domain; all elements present in the simulation compensate for the action of
elements of the real domain that are not represented. Were the simulation’s mechanics to
be altered in some way, then the simulation’s parameters may not represent exactly the same
aspects as they did previously. Their role in compensating for model abstractions would be
changed, and as a result, it may be necessary to recalibrate the simulation.

The baseline simulation serves as an accepted ‘normal’ state against which to contrast
the results of experimentation with the simulation. The aspects of the system that in silico
experiments investigate are usually represented as parameters in the system.

4. Exploring the EAE simulation with uncertainty and sensitivity analyses

4.1. Aleatory and epistemic uncertainty

There are two sources of uncertainty in the simulation that must be analysed before the
significance of predictive results arising from the simulation can be appreciated: aleatory
and epistemic uncertainty. Aleatory uncertainty results from inherent stochasticity in a
system [13] and is present in both the biological system (as can be observed in Figure 2(b)
and (c)) and the simulation. In order to acquire representative predictive results from a
stochastic simulation, it is necessary to acquire many samples in the form of simulation
executions. Appreciation of the spread of data is important for understanding when some
experiment in the simulation has generated scientifically significant results.

Epistemic uncertainty results from a lack of knowledge about the value that a particu-
lar parameter should be assigned [13]. There are many immunological details that are not
well understood, such as the decay rates of certain molecules, or the exact average time
that a particular cell type might remain in a particular state. Further to this, the simula-
tion’s abstract nature dictates that there is not a direct translation from these details into
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Figure 3. The baseline behaviour of the EAE simulation. (a) The baseline behaviour of the EAE
simulation, following calibration, in the presence of regulation. Graph shows the number of effector
T cells in the system over time and the number of neurons killed per hour (×10 for clarity). This is
the median of 1000 simulation runs. (b) The baseline behaviour of the EAE simulation, following
calibration, with regulatory activity disabled by preventing CD8Tregs from killing CD4Th1 cells.
This represents the median behaviour of 1000 individual runs such as that depicted here. (c) An
example of a single simulation run, in the absence of regulatory activity. The number of CD4Th1
cells declines heavily to a minimum at around day 80, but rises again thereafter. This reflects the
relapsing nature of EAE seen in absence of regulation in some mice. The median progressions shown
in Figure 3(a) and (b) are compiled from unique individual executions such as that of (c).

Note: EAE, experimental autoimmune encephalomyelitis.

simulation parameters, since, as previously stated, everything present in the simulation
must compensate for all those aspects of the real domain that are absent.

In order to fully appreciate the results of experimentation with the simulation, it is nec-
essary to investigate the simulation’s robustness to parameter alterations. The results of in
silico experimentation can be considered to be of greater significance if the predictions that
they delineate hold under perturbation of the simulation’s parameters. If a prediction relies
on a parameter holding a very specific value within its biologically plausible range, then the
prediction cannot be held with great confidence. If a prediction breaks only when parame-
ter values are perturbed to outside their biologically accepted range, then more confidence
can be held that the prediction is representative of the real system.

Biologically plausible domains for parameter values are not clearcut and are accepted
with some informal degree of confidence. This can arise from the different experimental
set-ups through which results are obtained. For example, results arising from in vitro exper-
iments conducted in test tubes may not be completely representative of the real system
since the elements under investigation have been removed from their natural environment,
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Mathematical and Computer Modelling of Dynamical Systems 75

yet it may be impossible to perform such experiments in vivo. Additional information
useful in qualifying the certainty of simulation predictions is the relative contribution that
each parameter makes to the simulation’s system-wide dynamics. Epistemic uncertainty
surrounding parameters that are of little consequence to simulation behaviour is less of an
issue than uncertainty surrounding parameters of greater influence.

Uncertainty and sensitivity analysis techniques are closely related statistical techniques
that attribute variation in a system’s outputs to variation in its inputs [14]. Uncertainty anal-
ysis investigates the effect of uncertainty in parameter values on output behaviour, whereas
sensitivity analysis investigates the relative sensitivity of a simulation’s output to its individ-
ual inputs. We have employed two uncertainty and sensitivity analysis techniques, one that
qualifies the robustness of the simulation to parameter alteration, and one that determines
the relative influence of parameters on simulation behaviour, discussed in Sections 4.3 and
4.4, respectively.

4.2. Uncertainty and sensitivity analysis responses

Uncertainty and sensitivity analysis techniques perform their analysis on a single variable
that is assumed as the output of a system [14]. The results of analyses can only be appreci-
ated in terms of this variable, typically termed the response. For the purposes of analysing
the EAE simulation, nine responses are assumed, and the uncertainty and sensitivity analy-
sis techniques are run on each. Figure 4 shows these nine responses, namely, the maximum
number of effector T cells reached over the simulation’s execution for each of the four
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Figure 4. The nine responses adopted to analyse the EAE simulation, shown on a graph of the
number of effector T cells over time. For each of the four T cell species, both the maximum number
reached and the time at which that number was reached are assumed as a separate response (these are
indicated as crosshairs on the diagram). The ninth response is the number of autoimmune CD4Th1
effector cells remaining at 1000 hours.

Note: EAE, experimental autoimmune encephalomyelitis.
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species of T cell, the times at which those four peaks occurred and finally the number of
effector CD4Th1 cells that remain at 1000 hours.

Analysing the simulation through these nine responses yields detailed information
on how its parameters affect each of the major T cell populations independently, rather
than attempting to condense a complex disease into a single variable. The choice of
the nine responses was approved by the domain expert as being of biological rele-
vance and interest in the context of EAE. For example, the last response, the number of
CD4Th1 cells remaining at 1000 hours, is an effective means of determining whether
efficient regulation of the CD4Th1 population has taken place. This cannot other eight
responses.

4.3. Robustness analysis

In order to assess the robustness of the simulation to parameter perturbation, we have
devised a one at a time uncertainty analysis technique, whereby each parameter is adjusted
independently of the others, which remain at their baseline values. This baseline may be
the result of calibration, as is the case for the examples presented here, or may be a point
in parameter space that reflects a point of interest in making a prediction of the system; in
this manner our technique would entail deliberately breaking that prediction. When con-
sidered in the context of biologically accepted ranges for parameter values, the results of
this analysis help to qualify the validity of simulation results.

We employ the Vargha–Delaney A test [24], which is a non-parametric effect magnitude
test, to determine when a parameter adjustment has resulted in a scientifically significant
change in simulation behaviour from the baseline. The A test compares two population
distributions and returns a value in the range [0.0,1.0] that represents the probability that a
randomly chosen sample taken from population A is larger than a randomly chosen sample
from population B. A value of 0.5 indicates no difference, whereas values above 0.71 and
below 0.29 indicate a ‘large’ difference in the distributions [24]. Table 1 details which A
test scores relate to various magnitudes of difference between two populations.

Our choice in using a non-parametric test is to avoid the assumption that underlying
distributions are normally distributed. We use an effect magnitude test to determine sci-
entific significance in place of statistical significance since a sufficiently large number of
samples can always reveal a statistical significance, unless the variable of interest has no
effect.

4.3.1. Experimental methodology

The baseline assumed in these examples is the result of the calibration process described in
Section 3.1, though any point of interest in parameter space may be used. Each parameter
is considered in turn and is perturbed around its baseline value. For each perturbation, the
simulation is executed n number of times. The nine responses are calculated for each of the
n simulation runs, and together form nine distributions. These can each be compared using

Table 1. The magnitude of effect size indicated by A test score [24].

Difference Large Medium Small None Small Medium Large

A test score 0.29 0.36 0.44 0.50 0.56 0.64 0.71
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the A test to similar distributions obtained from executing the simulation using baseline
values n times.

Figure 5(a) shows a graph depicting the robustness analysis on a particular parameter
of the simulation. The effect magnitude of the parameter being assigned various values
around the default value can be observed from the nine lines representing each of the
nine responses. The y-axis shows the A test scores for each response under each parameter
value, when compared to the default. The default value for this parameter is 100 and is
where all the response lines converge. The A test score here is 0.5, as the default parameter
value distribution data are being compared to themselves. Horizontal lines are drawn at A
test score values of 0.71 and 0.29. These are the boundaries for differences in distributions
that are considered ‘large’ [24]. If a response line exceeds or falls below either of these
respective boundaries, then a scientifically significant change in that response is observed
for the particular parameter value that generated it.

Figure 5(b) shows the effect of the parameter adjusted in Figure 5(a) on a particular
response, as a box and whisker plot. The distribution of response values that arise from the
n simulation executions for each parameter value is indicated by the boxes.

Data illustrated in this manner give a clear indication of exactly how the parameter of
interest influences each response.

4.3.2. Mitigating aleatory uncertainty

The intention of this uncertainty analysis technique is to determine the robustness of the
simulation to parameter perturbations. When considered in the context of epistemic uncer-
tainty, a robust simulation may produce predictive results in which a relatively high degree
of confidence may be placed. If the simulation’s behaviour is shown to be fragile when
parameters are perturbed to specific values that lie within the range of values reported in
the domain’s literature, then predictions arising from the simulation cannot be held with a
high degree of confidence; the prediction may4 rely on the simulation holding a parame-
ter value more specific than what the literature can dictate as appropriate. The simulation
results might be an artefact of underspecified parameter values.

When performing this uncertainty analysis technique, it is important to obtain sufficient
samples such that the response distributions obtained through parameter perturbation may
be considered representative of the simulation’s nature, rather than the result of aleatory
uncertainty arising from the stochastic nature of the simulation. Uncertainty and sensitiv-
ity analyses techniques may be applied to any system, including systems that are costly
to run, such as the computational expense of the present EAE simulation. Finding the
relationship between sample size and the effect of aleatory uncertainty is important for
balancing requirements (e.g. desired fidelity of data) and resources (e.g. computational
resource required).

The following procedure is used to investigate the relationship between the number
of samples obtained and the effect of aleatory uncertainty. The baseline parameter set-up
is run 20 times, forming 20 dummy parameter permutations. These dummy permutations
have no effect on the simulation’s behaviour, since no parameter values are changing. This
procedure can quantify the effect of aleatory uncertainty on A test scores, by examining
the scores between the first and remaining 19 distributions generated. By repeating the
experiment for different sample sizes, the number of samples required to reduce the noise in
A test scores that arise from aleatory uncertainty to an acceptable level can be determined.
Figure 7(a)–(c) shows the A test scores across 20 dummy parameters using sample sizes
of 5, 50 and 500, respectively. Table 2 shows how the maximum and median A test scores
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Figure 5. Example robustness analysis of a parameter in the EAE simulation. Perturbation of this
parameter has a large effect on all the responses. The parameter investigated here dictates the rate of
TNF-α, a substance harmful to neurons in sufficient concentration, secretion by activated microglia
cells in the CNS. (a) A test scores for the response distributions arising from parameter perturba-
tions. The default value for this parameter is 100 and is where all lines on the graph converge.
(b) The distribution of response data (maximum number of CD4Th1 cells reached) for each param-
eter perturbation. A dash, a circle and a cross above each box respectively indicate the default value,
a change in distribution not considered large and a change that is considered large.

Note: EAE, experimental autoimmune encephalomyelitis.
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derived from these 20 dummy parameters are affected by the sample size used, for the
maximum number of CD4Th1 cells reached during simulation execution response. Figure
6 plots how the sample size affects the maximum A test scores achieved for each response.
For both Table 2 and Figure 6, scores below 0.5 have been assigned their corresponding
value above 0.5.

Figure 6 indicates that a sample size of at least 350 is required to reduce the magnitude
of aleatory uncertainty to an effect size less than ‘small’ (see Table 1), for all responses.

Table 2. An example of how sample size can reduce aleatory uncertainty, as measured by
A test scores.

Sample size Maximum A test score Median A test score

1 1.0000 1.0000
5 0.9200 0.6800
10 0.7900 0.6300
50 0.5826 0.5228*

100 0.5746 0.5228*

200 0.5519* 0.5290*

500 0.5261* 0.5161*

1000 0.5199* 0.5074*

Notes:*Denotes the scores corresponding to an effect magnitude of less than ‘small’ (0.56).
All scores below 0.5 are assigned corresponding values above 0.5 before maximum and median cal-
culations are performed; we are interested only in the magnitude of effect, not its direction above or
below 0.5. These example scores relate to distributions of the maximum number of CD4Th1 cells
occurring at any point in simulation execution response.
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0.5
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Small effect
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Figure 6. The maximum A test score achieved for each response over 20 dummy parameter exper-
iments. The sample size represents the number of simulation runs used in compiling the response
distributions for each dummy parameter experiment. Note that all scores below 0.5 are assigned cor-
responding values above 0.5 before maximum are performed; we are interested only in the magnitude
of effect, not its direction above or below 0.5. The three effect magnitude boundaries for the A test
are indicated.
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Figure 7. The effect of aleatory uncertainty on the results of the robustness analysis, for various
sample sizes used when obtaining representative results from the simulation. The x-axes are labelled
‘dummy parameter’ as no parameters are actually being changed. The tests are designed to ascertain
how the number of samples (simulation executions) from which median data are compiled affects the
consistency of results. A test scores for 20 dummy parameter permutations, using sample sizes of (a)
5, (b) 50 and (c) 500.
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Hence, when using sample sizes of 350 simulation executions or more, results that deliver
effect magnitudes less than or equal to ‘small’ should be discarded; one cannot determine
whether the results are genuinely representative of the simulation’s behaviour, or the result
of aleatory uncertainty.

4.4. Determining the influence of parameters

The robustness analysis technique reported above is effective at providing an indication
for how far a parameter may be adjusted before some significant deviation in simulation
behaviour occurs. A shortcoming of the technique is that it does not elucidate non-linear
effects between parameter values that are revealed only by adjusting two or more simulta-
neously; a particular parameter’s influence on simulation behaviour may vary in magnitude
depending on the value held by another parameter.

A global sensitivity analysis technique is used to provide a more representative indica-
tion of the relative influence of parameters on simulation behaviour, since it does highlight
non-linear effects. Global sensitivity analysis refers to an experimental set-up where all
parameters are perturbed simultaneously, as opposed to one at a time methods. Identifying
which parameters exhibit the greatest influence over simulation behaviour can help qual-
ify the implications of epistemic uncertainty for prediction validity. Significant uncertainty
in a parameter’s value is of greater consequence if that parameter has a large effect on
simulation dynamics than if it is found to have a small effect.

4.4.1. Experimental methodology

A latin hypercube design [25] is used to select k number of samples from the simulation’s
parameter space. Figure 8(a) shows an example latin hypercube design over two param-
eters, taking 10 samples. The domain for each parameter over which samples are to be
taken is defined and divided into k sections. In the example the 10 sections are uniformly
distributed, but that need not be the case if information from the real domain dictates oth-
erwise [14]. For systems that are costly to run, latin hypercube design ensures an efficient
coverage of parameter space using a minimal number of samples [14]. A single sample
exists in each segment of each parameter’s domain.

The simulation is run n times at each of the k sample points, and each of the nine
responses is calculated for each run. Median values for each response at each sample point
are calculated. The samples are ordered according to their value for a particular parameter
of interest, and for each response a plot of median response value against each sample’s
value for the parameter of interest is generated. If the latin hypercube is of good design,
having chosen samples such that correlations between parameters are minimized, then
this ordering of samples should leave a minimum correlation between any other param-
eters. Any correlation between median response values and parameter values for each
plot can be attributed to the effect of that parameter. Parameters that have a significant
influence on simulation behaviour will yield bigger correlations than those that have less
influence.

Figure 8(b) and (c) illustrates this technique with two examples from the EAE simula-
tor. The samples are ordered according to the parameter of interest, and the median values
for the time at which the maximum number of CD4Treg cells is reached are plotted. There
are 300 samples, and the simulation was run 300 times at each sample point, to minimize
the effect of aleatory uncertainty.5 The variation in the data arises from the pseudo-random
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Figure 8. Examples of latin hypercube design approach to determining relative parameter influence
on simulation behaviour. The horizontal and vertical lines on Figure 8(b) and (c) indicate the default
parameter value and its associated response value. (a) An example latin hypercube design for two
parameters. Ten samples are taken from the parameter space, within the specified domain of each
parameter. Each of the 10 sub-domains (indicated by dotted lines) contains a sample, ensuring that
the full domain of each parameter is explored. (b) This simulation parameter has a large influence
on the time at which the maximum number of CD4Treg effector cells is reached during simulation
execution. The rank correlation coefficient is 0.65. The parameter analysed here dictates the mean
time that a T cell spends in a proliferative state before differentiating into an effector cell. (c) This
simulation parameter has a small influence on the time at which the maximum number of CD4Treg
effector cells is reached during simulation execution. The rank correlation coefficient is −0.001.
The parameter analysed here is the rate of type 1 cytokine (an immune system messenger molecule)
secretion by activated CD8Treg cells.

values assigned to all other parameters but the one of interest, once the samples have been
ordered. In Figure 8(b), the parameter being examined is of such influence that despite all
this movement in other simulation parameters, a clear trend does emerge. This is not the
case for the parameter analysed in Figure 8(c). As such, large epistemic uncertainty in the
domain literature relating to the parameter of Figure 8(b) must be given more considera-
tion when interpreting simulation-derived results into the original domain than epistemic
uncertainty concerning the parameter of Figure 8(c).
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5. Discussion

While computational modelling and simulation techniques such as ABMS have the ability
to assist and complement more traditional wet-lab experimentation, there are several chal-
lenges that must be addressed before this potential can be fully realized. The complexities
of biological systems dictate that models and simulations must adopt simplifying assump-
tions and abstractions in their representations. It is usually intractable to fully represent a
complex system in a model or simulation, and there typically exist many aspects of the
real domain that are not well understood. Epistemic uncertainty in the real domain can
prevent the exact determination of simulation parameter values. It is critical in relating the
results of in silico experimentation back to the real domain that the implications of these
uncertainties, abstractions and assumptions be appreciated. To address this within the con-
text of an EAE case study, we describe a method for calibrating the simulation with input
from a domain expert and explore suitable statistical techniques to tackle uncertainty in
simulation results.

The value of input from a domain expert in calibration cannot be understated, as it
helps mitigate the uncertainties and inconsistencies found in data pertaining to the domain.
We also note the importance of considering simulation dynamics under multiple circum-
stances when calibrating. The different circumstances arise from interventions applied to
the real domain that expose the complexity of the system, which the simulation intends
to capture. Comparing simulation dynamics under these different interventions with the
dynamics of the real system helps avoid the pitfall of fitting an incorrect model to a single
set of biological data.

Our novel sensitivity analysis technique makes use of the Vargha–Delaney A test in
assessing a simulation’s robustness to parameter perturbation. In addition, a global sensi-
tivity analysis technique that makes use of latin hypercube design quantifies the relative
influence of each parameter on simulation dynamics. When considered in the context of
information from the real domain (not shown in this article), these analyses can help qual-
ify the certainty of predictions arising from in silico experimentation. Predictions that rest
on a highly influential parameter holding a value within a range more specific than the
biological literature can attest to undermine the certainty of that prediction.

Though Vargha and Delaney present guidelines for the A test scores that correspond
to large differences between two sets of results, these scores are not well justified in the
real domain of EAE investigated here. Ongoing work is examining how to assign an EAE
severity score, a measure used in the wet-lab, to the execution of the simulation. Such an
analysis will allow results from in silico experimentation to be better related to activities
being conducted in the wet-lab. This is challenging because the EAE severity score is
a subjective analysis of the level of autoimmunity being experienced, and results from
observing the entire experimental animal, many aspects of which are not represented in the
simulation.

6. Materials and methods

6.1. EAE simulation and statistical analysis

The EAE simulation used in this article6 is coded in Java and makes use of the MASON
[26,27] library to provide simulation infrastructure. Random number seeds for simula-
tion execution are supplied such that each simulation execution makes use of a unique
seed. All statistical analyses are performed using Matlab. Non-parametric statistics are
used throughout.
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6.2. Compilation of median-averaged graphs

The EAE simulation provides data on specific metrics of interest for every hour of sim-
ulated time. Unless otherwise stated averaged graphs are compiled from 500 simulation
executions. Each sample in simulated time for each metric is treated as a dependent statis-
tical variable. The 500 simulation runs form a distribution of 500 sample points for each
of these variables, and it is from here that median values are extracted.

6.3. Compilation of response distributions

The nine responses identified in Figure 4 and Section 4.2 are calculated for each individual
simulation execution. Analyses of experimentation making use of multiple (n) simulation
executions treats each of the nine responses as a dependent variable, drawing a population
of n samples for each response from the n simulation executions. Note that the median
response value as drawn from a population of n simulation runs will not necessarily equal
the single response value derived from compiling the median execution of n simulation
executions (as described above, in creating averaged graphs).

6.4. Calculating the A test

The following Matlab code is used to generate A test scores in this article. Note that it
is only valid if the two distributions being compared contain the exact same number of
samples.

function A = Atest(X,Y)
[p,h,st] = ranksum(X,Y,’alpha’,0.05);
N = size(X,1); M = size(Y,1);
A = (st.ranksum/N – (N + 1)/2)/M;
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Notes
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2. With regard to simulation, predictive results are those which highlight possible scenarios that

could arise in the real domain being modelled.
3. This is achievable in the real domain through a number of different interventions [21], whilst in

the simulation it is trivial to revoke the ability of CD8Tregs to kill CD4Th1 cells, hence disabling
regulatory activity.

4. One may not be certain that the prediction definitely does rely on this, since abstraction dic-
tates that the relationship between simulation parameters and domain parameters is not exact.
The analysis can, however, indicate that caution must be exercised when interpreting simulation
results.

5. Samples from parameter space obtained using latin hypercube sampling can be computation-
ally expensive to execute in the simulation. For example, parameters might be chosen that
generate a lot of cells that do not die quickly. As such, only 300 simulation executions are
performed here.

6. Available upon request from the corresponding author.
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