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Abstract

Predicting efficacy and optimal drug delivery strategies for small molecule and biological therapeutics is challenging
due to the complex interactions between diverse cell types in different tissues that determine disease outcome. Here
we present a new methodology to simulate inflammatory disease manifestation and test potential intervention
strategies in silico using agent-based computational models. Simulations created using this methodology have
explicit spatial and temporal representations, and capture the heterogeneous and stochastic cellular behaviours that
lead to emergence of pathology or disease resolution. To demonstrate this methodology we have simulated the
prototypic murine T cell-mediated autoimmune disease experimental autoimmune encephalomyelitis, a mouse model
of multiple sclerosis. In the simulation immune cell dynamics, neuronal damage and tissue specific pathology
emerge, closely resembling behaviour found in the murine model. Using the calibrated simulation we have analysed
how changes in the timing and efficacy of T cell receptor signalling inhibition leads to either disease exacerbation or
resolution. The technology described is a powerful new method to understand cellular behaviours in complex
inflammatory disease, permits rational design of drug interventional strategies and has provided new insights into the
role of TCR signalling in autoimmune disease progression.
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Introduction

The stochastic set of interactions that continually occur
between different immune cells is essential for normal immune
function but can also lead to formation of autoimmune
pathology. Disease pathogenesis and progression is a result of
complex cellular interactions spanning multiple spatial
compartments, in which the role of cells and molecules is
dynamic. Molecular- or cellular-level stochastic events
occurring in a small collection of cells can dominantly affect
disease outcome [1]. These processes are poorly understood
as it is only possible to capture small windows of time and
space using multiphoton confocal imaging or fixed time points
using tissue sections and flow cytometric (non-spatial) analysis.
Yet it is these complex set of behaviours at the single-cell level,
in the context of time, space and location that lead to disease
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outcomes. A full capture of behaviours from the single cell to
the organism level is key to understanding the pathways driving
disease pathology, and using rational engineering principles in
designing intervention strategies.

Agent-based simulation (ABS) is a technology that can be
used to capture individual cellular behaviours in silico. Cells are
explicitly captured as agents within a computational model
permitting the spatial and temporal capture and analysis of
heterogeneous and stochastic biological factors and events [2].
The rules governing how individual agents behave are
designed to reflect interpretations of biology, however,
numerical quantification of many key biological parameters are
not possible and thus pose a challenge to the meaningful
application of ABS to complex biological systems. Additionally,
it is often unclear which aspects of a biological system are
integral to disease, and then how they are best represented in
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a simulation that is by nature an abstraction of the biology. The
method described addresses these issues by continually
calibrating simulations against experimental data during
simulation development, thereby guiding the capture of
biological elements in simulation until they replicate the
dynamics of the biological system. Crucial to simulation
development is the mapping of biological rates and stochastic
events into simulation parameters. These biological factors are
often poorly characterized, or do not translate directly into
simulation, yet can be highly influential in disease
manifestation. We employ statistical analysis [3] of the
simulations to determine where results may be assumed
representative of the biology and experiments performed, or
are rather the result of incomplete biological knowledge.

Simulations  created through our method capture
inflammatory disease at the resolution of individual
heterogeneous cells, as opposed to capturing only population
numbers, and reveal the role of their interactions and that of
spatial compartments in disease. These simulations can
highlight unique cellular interactions as well as potential novel
targets for disease intervention. By perturbing the biological
factors represented in simulation, such as cellular interactions,
expressions of molecules, sensitivities, probabilities and
durations of events, the roles of key factors in the induction of
disease pathology are elucidated. Treatment strategies,
regimens and doses can be simulated and explored, and their
influence on disease outcome determined.

In the present report we describe our method, and
demonstrate it by investigating the onset and recovery of a T
cell-mediated inflammatory disease. We construct ARTIMMUS,
a simulation of the murine autoimmune disease experimental
autoimmune encephalomyelitis (EAE) that spans multiple
cellular and spatial compartments and where a clinical disease
course precedes spontaneous recovery [4,5]. ARTIMMUS
captures five spatial compartments, and seven distinct cell
populations that have been shown to be critical in disease
formation and resolution. We investigate the robust nature of
the negative feedback pathway leading to spontaneous
recovery, and how its disruption through either splenectomy or
TCR-signalling inhibition can affect disease outcomes.

Results

Method for analysing inflammatory disease and
intervention strategies through simulation

Our method produces a spatial- and cellular-resolved
simulation which is demonstrated to appropriately capture the
biological factors responsible for clinical disease, thus
reproducing disease dynamics (Figure 1). Appropriate
simulation representations of cells, the rules governing their
behaviour, their interactions and spatial compartments are
derived through explicit modelling of the biology which then
forms the basis of the simulation (methods and materials).
Explicit domain modelling helps highlight and resolve
inconsistencies in the literature and presents a coherent view
of the biology under investigation. It helps ensure that the
simulation is of sound scientific grounding, and makes the
assumptions and abstractions of the domain transparent [6].
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Simulation development is incremental, driven by repeated
calibration against in  vivo  behaviour.  Simulation
representations and abstractions of cells, molecules and spatial
compartments are progressively refined until simulation
dynamics qualitatively reflect the biology. Calibration of the
simulation is performed against experimental data to ensure an
appropriate representation and consistency with in vivo data
(Figure 1). Calibration is performed against multiple
experiments to avoid calibrating the simulation to a single data
point in the space of experiments that can be performed, and to
prevent over-fitting simulations to calibration data (methods
and materials).

We employ a statistical analysis to establish simulation
robustness to unknown aspects of the biology [3,7] (table S1).
The robustness analysis (methods and materials) establishes
where simulation dynamics critically depend on particular
parameters. These criticalities and the parameter values at
which significant changes in simulation behaviour occur are
examined to ensure they are reasonable and biologically
plausible. The analysis reveals the extent to which simulation
dynamics depend on biological factors that have not been well
characterized, and this information helps to guard against
misinterpreting simulation results and drawing unsupported
conclusions.

Experiments to investigate the role of cells and their
interactions, and to simulate intervention strategies, are
performed by identifying and manipulating the rules governing
cell behaviour. Where an intervention blocks or stimulates a
target, the simulation rules governing the behaviours resulting
from interaction with that target are amended. Cells and
compartments can be instantaneously added to or removed
from the simulation. These in silico interventions can be applied
at any time, and can be engineered free of the undesirable
side-effects often associated with in vivo interventions, such as
simultaneously affecting several cell populations.

Establishing the role of immune pathways in
inflammatory disease

We have used the ARTIMMUS simulation to examine the
role of molecular-level pathways and components in
inflammatory disease. Recovery from the clinical symptoms of
EAE is mediated through the killing of encephalitogenic CD4*
Th1 (CD4Th1) cells by a coordinated effort of regulatory CD4*
(CD4Treg) and CD8* T cells (CD8Treg) [4,5,8,9]. The effector
CDA4Th1 cells are only susceptible to regulation for the time
following differentiation during which they express Qa-1:TCR-
peptide complexes recognized by the CD8Treg [9,10]. We
examined the probability that recognition of an activated
CDA4Th1 effector cell by an effector CD8Treg leads to the
successful induction of apoptosis in the CD4Th1 cell (which we
term “regulatory efficacy”, experimental procedure in methods
and materials), and how this impacts disease manifestation
and recovery.

We found that capacity for effective regulation is very robust
to disruption of regulatory efficacy. In the control case
regulatory efficacy is 100%: a CD8Treg binding with a target
CD4Th1 cell kills the target cell with a probability of 100%, and
the encephalitogenic CD4Th1 population is typically eradicated
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Figure 1. EAE dynamics in ARTIMMUS are consistent with those of B10.PL mice. Immunization for EAE leads to
physiological recovery from autoimmunity in (A) ARTIMMUS and (B) B10.PL mice [31]. Abrogation of regulation delays recovery
from EAE in (C) ARTIMMUS and (D) B10.PL mice [31]. 5 mice/simulations in each group. (E) The maximum scores in mice and
ARTIMMUS simulations, as a percentage of the group, are statistically consistent. Data represents physiological recovery following
induction of EAE, and laboured recovery following abrogation of regulatory pathway by which CD8Treg apoptose encephalitogenic
CDA4Th1 cells. In vivo data adapted from [8].

doi: 10.1371/journal.pone.0080506.g001

of simulations perish, a reduction from 100% to 5% efficacy
significantly increases this to 22%, and complete absence of

by 40 days post-induction for EAE (Figures 2A and 2C). A
reduction in regulatory efficacy to 20% prompts a scientifically

significant increase in the CD4Th1 population size at 40 days
(Figure 2C), and an efficacy of just 3% halves the population
size that results from complete absence of regulation (Figure
2C). Substantial reductions in regulatory efficacy are required
to increase mortality rates (Figure 2D). In the control case 15%
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regulation incurs a 29% mortality rate. Substantial reductions in
regulatory efficacy are also required to increase rates of clinical
relapse (Figure 2D). Control simulations do not undergo clinical
relapses, and reductions of regulatory efficacy to 5%, 2% and
0% incur relapses in 0.6%, 15% and 43% of simulations
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respectively. Substantial reductions in regulatory efficacy are
required to increase the duration of clinical symptoms (Figures
S1 and S2): the median duration of first clinical episode
(excluding death) is 10 days in the control group, 11 days for
an efficacy of 20%, 15 days for an efficacy of 2%, and 20 days
for an efficacy of 0%. These results demonstrate the robust
and redundant nature of CD8Treg regulation in EAE: very low
regulatory efficacies remain effective in modulating CD4Th1
cell numbers, reducing the mortality rate and duration of clinical
episodes, and preventing relapses.

Next we examined how the duration of Qa-1 expression by
effector CD4Th1 cells impacts on disease pathology
(experimental setup in methods and materials);
encephalitogenic CD4Th1 cells are susceptible to apoptosis
induction by CD8Treg only while expressing Qa-1:TCR-peptide
complexes. We found that reducing the mean Qa-1 expression
duration reveals qualitatively similar results to disruption of
regulatory efficacy. A significant increase in CD4Th1 number at
40 days is incurred when the mean duration of Qa-1
expression is reduced from the 8 hour control to 6 hours
(Figure 2E), and a duration of only 3 hours still halves the
CD4Th1 population that otherwise results from 0 hours.
Reducing the duration from 8 to 3 hours increases the mortality
rate from 12% to 18%, and a reduction to 2 hours doubles it to
23% (Figure 2F). Large reductions in duration are required to
prompt relapsing disease: the control group experiences only
mono-phasic disease, the relapse rate is 3% for durations of
3h, 9% for 2h, 23% for 1h, and 35% for a mean duration of Oh
(Figure 2F). We found little clinical benefit in increasing the
Qa-1 expression duration: tripling duration time to 24h reduces
mortality rate from 11.6% to 9%, a larger proportion of
simulations experience maximum disease scores of 1 (as
opposed to higher scores), and the median duration of clinical
episodes amongst non-fatal simulations is reduced from 10
days to 9 (Figure S3).

Simulations developed through our method provide insight
into how molecular-level events and pathways influence
disease pathogenesis. Our results demonstrate a considerable
redundancy in the ability of the CD8Treg population to
effectively regulate the encephalitogenic CD4Th1 population.
Our in vivo studies show CD4Th cells express Qa-1 between 4
and 24 hours post-stimulation (Figure S9). The present
simulation results suggest that the bulk of regulatory interaction
with CD8Treg occurs between 4 and 8 hours following
differentiation of CD4Th1 into effector cells; simulated CD4Th1
cells express Qa-1 immediately following differentiation, when
this terminates at 3 or less hours regulation is ineffective, and
extension beyond 8 hours has little effect on recovery.

Establishing the role of spatial compartments in
disease

Our method develops spatially resolved simulations that can
be used to investigate the role of specific spatial compartments
or organs in disease pathology. We have contrasted in silico
splenectomy and control experiments with in vivo data and
found that the spleen is a primary source of regulatory T cells
that expedite recovery from antigen-induced EAE (in silico
splenectomy described in methods and materials). Our data
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are consistent with the earlier study demonstrating a role of the
spleen in promoting recovery from EAE: splenectomy in rats
prior to the induction of EAE increases the disease severity
with poor recovery as reflected by higher mortality rate and
chronic disease [11]. Accordingly, our results reveal the spleen
as a major site of Treg priming (Figures 3A and 3B), and that
splenectomy significantly reduces the CD4Treg and CD8Treg
population sizes (Figures S4A, S4B and S4C). We investigated
the diminished recovery from autoimmunity following
splenectomy as a function of strength of immunization for EAE.
Splenectomized groups experience higher clinical disease
scores than control groups across all immunization strengths
(Figures 3C and 3D). In contrast with controls, splenectomized
simulations suffer a higher mortality rate and have a greater
tendency towards relapsing clinical disease, especially for
weaker immunizations (Figure 3E). The reduced Treg
populations that result from splenectomy are not always able to
completely abrogate encephalitogenic CD4Th1 populations.
This results in their re-expansion (Figure 3F) and relapses of
clinical autoimmunity (Figure 3G).

Characterizing interventional strategy and its operation

We employed ARTIMMUS to explore a potential intervention
strategy, predicting treatment effectiveness and providing an
understanding of treatment effect on cell populations. As a T
cell-mediated autoimmune disease, EAE is potentially treatable
using CD3 (2C11) antibodies [12-14]. Our in vivo studies have
also revealed that anti-CD3 Ab can protect mice from an
antigen-induced model of EAE (Figure S10). We asked
whether a hypothetical anti-CD3 non-mitogenic FcR-non-
binding non-depleting antibody intervention that blocks all T
cells, including Treg, can protect from EAE. Various efficacies
of this hypothetical Ab are simulated in ARTIMMUS
(experimental procedure in materials and methods).
Administrations at days 4 or 15 have been simulated, to
correspond with onset of encephalitogenic T cell expansion
and peak clinical symptoms respectively.

When administered at day 4, all efficacies of anti-CD3 Ab
reduce the sizes of all T cell population expansions (Figures 4A
and S5). CD8Treg and CD4Treg populations are more
sensitive to the intervention than CD4Th2 and CD4Th1 cells,
showing greater effect magnitudes of reduction given the same
efficacy (Figure S6A). Despite reducing peak T cell numbers,
increasing intervention efficacies between 0 and 70% prolongs
both autoimmune and regulatory T cell responses, and
increases the number of effector CD4Th1 cells at 40 days
(Figures 4B and S5). At efficacies above 70% these trends
reverse: the number of CD4Th1 remaining at 40 days
decreases (Figure 4B), as does the duration of both
autoimmune and regulatory responses (Figure S5), and the
maximum clinical scores attained reduces (Figure 4C).
Increasing intervention efficacies reduced the maximum
disease severities experienced: the proportions of simulations
scoring 2-5 decreased, and the proportions scoring 1 or 0
increased (Figure 4C). Whereas all control simulations (0%
efficacy) experience clinical symptoms, an 80% intervention
efficacy protects 40% from clinical disease (Figures 4E and
S6B). Of the remaining 60% the majority experience only grade
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Figure 2. The role of regulatory pathways in EAE is elucidated through ARTIMMUS. (A & B) The effector T cell dynamics in
ARTIMMUS: (A) recovery from EAE is mediated by CD8Treg killing of encephalitogenic CD4Th1 cells, which return to basal levels
35 days post-induction of EAE; (B) recovery is delayed and the encephalitogenic CD4Th1 cell population persists following
complete abrogation of CD8Treg ability to apoptose them. Recovery from EAE is highly robust to disruption of this pathway. (C)
Number of CD4Th1 cells present at 40 days, and (D) rates of mortality and clinical relapse when the probability that a CD8Treg
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indicate scientific significance and insignificance respectively. * = p<0.05; ** = p<0.01; *** = p<0.001; ‘ctrl’ indicates the control
group.

doi: 10.1371/journal.pone.0080506.g002
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source of CD4Treg (A) and CD8Treg (B) priming; graphs show cumulative count of primed cells by compartment. We have
investigated the effect of splenectomy for different strengths of immunization for EAE, represented as periodic placement of
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immunization for EAE, for control (C) and splenectomy (D) groups. A-test effect magnitude levels are given: 1, 2 and 3 *'s represent
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contracting no clinical disease not shown. (F & G) Effector T cell dynamics for a single splenectomized simulation execution (F), and
the corresponding clinical scores over time (G). An attenuated immunization for EAE is used (period = 12h). The reduced Treg
populations resulting from splenectomy are unable to eradicate the encephalitogenic CD4Th1 population.

doi: 10.1371/journal.pone.0080506.g003
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Figure 4. Effector T cell and clinical disease dynamics given anti-CD3 intervention at day 4. Various efficacies of anti-CD3
intervention have been administered at day 4, which corresponds with encephalitogenic T cell priming. (A) Median effector T cell
peak population sizes. (B) CD4Th1 population sizes at 40 days post-induction of EAE; red and blue bars indicate large and non-
large effect magnitude changes with respect to the control group, in black. (C) Proportion of simulations that reach a particular
maximum clinical disease score. A-test effect magnitude levels are given: 1, 2 and 3 *'s represent small, medium and large effects
respectively. (D & E) Proportion of simulations contracting particular clinical scores or greater over time, for control (D) and a drug
efficacy of 80% (E).

doi: 10.1371/journal.pone.0080506.g004

1 symptoms, but disease persists amongst this group to day 30 4E), and 8% experience clinical relapses in contrast to 0% in
in contrast with day 23 in the control group (Figures 4D and the control group (Figure S6B).
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doi: 10.1371/journal.pone.0080506.g005

We examined intervention at day 15, following the
establishment of peak clinical autoimmunity. Treg population
sizes reduce with increasing efficacy, but peak CD4Th1 and
CD4Th2 numbers are unaffected (Figures 5A and S7). A
significant increase in day 40 CD4Th1 population size is found
for efficacies of 70% and 80% (Figure 5B). In terms of clinical
disease, an efficacy of 100% has a small effect in reducing
maximum disease scores attained, and no other efficacies
revealed an effect (Figure 5C). However, high efficacies up to
80% prolong the period over which clinical symptoms present
(Figure S8), though not to the same degree as found for
administration at day 4 (Figure 4E). These results show that
intervention following the establishment of clinical autoimmunity
can delay physiological recovery from disease.

It is clear from our results that anti-CD3 Ab treatment is not
uniformly beneficial in treating EAE. Only for efficacies greater
than 80%, administered at either day 4 or 15, is the drug
effective in reducing maximum clinical scores, reducing the
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duration of clinical episodes, and preventing clinical relapses.
This may be explained through the suppressive action of anti-
CD3 not only on encephalitogenic T cell populations, but also
on the Treg populations that regulate them. Tregs are more
sensitive to anti-CD3 treatment, since its effect is twice felt: a
reduced number of encephalitogenic T cells are primed,
phagocytosed and presented for Treg priming; and Treg ability
to bind APCs is reduced through direct action of the treatment.

Discussion

We have presented a method for elucidating the cellular and
spatial basis of systemic inflammatory disease, and
investigating  potential intervention strategies, through
computational agent-based simulation. Through the explicit
capture of heterogeneous cell populations and spatial
compartments, the implications of cellular-level events,
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behaviours and interventions on disease are exposed. The
method has been demonstrated by investigating the cellular
and spatial factors principally responsible for the onset and
recovery of autoimmunity in EAE, a T-cell-mediated murine
prototype for multiple sclerosis, and the potential for a
hypothetical intervention strategy to alleviate disease.

The computational spatial- and cellular-resolved simulations
our method develops are highly flexible in permitting
examination and analysis of any aspect of disease, including
individual cell-, population-, compartment- and disease-level
phenomena. The same flexibility characterizes the
interventions that may be engineered into a simulation to
understand the mechanistic foundations of its dynamics. Any
aspect of cellular or intervention behaviour can be manipulated,
free of any side effects present in vivo. This constitutes a
powerful means to understand and reason about disease
manifestation and recovery. We have demonstrated this by
employing simulation in characterizing the considerable
redundancy in the ability of the CD8* regulatory T (CD8Treg)
cell population to effectively regulate encephalitogenic T cells:
the clinical and cellular implications of altering CD8Treg
regulatory capacity by single percentage points were revealed.
Our data are consistent with the in vivo studies using CD8-
depletion or Qa-1-deficient animals [15-17]. Furthermore, it is
consistent with the resistance of the wild-type but not Qa1-
deficient B6 mice to the re-induction of disease through
immunization with antigen emulsified in complete Freund’s
adjuvant [18]. We find that a persisting or relapsing disease
pathology requires near abolishment of the capacity for
CD8Treg to apoptose encephalitogenic T cells. SJL mice are
highly susceptible to EAE and prone to relapses, both induced
and spontaneous, following initial induction of disease [19]. Our
data suggest that substantial dysfunction in T cell-mediated
specific regulation can lead to such disease pathology.

We have also demonstrated how the spatial underpinnings of
disease can be elucidated. We have identified the spleen as a
dominant site of regulatory T cell (Treg) priming, and
highlighted how the reduced Treg populations that result from
splenectomy are not always able to completely abrogate
encephalitogenic T cell populations which can lead to a
remitting-relapsing disease pathology. Our results are
consistent with in vivo studies showing that CD4Treg cells are
primed in the spleen [20] and cervical lymph nodes [21] of mice
following the induction of EAE, and can explain why
splenectomy of rats induced into EAE worsens their clinical
outcome [11]. Our simulation was not directly informed by, or
calibrated against, the rat model of EAE, and the consistency
of our results with those of Ben-Nun et al. [11] demonstrates
the generality of our method in exploring disease. Simulations
created through our method are versatile, allowing diverse
aspects of disease to be explored. We have previously used
the present simulator to examine possible roles that CD200
negative signalling of dendritic cells (DCs) has on their priming
of T cell responses [22], whether recovery in EAE requires
regulatory and encephalitogenic T cells to be co-primed on the
same DCs, and the spatial and temporal characteristics of DC
licensing in cytotoxic T cell responses [23].
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Our method allows for the simulation of potential intervention
strategies, and can be used to predict treatment effectiveness
and reveal the mechanistic basis of treatment on cellular or
molecular components. We have investigated the potential for
a hypothetical anti-CD3 non-mitogenic FcR-non-binding non-
depleting antibody intervention that inhibits T cell TCR
interaction to expedite recovery from autoimmunity. Our results
show that this anti-CD3 Ab intervention is not uniformly
beneficial in treating EAE, and that very high efficacies (which
can translate into doses) are required to alleviate clinical
autoimmunity. These results are consistent with clinical trials of
anti-CD3 intervention in new-onset type 1 diabetes. Large
cumulative doses were required for maintenance of beta-cell
function [24,25], whereas phase Il trials using low doses failed
to meet their primary end points [25,26]. As with our present
results in simulating EAE, treatment during early development
of diabetes has proven more effective [27]. Our results highlight
the importance of considering the effect of treatments not only
on target T cell populations, but on regulatory pathways of the
immune system that modulate them. Although our simulated
anti-CD3 intervention is not pharmacologically identical to
those employed in clinical trials in type 1 diabetes, our results
are nevertheless consistent with the finding that all but the
highest efficacies of intervention are shown to be beneficial.
These results demonstrate how in silico experiments following
our method facilitate rational design of drug intervention
strategies. Simulating hypothetical drug designs can inform the
drug discovery process: our present results suggest that any
intervention that non-specifically blocks all TCR interactions is
only effective in treating EAE at very high efficacies.
Furthermore, in silico experiments that accurately replicate the
pharmacology of an existing drug could inform the design of
clinical trials.

The principal challenge in exploring complex biological
systems that are not completely understood through simulation
is that this same lack of understanding can complicate
simulation  design.  Simulations are highly abstract
representations that make many assumptions of the biology.
Computational biology publications rarely acknowledge this:
assumptions are rarely made clear, and their implications in
simulation results rarely appreciated. Our unique method
provides for the first time a principled approach to studying
disease through simulation, where the capture of the biology
and assumptions made is informed by evidence of improved
capture of in vivo behaviours. Completed simulations are
statistically analysed to determine and expose the reliance of
simulation behaviours on aspects of the biology that are poorly
characterized; this novel analysis guards against drawing ill-
supported biological conclusions from simulation-based
experimentation. Our method provides evidence and
confidence that simulation is an appropriate capture of the
biology. These technologies pave the way for using simulation
in the design of clinical trials, or providing personalized
medicine, where confidence in a simulation’s predictive
accuracy is essential. Finally, it will be crucial to developing
simulations that can help determine a particular individual's
immune response or clinical symptoms to particular treatment
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strategies, given their unique personal medical history,
immunological constitution and current medical circumstances.

Materials and Methods

Ethics Statement

In vivo murine experiments (figures S9 and S10) were
performed in compliance with the Federal and Institutional
guidelines and have been approved by the Institutional Animal
Care and Use Committee of the Torrey Pines Institute for
Molecular Studies, San Diego, CA, USA.

ARTIMMUS, an EAE simulator

The ARTIMMUS (artificial murine multiple sclerosis)
simulation was implemented in Java and makes use of the
MASON simulation framework [28] (Figure S11A). It explicitly
captures 7 cell populations: CD4Th1 cells, CD4Th2 cells,
CDA4Treg cells, CD8Treg cells, microglia, dendritic cells (DCs)
and neurons.

5 spatial compartments are explicitly represented: the central
nervous system; a cervical lymph node; the circulatory system;
the spleen; and a generic lymph node named the secondary
lymphoid organ (SLO). ARTIMMUS employs a 2-dimensional
lattice-grid based spatial representation for each compartment,
and these compartments are networked allowing cells leaving
one compartment to enter another. The network, and migration
of cells between compartments are shown in Figure S11B.
Cells are represented as explicit entities that occupy and move
between grid-spaces on the lattice grids. Several abstractions
of cytokines and soluble factors are represented, with
abstractions are made by function: generic ‘type 1’ and ‘type 2’
cytokines, and a ‘demyelinating agent’ are represented as
concentrations within each grid-space. All are subject to decay
and diffusion.

Immunization for EAE is captured through the insertion of
type-1 polarized MHC-II:MBP expressing immunogenic DCs
(immunization DCs) into the SLO compartment. An initial
number of immunization DCs are placed in the SLO at time of
EAE induction, and a linearly decreasing number are added
periodically for some time thereafter.

Cells in ARTIMMUS express particular receptors, such as
co-stimulatory molecules and MHC:peptide complexes. When
cells with corresponding molecules occupy either the same or
adjacent grid-spaces, and if the required receptors are
currently being expressed, then a binding between the two
cells is made and this constitutes cellular signalling pathways
that alter a cell’s state. In the case of T cells, the establishment
of these bindings is probabilistic, to reflect T cell specificity.

Many changes in cellular state are temporal in nature,
occurring after some passage of time. These durations are not
identical for all individuals of a particular cell type; cell-specific
durations are drawn from a normal distribution, with simulation
parameters describing the mean and standard deviation.
Durations until a state transition occurs are drawn as required,
and performed when the corresponding time has elapsed.

The ARTIMMUS simulation, full details of its implementation
and default parameter values, is available for free download
from http://www.ycil.org.uk/software-2.
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Domain modelling

The domain model comprises three levels of abstraction,
capturing cell- and molecular-level dynamics (level 3), the
culmination of these dynamics into system-level events (level
2), and how these system level behaviours translate into
phenomenon at the organism-level such as recovery from
autoimmunity (level 1). No formal modelling syntax or
semantics are employed in level 1, it is a highly abstract
overview of the system being modelled and scopes the in silico
work in terms of the biology. Level 2 is expressed using UML
activity diagrams [29]. It is impossible to coherently model the
entire cellular basis of disease pathogenesis and recovery on a
single diagram, and such level 2 decomposes disease into
various perspectives that are modelled individually. Each level
3 diagram focuses purely on one cell or molecule, and uses
UML state machine diagrams [29] to describe their states and
transitions between them. Examples of each level of modelling
are shown in Figures S12, S13 and S14.

Details of simulation implementation are excluded from the
domain model, and only the level 3 dynamics are used in
specification of simulation code. This ensures that system-level
behaviours emerge from the mass-integration of cell-level
behaviours, rather than being directly encoded into the
simulation.

The full domain model for ARTIMMUS is available for
download at http://www.ycil.org.uk/software-2.

Calibration

The abstraction of EAE biology in ARTIMMUS has been
informed throughout simulation design by systematically
calibrating against in vivo experiments. The inability to replicate
the dynamics of these experiments in ARTIMMUS, where this
occurred, indicated that the biological abstraction was not
correct, and thus motivated further development of
ARTIMMUS's biological abstraction.

ARTIMMUS was calibrated against two experiments. These
are the physiological recovery of mice induced into EAE (as
reported in [30,31]), and laboured recovery following
abrogation of the CD4Treg and CD8Treg regulatory pathway
(two such experiments have been performed in vivo: anti-TCR
antibodies that depleted CD4Treg populations for 3 weeks [31],
and perforin knock-out mice were used in which CD8Treg are
unable to apoptose encephalitogenic T cells [8]). ARTIMMUS
abstractions and parameters were calibrated against the
specifications for T cell dynamics as supplied by VK for both
experiments.

Once ARTIMMUS abstractions and parameters were
finalized a metric for grading simulation executions in terms of
the 5-point disease severity scale employed in vivo was
devised and calibrated. The ARTIMMUS abstraction for
demyelination in the central nervous system is neuronal death;
neurons are killed (the abstraction of demyelination) by
sufficient concentrations of soluble demyelinating agent and
are replaced thereafter. In silico EAE grades are based on
rates of neuronal death. Time-series data concerning the rates
of neuronal death are smoothed with a sliding window filter,
and EAE scores are assigned by thresholding the rates of
neuronal death. The sliding window size and threshold values
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are obtained through independent calibration against the two
experimental setups used above: physiological recovery
following induction of EAE, and laboured recovery following
abrogation of the regulatory pathway. Threshold values were
calibrated to: 1) reflect the frequency at which EAE scores
change in vivo; 2) reflect the proportion of mice that reach
particular maximum EAE scores; and 3) minimise the
difference between thresholds acquired through calibration
against each experiment. Optimal sliding window sizes and
thresholds were obtained by minimising sum of squared
normalized difference measures reflecting the preceding
requirements. The in vivo 5-point disease severity scale is as
follows [20]: 1, flaccid tail; 2, hind limb weakness; 3, hind limb
paralysis; 4, whole body paralysis; 5, death.

Robustness analysis

The robustness analysis is a one at a time analysis; the
parameter under investigation is perturbed, whilst all others
retain their default calibrated values. The effects of perturbation
on various aspects of simulation behaviour (termed
‘responses’) are analysed, with 500 simulation executions
performed for each perturbation. The range of perturbation is
parameter-specific; if possible the full range of values are
investigated, but for unbounded ranges perturbations of
“reasonably” large magnitude are used, which can include
several orders of magnitude. Hence, the range of values that a
parameter may hold around its default value before a
significant deviation in simulation behaviour occurs is
ascertained. Significant deviations are defined as large effects
as measured through the A-test, or +1.0 in mean EAE score.
The distance between the boundary at which significant
deviations in simulation behaviour occur and the default
parameter value is expressed as a percentage of the default
value (termed an “index”). Where no boundary exists ‘Not a
Number’ is assigned to the corresponding index. The smaller of
the two indexes is termed the “robustness index”. Parameters
are ranked for each response in order of increasing robustness
indexes. The ranks for each parameter across all responses
are summed and used to order a global robustness analysis
table (Table S1). This table exposes those parameters to which
simulation behaviour is particularly sensitive. The boundaries
for parameters are examined to ensure that no unreasonable
criticalities concerning parameter values exist; such
occurrences suggest an inappropriate capture of some aspect
of the biology in the simulation. Figure S15 demonstrates the
analysis on a single parameter. The full robustness analysis of
ARTIMMUS is available for download from http://
www.ycil.org.uk/software-2. No unreasonable criticalities have
been identified in ARTIMMUS.

Statistics

Unless otherwise stated, all experimental groups comprise
500 simulation executions. Error bars on graphs indicate the
inter-quartile range, and on such graphs the median values
across all simulations are plotted.

The Vargha-Delaney ‘A-test’ [32], a non-parametric effect
magnitude test, is used to establish magnitude of effect (also
referred to as ‘scientific significance’) between control and
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experimental groups. This is used as the effect magnitude
calculated is independent of the number of samples taken. The
A-test contrasts populations A and B, and returns the
probability that a randomly selected sample from population A
is greater than a randomly selected sample from population B.
Vargha and Delaney state that A-test scores of <0.44 or 20.56
indicate a small effect, <0.36 or 20.64 indicate a medium effect,
and large effects are indicated by scores <0.29 or 20.71. 1, 2
and 3 *'s on graphs and tables represent small, medium and
large effects respectively. The A-test is applied to data
concerning the proportion of simulations experiencing particular
maximum disease scores, differences in cell population
expansion peaks, and CD4Th1 cells at 40 days.

The Mann-Whitney U test is performed to ascertain the
statistical significance between control and experimental
groups. This metric is often reported in this paper in reference
to percentages of simulations that experience a particular
numbers of clinical episodes, however it is applied to the raw
data not the percentages themselves. For example, to contrast
a group where 100% of simulations experienced a single
clinical episode and another where 80% experienced one
clinical episode and 20% experienced two, the U test is input
with one population of 500 samples where each sample holds
the value 1 and another population where 400 samples hold
the value 1 and the remaining 100 hold the value 2. Fisher's
exact test is used to ascertain the statistical significance of
changes in mortality rates between control and experimental
groups.

The following indicators of significance level are used for the
U test and Fisher's exact test: * = p<0.05; ** = p<0.01; *** =
p<0.001. All statistical tests are conducted using Matlab
implementations. The A-test is calculated using the following
Matlab code:

function A = Atest(X, Y)

[p,h,st] = ranksum(X,Y,’alpha’,0.05);

N = size(X,1); M = size(Y,1);

A = (st.ranksum/N - (N+1)/2)/M;

Efficacy of regulation

A CD8Treg cell can apoptose a Qa-1:CDR1/2 expressing
effector CD4Th1 cell only if the two cells occupy the same or
adjacent locations in the spatial grid. The CD8Treg must
establish a TCR:Qa-1 binding with the CD4Th1, and this
probabilistic to represent non-perfect specificity of T cells. If a
binding between the cells is established, the CD8Treg
apoptoses the CD4Th1 subject to some probability, which is
represented by a single parameter, representing ‘regulatory
efficacy’. This probability is the same for all CD8Treg cells, and
is varied between 0% and 100% in the experiments reported.

A CDA4Th cell expresses Qa-1:CDR1/2 for period of time
following its differentiation into an effector cell. The duration is
established independently for each cell and is drawn from a
normal distribution with a mean of 8 hours and a standard
deviation of 1 hour. The mean of this distribution is varied
between 0 and 24 hours in the experiments reported.

November 2013 | Volume 8 | Issue 11 | e80506



Splenectomy

Splenectomy is implemented in ARTIMMUS by substituting
the spleen spatial compartment with an alternative
“splenectomy-spleen”. This alternative is networked with other
spatial compartments to facilitate inter-compartment cellular
migration as normal, but it has zero capacity: any cell entering
the splenectomy-spleen immediately exits. The splenic
dendritic cells that reside in the ordinary ARTIMMUS spleen do
not exist in the splenectomy-spleen. In silico splenectomy is
performed by substituting the splenectomy-spleen prior to
simulation execution, which corresponds with performing an in
vivo splenectomy prior to the induction of EAE.

Anti-CD3 intervention

Anti-CD3 intervention reduces the probability that a T cell’s
TCR successfully binds with a target MHC:peptide complex
when the corresponding cells occupy the same or adjacent
spatial grids. This interaction is already probabilistic to reflect
the differing specificities of T cells, and as such this
intervention further reduces the probability of successfully
establishing bindings by the corresponding amount. The
intervention is administered at either day 4 or 15, it affects all T
cells in ARTIMMUS equally, its effect is immediate from time of
administration and it persists for the duration of the simulation.

An efficacy of 0% corresponds to the control case of no
intervention. A 100% efficacy prevents all T cell TCR-bindings
from time of administration onwards. Although this
implementation has no explicit notion of intervention dose,
“efficacy” may be thought of as a combination of dose and the
binding strength of the antibody with its target.

Supporting Information

Figure S1. Lower regulatory efficacies increase duration
of clinical episodes, and raise the mortality rate. The
proportion of simulations contracting particular durations of
clinical episodes or symptoms, for regulatory efficacies of
100% (A), 20% (B), 5% (C), 2% (D), 0% (E). Where applicable,
data for clinical relapses are also shown. Where simulations
perish, the duration of the clinical episode is from onset of
symptoms until end of observation at 50 days, hence the
curves plateau at the death rate, and rise to a proportion of 1 at
the end.

(TIF)

Figure S2. Lower regulatory efficacies increase the
severity of clinical episodes. The proportions of simulations
experiencing at least each level of severity of EAE over time,
for regulatory efficacies of 60% (A), 5% (B), 3% (C), 2% (D),
and 0% (E).

(TIF)

Figure S3. Increasing the duration of Qa-1:peptide
expression beyond 8 hours has a marginal effect on
clinical symptoms. The effect of altering mean duration of
Qa-1:peptide complexes expression by effector CD4Th1 cells
on the dynamics of clinical autoimmunity. (A) The proportions
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of simulations experiencing particular maximum clinical scores
at any point in time. A-test effect magnitude levels are given: 1,
2 and 3 *'s represent small, medium and large effects
respectively. (B & C) The proportions of simulations
experiencing particular clinical scores or greater over time, for
Qa-1:peptide complex expression durations of 8 hours (B) and
24 hours (C).

A cumulative distribution plot showing the proportions of
simulations that experience particular durations of clinical
symptoms or less for Qa-1 peptide complex expression
durations of 8 hours (D) and 24 hours (E). Increasing the mean
period of time for which encephalitogenic CD4Th1 cells
express Qa-1:peptide complexes, necessary for their regulation
by CD8Treg cells, marginally reduces the severity of EAE
contracted and reduces the median duration of clinical
symptoms amongst simulations that do not perish from 10 days
to 9.

(TIF)

Figure S4. The effect of splenectomy on recovery from
EAE in vivo, and on Treg priming in silico. (A & B) effector T
cell dynamics in control (A) and splenectomy (B) groups. (C)
statistical magnitudes effect of splenectomy on effector T cell
population dynamics. The peak number of cells attained, and
the times at which these occur, in each of 500
splemenctomized simulations are contrasted with similar data
from a control group using the A-test. A-test effect magnitude
levels are given: 1, 2 and 3 *'s represent small, medium and
large effects respectively.

(TIF)

Figure S5. Anti-CD3 intervention at day 4 suppresses all T
cell population expansions. Effector T cell population sizes
over time, for anti-CD3 treatment efficacies of 0% (A), 60% (B),
70% (C), 80% (D), 90% (E), 100% (F). Higher intervention
efficacies reduce effector T cell peak population sizes, but for
efficacies under 80% encephalitogenic CD4Th1 cells persist for
longer.

(TIF)

Figure S6. Increasing day 4 anti-CD3 intervention
efficacies reduces severity of EAE and T cell population
expansions. (A) Vargha-Delaney A-test scores indicating the
effect magnitude of reduction in peak cell population for T cell
populations under various intervention efficacies. 1, 2 and 3 *'s
represent small, medium and large effects respectively. (B)
Mortality rate and proportion of simulations experiencing
relapses of clinical symptoms for various efficacies of anti-CD3
administered at day 4 post-induction for EAE. * = p<0.05; ** =
p<0.01; *** = p<0.001.

(TIF)

Figure S7. Effector T cell dynamics for various day 15
anti-CD3 intervention efficacies. Effector T cell population
sizes over time, efficacies of 0% (A), 70% (B), 80% (C), 90%
(D), 100% (E).

(TIF)
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Figure S8. Increasing day 15 anti-CD3 efficacies reduce
duration and severity of clinical episodes. Proportion of
simulations experiencing particular clinical scores or greater
over time, for anti-CD3 efficacies of 0% (A), 70% (B), 80% (C),
90% (D), 100% (E).

(TIF)

Figure S9. Dynamic expression of Qa-1 on T cells
following their activation in vivo. Groups of C57BL/6 mice
were administrated intraperitoneally with a single dose of T cell
activating anti-CD3 (200 pg, 2C11) antibody. Splenocytes were
harvested at indicated time points 1h, 2h, 4h, 6h, 12h, 24h,
72h, 120 h, stained with anti-TCR, anti-CD4 and anti-Qa-1b,
and subjected to flow cytometry. (A) Histogram data and (B) a
bar graph showing percentage of cells stained from different
animals. This data is one representative of at least three
individual experiments.

(TIF)

Figure $10. Anti-CD3 treatment prevents antigen-induced
EAE in vivo. (A) Groups of C57BL/6 female mice were one
administered with 200 micrograms of anti-CD3 (2C11) antibody
5 days prior to the induction of disease. EAE was induced by
immunization with MOG35-55 peptide emulsified in the
Complete Freund's Adjuvant followed by 150 ng of pertussis
toxin injection. Mice in the control group were administered with
PBS. These data are representative of 2 independent
experiments.

(TIF)

Figure S11. The ARTIMMUS simulation. (A) Screen shot of
the simulation. Cells are coloured as follows: blue, non-effector
CDATh cells; red, effector CD4Th1 cells; white, effector
CDA4Th2 cells; yellow, CD4Treg cells; green, CD8Treg cells;
purple, dendritic cells; peach, microglia; grey, neurons. (B) The
spatial compartments represented in ARTIMMUS, and which
cells are able to migrate between them.

(TIF)

Figure S12. Example of level 1 domain modelling:
culmination of organism-level phenomenon. An abstraction
depiction of the cells and their interactions believed to be
responsible for clinical disease and subsequent recovery. This
diagram scopes the in silico work, for example “protection
against subsequent attempts to induce autoimmunity against
CNS” is observed in clinical animals, but is beyond the scope
of the present modelling work.

(TIF)

Figure S13. Example of level 2 domain modelling: system-
level events. Immunization for EAE leads to neuronal
apoptosis, expressed as a UML activity diagram.

(TIF)
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Figure S14. Example of level 3 domain modelling: cellular-
and molecular-level dynamics. The cellular dynamics of an
encephalitogenic CD4Th cell, expressed as a UML state
machine diagram.

(TIF)

Figure $15. Example robustness analysis of the
TCell_AICDMean parameter. This parameter dictates the
mean lifespan of effector T cells before they apoptose due to
activation induced cell death (AICD). The analysis establishes
the range of values that this parameter may take before
significant deviations in various aspects of simulation behaviour
take place. These aspects, termed responses, are as follows:
the ...Max and ...MaxTime responses indicate the peak
population size for each T cell population and the times at
which this peak occurred. CD4Th1@40d represents the
CD4Th1 population size at 40 days. Max EAE and EAE@40
represent the disease severity score at its peak and at 40 days;
these measures are tested for significant deviation through
both the A-test and 1.0 of the default value. (A) A-test scores
indicating how changes parametric perturbation influences
simulation responses, the ‘large’ effect magnitude boundaries
are indicated. (B) Change in EAE scores under parametric
perturbation, +1.0 boundaries are indicated. (C) Summary of
robustness indices, lower and upper boundaries and indices for
all response. RI, robustness index; LI, lower index; Ul, upper
index; LB, lower boundary; UB, upper boundary. For clarity
NaN (not a number) is indicated by a period.

(TIF)

Table S1. Summary of parameter robustness indexes,
ordered by total rank. Responses are indicated as follows:
1M, CD4Th1 Max; 1MT, CD4Th1 Max Time; 2M, CD4Th2 Max;
2MT, CD4Th2 Max Time; 4M, CD4Treg Max; 4MT, CD4Treg
Max Time; 8M, CD8Treg Max; 8MT, CD8Treg Max Time; Th40,
CD4Th1 at 40 Days; MEA, Max EAE; E40A, EAE at 40 Days.
Significant deviation is indicated through the A-test. ME and
E40 represent Max EAE and EAE at 40 Days, with significant
deviations in response behaviour defined as a change of at
least £1.0 in the mean EAE score. Not-a-number values,
representing no significant deviation in behaviour, are marked
with a period for clarity. Response columns show the smaller of
the two robustness indexes for each parameter-response
combination. The ‘total’ is the sum of ranks for each parameter
across all responses, with small response indexes being
ranked highest.

(TIF)
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