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Abstract

For over a century immunological research has made striding advancements that
have substantially improved the wellbeing and longevity of the population. There
remain, however, many pathogens and diseases to which the immune system and
immunologists currently have no answer. Immunological research is as active now
in understanding the immune system and its response as it ever has been. Ex-
traordinary technological breakthroughs allow researchers to examine the genes
and proteins expressed in individual cells, and the molecules expressed on their
cell surfaces. Advancements in imaging techniques allow researchers to observe
immune cell interactions at levels of detail never before possible. Yet, despite im-
pressive technological advancements, there is sentiment within immunology that
reductionist techniques alone will not be sufficient to explain manner in which
system-level behaviours arise from low-level components. Such an understanding
is necessary to develop the best strategies for fighting disease. An increasing num-
ber of immunologists are combining traditional wet-lab research programs with
computational methods that consolidate wet-lab data and attempt to reconstruct
the system-level phenomenon observed in the real-world immune system. These
computational techniques facilitate hypothesis formation and exploration, allow
for predictive experimentation that is not possible in the real-world, and can guide
wet-lab work towards potentially fruitful avenues of research. However, not well
appreciated in the literature is the issue of simulation validity: confidence that in
silico results are representative of the real-world system that simulations attempt to
capture. There is considerable uncertainty surrounding many immunological phe-
nomenon, which can complicate the creation of simulations that are themselves
highly abstract entities. The results of simulation will not necessarily translate
directly into the real-world domain.

This thesis investigates modelling and statistical techniques that establish con-
fidence in in silico results being representative of the real-world immune system.
A case study in the murine autoimmune disease experimental autoimmune en-
cephalomyelitis (EAE), a model for multiple sclerosis, is undertaken as a means
to explore these techniques. The disease is subject to rigorous domain modelling
prior to its representation in simulation. Modelling and simulation calibration are
performed in close collaboration with a domain expert in EAE. A means of grading
simulation executions by the same scale employed in the wet-lab, through exami-
nation of an entire mouse, is created. A novel technique is developed whereby the
relationship between the accuracy of averaged simulation results and the number
of simulation executions sampled in compiling them is established. The completed
simulation is explored using a global sensitivity analysis, and a novel robustness
analysis technique. These analyses reveal aspects of the simulation that are highly
influential to its overall system-level behaviours. The extent to which simulation
behaviours are reliant on parameters being assigned particular ranges of values is
investigated using robustness analysis. This thesis theorises how these techniques
may be considered and applied in the context of domain-specific knowledge to inter-
pret in silico results into the original domain. Next, in silico experimentation into
the nature of EAE is performed, resulting in several predictions concerning the role
of particular cells and the spleen in mediating recovery from disease. Lastly, this
thesis reflects upon the contribution of these modelling and statistical techniques in
providing confidence that simulation results are representative of real-world EAE.
A novel approach to development that guides simulations to appropriate levels of
abstraction, and demonstrates this to be the case, making extensive use of meta-
heuristic search and real-world experimental data is proposed.
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Chapter 1

Introduction

This introductory chapter presents the motivation for the work conducted in this thesis,
and an overview of how it is guided and structured. Firstly, section 1.1 motivates the
investigation of the immune system through computational techniques, and explores
the issue of confidence in simulation results. This is followed by section 1.2 which
details the aim of the thesis, the research objectives that guide it towards this aim, its
content and structure, and lastly its contribution.

1.1 Motivation

The immune system is the collective term given to the cells, molecules, processes,
tissues and organs that are charged with maintaining the health of an organism.
It is responsible for mounting defense against pathogens and for clearing tumor-
ous cells. Whilst the immune system is generally considered to be effective in ful-
filling these functions, it is not perfect, as evidenced by diseases such as leish-
maniasis or tuberculosis that often cannot be completely cleared from the body
[Manabe & Bishai 2000, Kaye & Scott 2011], the development of life-threatening can-
cers, or autoimmune diseases where the immune system attacks the host.

Immunology is the study of the immune system. For over a century immunologists
have been investigating the operation of the immune system, and how it may be ma-
nipulated to improve wellbeing and longevity. The field has lead to the discovery of
vaccines that have rendered many potentially lethal pathogens relatively harmless, and
countless drugs to improve the immune system’s ability to fulfill its function.

Whilst acknowledging the remarkable successes of immunology to date, there are
still many diseases, such as AIDS or multiple sclerosis, to which the immune system can
mount no effective response, and to which the biomedical industry has found no cure.
Immunology is as active a field as it ever has been, and recent times have seen phe-
nomenal advances in the technologies used to study the immune system. Researchers
are able to detect the molecules being expressed on or secreted by individual cells, the
proteins being created within those cells and the genes that are actively transcribed by
them. Advances in in vivo imaging techniques allow researchers to observe the interac-
tions between individual cells at astonishingly small scales. Geneticists have mapped
the genome, and a full mapping of the body’s proteins is not far away [Cohen 2007a].
Collectively, these technologies have generated vast quantities of experimental data.

1
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Yet, for all the unique insight that these technological advancements can deliver,
no unified theory of how the immune system operates has emerged [Cohen 2007a]. The
top researchers in the field have fundamentally different views regarding the manner in
which the immune system operates to direct its immensely destructive ability towards
targets that cause harm to the host, but not the host itself'. As Cohen writes, “The
more data we have access to, the more confused we have become” [Cohen 2007a]. The
immune system is too complex to be understood through purely reductionist techniques,
looking to explain higher-level behaviours by examining in ever more detail its lower-
level components. Many complex systems, such as the immune system, exhibit system-
level behaviours that cannot be intuitively understood by purely examining their low-
level individual components in turn. The immune system, like many biological systems,
is rife with the key features of complexity: vast numbers of low-level components, each
of which is capable of performing many functions, and each of those many functions
can be performed by many types of component [Cohen 2004, Edelman & Gally 2001].
One cannot attribute a single function to a single component, and a wider systems-level
overview of how the components interact, support and suppress one another’s function
is required to understand its operation.

1.1.1 Computational techniques for investigating the immune
system

There is a growing sentiment in immunology that computational methods can aid in-
vestigation of the immune system [Germain et al. 2011, Cohen 2007a]. The benefits
that these methods purport to bring to immunology are echoed by many within the
field, and an increasing number of immunological publications report the use of compu-
tational methods in their investigations [Kleinstein 2008]. To summarise, the benefits
of a complementary computational and wet-lab approach to immunology are as follows:

e Simulations can capture and consolidate large quantities of data from a wide va-
riety of sources, and provide a system-level overview of what that data represents
[Cohen 2007a, Bauer et al. 2009, Germain et al. 2011].

e Simulations, being computer code, are more amenable to designing, con-
ducting and collecting data from experimentation than the natural system
[Forrest & Beauchemin 2007]. Real-world experimentation has physical and eth-
ical limitations that computer simulations do not.

e Having integrated established experimental data, simulation offers a plat-
form for the formulation and evaluation of hypotheses concerning sys-
tem operation. Such hypotheses can then be tested for -consistency
against established data [Chakraborty et al. 2003, Kirschner & Linderman 2009,
Chakraborty & Das 2010].

e Simulation can help in directing wet-lab experimentation, permitting relatively
cheap preliminary investigations that can point to interesting aspects of the sys-
tem under study. Areas where biological knowledge is lacking can be identified,
and revealing experiments to discern between competing theories can be designed
[Cohen 2007a, Chakraborty & Das 2010, Bauer et al. 2009].

In 2000, the journal Seminars in Immunology dedicated an entire issue (volume 12, issue 3) to
facilitate this very debate amongst some of the most prominent immunologists in the field. The articles
contained in this issue demonstrate the widely diverse theories of immune system function held within
the field.
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The field concerned with the exploration of the immune system through modelling
and simulation is referred to as computational immunology. A variety of computational
methods have been employed in investigating immunological systems. This thesis fo-
cuses on the agent-based paradigm [An et al. 2009]. Agent-based simulation is charac-
terised by an explicit representation of individual entities in the system, such as cells or
molecules. Agent-based simulation captures the various states that particular types of
entity in the system may exist in, and the temporal events, interactions and probabil-
ities that promote changes in state. The state that each entity of the system exists in
is explicitly maintained in an agent-based system. These systems typically encompass
an explicit representation of space and time, within which system components exist,
move and interact.

Agent-based simulations allow computational immunologists to perform experimen-
tation at the level of the cell, or the molecule, and observe the system-level results. In
the highly controllable environment of a simulation one can engineer and perform ex-
periments that are not possible in the wet-lab, such as disabling only one of many
functions that a particular molecule performs, and observing the effects on any aspect
of simulation behaviour. Computational immunology represents a constructionist ap-
proach to immunological investigation, which can form a valuable complement to the
more traditional reductionist wet-lab approaches.

1.1.2 Confidence in simulation

Though computational methods hold much potential in complementing traditional wet-
lab techniques in the advancement of immunology, this can only be truly accomplished
if it can be argued that the simulation is a faithful representation of its target domain.
This is especially the case where simulation is used to perform investigations for which
the real-world system’s behaviour is unknown. In fact, simulations are never a com-
pletely faithful representation of their target domains, for reasons explored below: they
are highly abstract entities. They can, however, be fit for purpose: one can have con-
fidence that the results of simulation are satisfactorily representative of the real-world
domain with respect to the particular in silico experimentation being conducted. If
simulation is to be used to complement and guide wet-lab experimentation, by facili-
tating hypothesis exploration and providing predictions of the real-world system, it is
necessary to establish confidence that the simulation is fit for purpose. This is not a
Boolean all-or-nothing quality. Rather, confidence can be established to varying de-
grees, since, as noted above, simulation is never an absolutely faithful representation
of the real-world domain. This section explores the separation of simulation and real-
world domain, and the various aspects of simulation-based investigation in which one
must establish confidence.

The immune system is a highly complex system; new cell types and their interac-
tions are continually being identified, exact rates and quantities involved in processes
are often unknown? [An et al. 2009]. These uncertainties, or simply complete absences
of information, can considerably complicate the construction of immunological simula-
tions.

Further to this, simulations are highly abstract representations of their target do-
mains. They typically represent only a small subset of the real-world system’s compo-
nents, and at a substantially reduced number. One might hypothesise that the com-
ponents of the real-world system represented in simulation are the only ones critical to
its operation. However, this cannot be known for certain, and in all likelihood those

2For example, [Bevan 2006b, Prlic et al. 2007] explore the controversy concerning the role of CD4Th
cells in the cytotoxic T cell response.
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components and interactions of the real system not explicitly represented in simulation
do have some influence over its operation. As such, the components of a simulation
must compensate for the activities of those that are not represented. In dealing with
underspecified system components, and the abstractions made in simulation, simula-
tions require calibration: the adjustment of simulation components, interactions and
parameters such that simulation dynamics reflect those observed in the real-world sys-
tem.

Herein lies two aspects of simulation-based investigation where one must provide
confidence. Firstly, confidence that the simulation’s capture of the cells, processes and
interactions present in the real domain is satisfactorily accurate, given the nature of the
experimentation to be performed on it. This thesis refers to these aspects of simulation
as its mechanics. Secondly, confidence that the simulation’s parameters are assigned
appropriate values: that the mechanics have associated with them the correct rates,
probabilities, quantities and temporal behaviours. The conceptual separation between
simulation mechanics and parameters is made because it is believed that a simulation
with inappropriate mechanics can still be parameterised to replicate certain aspects of
the real-world system under particular circumstances. Both mechanics and parameters
must be appropriate if simulation results are to be representative of the target domain.

Agent-based simulations can be made stochastic in nature: two simulation execu-
tions given the exact same input parameters can often reveal different results. This
feature of agent-based simulations can be desirable, it is a feature of the real-world
system also. It can, however, complicate in silico experimentation. Computational
immunologists must establish confidence that the results of in silico experimentation
are representative of the simulation’s dynamics and the experimental procedure, rather
than stochastic variation. The typical approach here is to sample many simulation
executions, and generate averaged results.

The last aspect of establishing confidence in simulation results being representa-
tive of the real-world system concerns the interpretation of in silico results into the
original domain. Owing to the abstract nature of simulation, and the considerable
uncertainty concerning many immunological phenomenon, in silico results are not di-
rectly interpretable with respect to their real-world domain. For example, simulations
may represent only a few thousand cells, whereas the real-world immune system con-
tains millions. One must establish the relationship between simulation metrics, and
those of the real-world domain. Following this example, if only a few thousand cells
are represented in silico, what does an experiment that results in the generation of an
extra few hundred mean in terms of the original domain? Secondly, one must provide
confidence that in silico results, such as novel predictions, are not explained merely
though underspecified parameter values. Underspecified values may arise from incom-
plete, ambiguous or contradictory research in the domain. Simulation predictions that
hold only under a narrow subset of the biologically plausible parameter values should
not necessarily be assumed representative of the real system.

Some of these issues concerning the establishment of confidence that simulation
results are representative of the real-world domain have been recognised by the CoSMoS
project3, an ongoing research project that seeks to develop support for the investigation
of complex systems [Andrews et al. 2010]. Their work is reviewed in the following
section.

3The Complex Systems Modelling an Simulation infrastructure (CoSMoS) project, EPSRC grants
EP/E053505/1 and EP/049419/1, www.cosmos-research.org, 2007-2011.
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1.1.3 The CoSMoS process

remove, add,
experiment, domain simplify platform
observe model model
compare, refine,
validate implement
A
predict results simulation
latform
model experiment, P

observe  mmrEEETeR\

Figure 1.1: The CoSMoS process for performing simulation-based investigation of complex sys-
tems. The arrows represent the flow of information, not the strict flow of activity. Figure
represents an early version of the CoSMoS process, and is obtained from personal communica-
tion with members of the CoSMoS project [Andrews et al. 2010].

The CoSMoS project is an EPSRC funded project which seeks to build generic
tools and techniques to support the modelling, simulation and analysis of complex
systems [Andrews et al. 2010]. The project is case study driven, drawing on the ex-
perience of a range of case studies in analysing and building complex systems, cov-
ering a diverse range of domains such as immunology, sociology and swarm robotics
[Polack et al. 2010, Owen et al. 2010]. The work of the present thesis has been under-
taken in parallel with the CoSMoS project, and has served as one such case study.

The CoSMoS project’s approach to complex system simulation is captured in the
CoSMoS process [Andrews et al. 2010]. It advocates rigorous modelling activities that
underpin simulation-based investigation. The process has remained in development
throughout the present thesis, undergoing refinements and additions in reflection of
the ongoing case studies that inform it. As such, the version of the process presented
here reflects its state around the commencement of this work, and is the version that
has been employed in this thesis?.

The CoSMoS process is denoted in figure 1.1. It encompasses five artifacts: the do-
main, the domain model, the platform model, the simulation platform, and the results
model. The domain is that which is to be represented in simulation, the remainder are
engineered artifacts to support simulation. Each of these is considered in turn.

The domain represents the complex system of interest, in this case some aspect
of the immune system. Understanding of the domain’s nature is achieved through
experimentation and observation. This understanding is captured in the domain model,
which presents a coherent and consistent view of the domain. Domain modelling can
highlight areas of inconsistent or incomplete domain-specific information, and often
leads to the adoption of assumptions. It focusses on scientific understanding, and is
free of any potential simulation implementation-specific details. It captures all entities
of the system, and how their collective behaviours manifest in system-level phenomenon.
The process makes no claims over the sorts of modelling techniques that are best suited
to modelling any particular domain.

4The names of some of the process’ artifacts have been updated to their more recent titles, which
are felt to better reflect the nature of the artifacts. The structure and semantics of the process, however,
is unchanged.
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The platform model serves as an implementation-specific specification for the sim-
ulation platform, and is derived from the domain model. All explicit representation of
system-level behaviours are removed; these system-level ‘emergent’ behaviours should
arise from low-level component interactions once the simulation is executed. They
should not be directly programmed into the simulation. If simulation execution does
not reveal these properties, then either the simulation does not correctly capture the
domain model, or the domain model does not correctly capture all the relevant aspects
of the domain. Some aspects of the domain may be simplified, for example variable
levels of molecular expression by cells may be abstracted into a dichotomous state of
expression or not, in which case these simplifications constitute further assumptions
made of the domain and must be recorded. Implementation specific additions may be
made in the platform model, which could include user interfaces or data logging tools.

The completion of the platform model is followed by the construction of the sim-
ulation platform, which may be executed and used to perform experimentation. The
process makes no claims over what modelling paradigm the simulation must belong to,
or which programming language it is implemented in.

The results model encapsulates the understanding that arises from experimentation
with the simulation platform. It is to the simulation platform what the domain model
is to the domain. The results model may be contrasted with the domain model for the
purposes of validation. Similar behaviours in the results model to those recorded in
the domain model affords confidence that the simulation is a fair representation of the
domain being modelled. Further, the results model may reveal results of simulation
that constitute predictions made of the original domain.

There are two further points to be made of the CoSMoS process. Any of the arti-
facts identified above, except the simulation, may be implicit, rather than full physical
instantiations, subject to issues of impact and criticality of simulation results. Sec-
ondly, the process may by highly iterative in nature. Early transitions through the
process may yield simulation platforms that do not adequately capture the domain,
in which case further investigation of the domain and amendment of process artifacts
may be performed. Should the simulation platform satisfactorily replicate the obser-
vations made of the domain, it may be extended to explore novel scientific questions,
hence motivating further iterations of the process. In this manner, the CoSMoS process
facilitates open ended scientific research.

CoSMoS advocates an interdisciplinary approach to simulation-based investigation
of complex systems. An immunologist is unlikely to have the computational and pro-
gramming skills required to create simulations and perform experimentation on them.
Likewise, computer scientists are unlikely to have the biological background necessary
to fully comprehend the research conducted into the immune system. In CoSMoS
nomenclature, the constructor of a simulation is referred to as the modeller, whereas
an expert in the domain being investigated is referred to as the domain expert.

The modelling activities of the process serve two purposes. Firstly, they serve to
guide interaction with the domain expert, providing an explicit agreed upon scope
for the simulation-based work. Secondly, by explicitly documenting the simulation’s
representation of the domain and recording assumptions made in deriving it, simulation-
based experimentation is made more transparent; models are more comprehendible
than source code. The models aid in establishing confidence that a simulation is an
appropriate representation of the domain, the domain expert verifies that the scientific
understanding captured in the domain model is appropriate and reasonable. Hence,
CoSMoS seeks to address the first aspect of establishing confidence in in silico results:
that the simulation’s mechanics are a faithful representation of the real-world system.
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1.2 Outline of this thesis

Thus far, this chapter has motivated the investigation of the immune system through
simulation. It has identified the need to establish confidence that the results of in silico
experimentation are representative of the real-world system, and detailed four aspects
of simulation based investigation where this is must be addressed. These are:

e Confidence that the simulation’s capture of cells, processes and interactions of
the target domain is satisfactorily accurate, given the investigations performed
on it.

e Confidence that the simulation is correctly parameterised.

e Confidence that in silico results are representative of the simulation’s dynamics,
and not merely the result of stochastic variation in the simulation.

e Understanding of the implications of in silico results in terms of the original
domain; that simulation results are not merely the result of underspecified pa-
rameter values owing to incomplete, ambiguous or contradictory research in the
domain.

This thesis concerns statistical and modelling techniques to support simulation-
based investigation of the immune system, specifically the four aspects of confidence in
simulation results identified above. The modelling aspect of this work adheres to the
CoSMoS process reviewed above. This scope is reflected in the thesis aim:

To apply and develop statistical and modelling techniques that aid confi-
dence in agent-based simulations of immunology, specifically experimental
autormmune encephalomyelitis.

In order to investigate these techniques this thesis conducts a case study in mod-
elling and simulating a murine autoimmune disease, experimental autoimmune en-
cephalomyelitis (EAE), which has many parallels with multiple sclerosis. EAE was
selected because of its considerable complexity; it is felt that if the methods estab-
lished in this thesis suffice in providing confidence with respect to this case study, then
they will hold for many other immunological domains. The modelling and simulation
work of this thesis is aligned with a particular wet-lab laboratory, that of Dr. Vipin
Kumar at the Torrey Pines Institute for Molecular Studies, in San Diego. Dr. Kumar
is an expert in EAE, and assumes the role of the domain expert in this thesis. The
author assumes the role of modeller.

The following research objectives will guide the work of this thesis in achieving its
aim:

Obj 1: Explore the role of explicit domain modelling in the EAE case study.
Obj 2: Create an agent-based simulation of EAE.
Obj 3: Investigate and develop techniques for calibrating agent-based simulations.

Obj 4: Perform novel in silico experimentation using the agent-based simulation of
EAE.

Obj 5: Develop and apply statistical techniques for interpreting in silico results in the
context of the target domain, EAE.
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1.2.1 Thesis structure

This thesis addresses the above research objectives in seven chapters, most of which re-
late to aspects of the CoSMoS process. Their content, relation to the CoSMoS process,
and the contribution to fulfilling the research objectives, are as follows:

Chapter 2 provides background material on immunology and EAE, necessary for un-
derstanding the in silico experimentation conducted in this thesis. This chapter
represents the domain of the CoSMoS process.

Chapter 3 reviews the literature on modelling and simulating the immune system,
and provides a critique on how existing works have addressed the question of
simulation validity and confidence in in silico results. It has no direct relationship
to any CoSMoS process artifact.

Chapter 4 details the construction of a domain model of EAE. EAE is modelled
using the unified modelling language (UML). Though originally intended for the
specification of software systems, it is felt that the various diagrammatic notations
encompassed with the UML may be suitable for agent-based modelling of immune
system domains. The chapter provides critical reflection on the ability of UML
to represent EAE, and hence contributes to research objective 1.

Chapter 5 reports on the construction of a simulation of EAE. It represents the plat-
form model and the simulation platform artifacts of the CoSMoS process. The
chapter details the manner in which the EAE domain model is interpreted as a
specification for a simulation, and reports the procedure used to develop the sim-
ulation to an appropriate level of abstraction and parameterise it. The chapter
addresses research objectives 2 and 3.

Chapter 6 considers techniques for extracting representative data from the simula-
tion, and interpreting them in terms of the original domain. It performs an initial
exploration of simulation behaviours through application of statistical techniques
that determines the influence of the simulation’s various parameters on its be-
haviour. As such, the chapter represents part of the CoSMoS results model, and
investigates its relationship to the domain. Contributions to research objectives
4 and 5 are made.

Chapter 7 performs novel in silico experimentation into EAE through simulation,
hence addressing research objective 4. It also represents the results model of the
CoSMoS process.

Chapter 8 provides critical reflection on the work conducted in this thesis, and how
it relates to establishing confidence that in silico results are representative of
the real-world domain. In doing so, the chapter further contributes to research
objectives 1 and 3. This chapter concludes the thesis.

1.2.2 Thesis contribution

There are two strands of contribution: those made to general techniques for exploring
immunology through simulation, and those specific to EAE. These are summarised
below, and are expanded upon in chapter 8.

Contributions to the field of computational immunology are as follows:
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Articulation of the necessity to establish confidence in the results of immune
system simulations, and identification of the four aspects of simulation-based
investigation in which this must be done (chapter 3).

Assessment of the ability of UML to describe EAE in an agent-based manner,
and an approach to addressing and specifying the complexity of systems such as
EAE (chapter 4).

A highly interdisciplinary and collaborative calibration procedure for developing
simulations to appropriate levels of abstraction (chapter 5).

Development of a novel consistency analysis technique that establishes the rela-
tionship between the accuracy of averaged simulation results, and the number of
simulation executions sampled in obtaining them (chapter 6).

Development of a novel statistical technique, termed a robustness analysis, that
reveals the extent to which parameters may be perturbed before a statistically
significant deviation in simulation behaviour occurs (chapter 6).

Several proposed methods of application of the robustness analysis whereby the
significance of in silico results can be qualified in terms of the real-world domain
(chapter 6).

A proposed meta-heuristic search-based technique for assessing whether a simula-
tion appropriately captures the complexity of the target domain. This framework
can be employed in guiding simulation development to appropriate levels of ab-
straction (chapter 8).

In addition, the following contributions have been made to the field of EAE:

Articulation of the complex nature of EAE, and motivating its investigation
through computational modelling and simulation (chapter 2).

An agent-based model and simulation of EAE, through which in silico experi-
mentation may be conducted (chapters 4 and 5).

Elucidation of important cellular processes and interactions that drive autoim-
munity and subsequent regulation-mediated recovery in EAE (chapters 6 and
7).

Identification of substantial redundancy in the ability of the regulatory network of
cells in EAE to regulate the cells that mediate autoimmune behaviour (chapter 7).

Insight into the role of the spleen in the recovery from EAE (chapter 7).

1.2.3 Publications relating to this thesis

A number of publications have resulted from work conducted towards this thesis. These
publications, and their relation to the present thesis are as follows:

[Read et al. 2009b] : I am the principle author of this conference extended abstract.

The paper expresses the initial findings on the applicability of UML to modelling
complex immunological systems, which is expanded upon in chapter 4.



1. INTRODUCTION

[Read et al. 2009a] : T am the principle author of this workshop paper. The paper
concerns an early iteration of the EAE domain model, the latest iteration of which
appears in chapter 4.

[Read et al. 2011] : I am the principle author of this journal paper, much of which
is reproduced in chapter 6.

[Polack et al. 2010] : My experiences in modelling and simulating EAE, and in con-
ducting a cross-disciplinary collaboration with Dr. Kumar have provided a case
study for this conference paper. I am not the first author.

[Williams et al. 2011] : The simulation of EAE developed in this thesis has been
extended and used for further investigation into EAE. I am not the first author
on this conference abstract, and the work reported is not directly related to this
thesis.
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Chapter 2

Background Immunology and
EAE

As outlined in the previous chapter, this thesis conducts a case study in modelling and
simulating a murine autoimmune disease, experimental autoimmune encephalomyelitis
(EAE). This chapter presents sufficient immunological background to understand EAE,
and the modelling and in silico experimentation work conducted in the later chapters.
Section 2.1 presents a review of background immunology. Immunology is a very wide
field, and the section focusses mainly on those aspects that are pertinent to EAE.
Section 2.2 reviews EAE, specifically the mouse model used in the Kumar laboratory.
Lastly, section 2.3 focusses on the complex nature of the immune system, motivating
its exploration through computational modelling and simulation techniques.

2.1 Introduction to the immune system

Immunology is the field of biological science that studies all aspects of the immune
system, the collective term given to the cells, molecules, processes, tissues and organs
that maintain the health of an organism. Whilst this function is frequently interpreted
as protection against disease and pathogen, the immune system has been implicated
in a much broader range of activities, including the healing of wounds, scar tissue
formation, removal of injured or abnormal cells, growing of new blood vessels and
the clearance of inter-cellular debris [Cohen 2006]. The review of the immune system
presented below is intended only as a general introduction to the immunology required
to appreciate the processes underpinning EAE. It is largely based on two immunology
text books, [Kindt et al. 2007, Janeway et al. 2005, with additional literature cited as
appropriate. Readers seeking additional information are encouraged to approach the
cited literature. There are many conditions to which the immune system responds, and
it is not the intention of this review to cover all such scenarios. Instead, it focusses on
the immune system’s response to pathogenic invasion, though many of the principles
described apply also to other conditions of immune system activation.

The cells of the immune system are termed leukocytes. Leukocytes are reactive to
the conditions of the environment that they inhabit, which they perceive through the
use of receptors, complex protein structures bound to the surface of the cell. Stimula-
tion of receptors through binding with structures to which they are sensitive induces
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2. BACKGROUND IMMUNOLOGY AND EAE

chemical reactions or DNA transcription events within the cell, altering its behaviour or
composition. As the sections that follow will reveal, there is a great deal of inter-cellular
communication between leukocytes during the immune response. Communication is
carried out through direct cellular contact between cell membrane-bound receptors,
but also through soluble protein structures called cytokines. The effects of cytokines
can be felt over a distance, and may be perceived by multiple cells.

Historically, immunologists have conceptualised the vertebrate immune system as
composed of two parts, the innate and adaptive systems, and whilst recent study
increasingly points to the extensive interactions between the two, and a blurring of the
boundary between them, the separation serves well as a structure in which to explore
immunology [Germain 2004]. The primary distinction between the innate and adaptive
immune systems relates to how their receptors are generated, and hence the stimuli to
which they can react. The cells of the innate immune system are endowed with receptors
that have evolved over the timescales of a species to respond to signals of the host
and those of pathogenic invaders [Matzinger 1994]. Their receptors recognise heavily
conserved structures that are integral to a pathogen’s survival; different pathogens
of the same class, be it fungi, viruses, bacteria or parasites will often express these
structures. The innate immune system response is very fast to react to pathogenic
invaders, effectively combatting them immediately upon detection.

The cells of the adaptive immune system are called the lymphocytes. The lympho-
cyte receptor repertoire, and hence the range of structures they are reactive towards,
is established over the lifetime of the host; two individuals of the same species likely
have very different lymphocyte receptor repertoires. It is the adaptive immune system
that mounts responses to previously unseen pathogenic invaders. Some pathogens, such
as viruses, evolve on a much faster time-scale than the species’ that they infect, and
whilst this affords them some ability to out-manoeuvre the innate immune system’s
recognition and response, the adaptive immune system can react to these evolutionary
pressures much more quickly. It takes around a week for the adaptive immune system
to generate a response that is effective in combatting the pathogenic invader.

The conceptual separation of innate and adaptive immune systems should not be
taken to indicate that these systems operate independently of one another, there is a
great deal of communication and interaction between the cells of both systems. As the
sections that follow will highlight, it is the cells of the innate immune system that first
prime the adaptive immune response, and the adaptive immune response in turn can
co-ordinate the actions of the innate immune system in dealing with pathogens. The re-
mainder of this introduction to immunology is organised as follows. First, section 2.1.1
discusses the organs of the immune system. A summary of the innate immune system
is presented in section 2.1.2. Section 2.1.3 summarises the adaptive immune system,
discussing its cell types and their receptors, the stringent activation requirements of
these cells, and the phenomenon of immunological memory. Section 2.1.4 explains how
the adaptive immune system is instigated, and this is followed by a review of how
the immune response is terminated in section 2.1.5. Lastly, owing to its relevance in
autoimmune diseases such as EAE, section 2.1.6 discusses how the immune system is
prevented from attacking the host.

2.1.1 Organs of the immune system

In addition to the cells of the innate and adaptive systems, the immune system com-
prises several organs specialised in performing particular functions. They are classified
into two groups according to their function. The primary immune (lymphoid) organs
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2.1. Introduction to the immune system

are the thymus and the bone marrow, where lymphocytes are generated and mature
before entering the circulatory system.

The secondary lymphoid organs comprise the lymph nodes situated throughout
the body, and the spleen. They specialise as compartments for the interactions of
leukocytes, and lymph. Lymph is the interstitial fluid found in the body’s tissues.
It slowly drains from the tissues through the lymph nodes and back into the blood.
In doing so, the microbes and general debris that exist in the tissues are channelled
through the lymph nodes, where leukocytes may react to them. The spleen performs
a similar function in filtering the blood.

Immunology literature often references the periphery, which is taken to mean the
tissues of the body. The periphery is considered separate from the lymphoid organs.

2.1.2 Innate immune system function

The innate immune system comprises a wide variety of cells, differing in the specialised
functions that they perform. These include, but are not limited to, dendritic cells
(DCs), macrophages, natural killer cells, and granulocytic cells. Some of these cells,
such as DCs, naturally reside throughout the body, whereas others remain in the blood
stream and migrate to particular locations in the body only when required to do so.
Innate immune system cells are induced into performing functions through stimulation
of their receptors, or receipt of particular cytokine signals. Together, these cells can
perform a variety of functions in response to the perception of harmful pathogens.
These include:

e The ingestion and destruction of debris and pathogens, a process termed phago-
cytosis. Cells capable of performing this function are named phagocytes.

e The secretion of substances that are harmful to pathogens, such as TNF-q, reac-
tive oxygen species, and nitric oxide.

e The promotion of immune system cell migration towards the sites of bodily dam-
age, a process known as inflammation.

e The induction of a controlled cellular death, called apoptosis, in viral-infected
cells.

e The presentation of materials to the adaptive immune system, thereby initiating
the adaptive immune response.

These functions are constitutively performed under certain conditions, largely dic-
tated by stimulation of receptors sensitive to highly conserved structures on pathogens
or indications of harm to the host’s tissues. They are also greatly enhanced through
the actions of adaptive immune system cells, once the adaptive immune response is
instigated.

2.1.3 The adaptive immune system

The adaptive immune system comprises two distinct major lineages of lymphocyte:
B cells, which arise from the bone marrow, and T cells which arise from the thymus.
There are two forms of adaptive immune response, the humoral immune response, which
is mediated through B cells, and the cytotoxic immune response, which is mediated
through a particular lineage of T cell.
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2. BACKGROUND IMMUNOLOGY AND EAE

The adaptive immune system is responsible for mounting immune response against
previously unseen pathogenic invaders. The ability of lymphocytes to recognise such
pathogens lies in the manner in which their receptors are generated, through DNA
rearrangement. These receptors, and their ability to respond to particular structures,
are not directly encoded in the germline; they are generated within the life-time of the
host, and as such the repertoire of receptors that one possesses is highly dependent
on their immunological and pathogenic history. These receptors are termed the B
cell receptor (BCR) for B cells, and the T cell receptor (TCR) for T cells. The term
antigen is given to any substance that is able to bind to a BCR or TCR in a manner
that instigates the adaptive immune response.

Lymphocytes that have not encountered antigen and been activated exist in a naive
state. They exhibit a highly motile migratory behaviour, moving between the circula-
tory system, lymph nodes and spleen. This migratory pattern increases the probability
of their encountering antigen for which they are specific, should it exist. Should the
conditions necessary for a lymphocyte to become activated be realised, it will enter a
proliferative cycle, during which many more cells of the same kind are generated. At
the end of proliferation, a lymphocyte will differentiate into an effector cell, capable
of mediating the adaptive immune response to pathogenic invasion. Some cells fur-
ther differentiate into memory cells, responsible for mounting more effective responses
against previously encountered pathogens. Immunological memory is discussed below
in section 2.1.3.3.

The BCR is capable of binding to an extremely wide range of soluble structures
(which may, for example, be found on the surface of pathogens), and doing so stimulates
the B cell. One effector form of the B cell is the plasma cell, which secretes a soluble
form of BCR called an antibody. Plasma cells are short lived, but can secrete vast
quantities of antibodies during their lifespans. These antibodies will bind to structures
on the pathogens that they recognise and signal to other cells of the immune system
to facilitate their destruction and clearance.

There exist two major sub-populations of T cells, cytotoxic T cells (Tc cells) and
T helper (Th) cells. These are characterised by their expression of either CD8 or CD4
molecules! respectively, molecules which partially dictate the types of structures that
TCRs can bind with. CDA4T cells and CD8T cells are referred to throughout this
thesis. Whereas BCRs are able to bind a wide variety of structures found on cells,
pathogens, molecules and alike, TCRs are only able to bind with peptides presented
on specialised molecules called major histocompatibility complexes (MHC). The cells
that present MHC molecules are called antigen presenting cells (APCs). TCR:MHC?
interaction, which is integral to the instigation of the adaptive immune response, is
discussed in the following section.

CDS8Tec cells scan the host’s cells for signs of intra-cellular pathogen, such as viruses.
Upon recognition of such a pathogen an effector cytotoxic T cell can induce apoptosis
in the target cell.

CD4Th cells are required for the initiation of both cytotoxic and humoral immune
responses, as discussed below in section 2.1.3.2. There are two major sub-populations
of effector CD4Th cell, the CD4Thl and CD4Th2 cell, both of which arise from naive
CDA4Th cells. CD4Thl cells generally promote and support the cytotoxic immune re-
sponse, whereas CD4Th2 cells are similarly required for the instigation of the humoral
immune response. CD4Thl and CD4Th2 cells cross-regulate one another: each popu-

LCDz refers to cluster of differentiation, an official classification system for cell-surface receptors
[Kindt et al. 2007].
2X:Y is the notation used throughout this thesis to denote a binding between X and Y.
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2.1. Introduction to the immune system

lation regulates the size and activity of the other through various feedback mechanisms,
often involving cytokines. The adaptive immune response will be either predominantly
humoral or cytotoxic in nature®. Cross-regulation of CD4Thl and CD4Th2 cells is
achieved through the action of cytokines; CD4Thl cells secrete a profile of cytokines,
termed type I cytokines, that promote the differentiation of activated CD4Th cells
into CD4Th1 cells, and suppress the expansion of the CD4Th2 population. In turn,
the CD4Th2 population secretes a type 2 profile of cytokines that have the opposite
effect.

2.1.3.1 Specificity, affinity and avidity

A key event in the activation of a lymphocyte is the stimulation of its TCRs or BCRs,
achieved through binding with antigen. A lymphocyte is said to be specific for a
particular antigen if binding of its TCR or BCR receptors with that antigen is capable of
activating it (subject to the constraints explored in the following section). Lymphocytes
express vast numbers of receptors on their cell surfaces, and their activation typically
requires a number of these to bind with antigen. The strength of binding between an
antigen and a single receptor is defined as the lymphocyte’s affinity for the antigen.
The term awidity describes the binding strength between an antigen and a lymphocyte
whilst taking into consideration the fact that many receptors will bind to the antigen.

To illustrate: a T cell with low affinity for an antigen that is expressed in very large
quantities on an APC will bind to the APC with equal avidity as a second T cell that
has high affinity for a particular MHC:peptide complex, but that is expressed in low
quantities.

It follows that any particular lymphocyte can recognise multiple antigen, and
any single antigen can be recognised by multiple lymphocytes with distinct receptors
[Cohen 2004].

2.1.3.2 Lymphocyte activation

In order to perform their functions in mediating either the humoral or cytotoxic im-
mune responses, or supporting them in the case of CD4Th cells, lymphocytes must
become induced into their effector states. These immune responses, particularly the
cytotoxic response, can cause substantial harm to the host if mis-directed, and hence
there exist stringent safeguards governing their generation. CD4Th cells must receive
two signals before becoming effector cells; CD8Tc and B cells also require two signals,
and further require the support of activated CD4Th cells in inducing their effector
functions [Matzinger 1994]. Figure 2.1 depicts the signals required for lymphocyte ac-
tivation. Note that lymphocyte activation and population expansion is also referred to
as priming.

CDA4Th cells are activated by APCs. Dendritic cells are the most potent activators
of naive CD4Th cells. A naive CD4Th cell whose TCRs successfully bind with MHC-
II:peptide complexes as displayed by a DC will receive signal 1 and become stimulated.
If the DC is expressing co-stimulatory molecules, then these will bind with respective
receptors on the CD4Th cell, and it will receive signal 2. At this point the CD4Th cell
becomes activated and enters its proliferative cycle, and will eventually differentiate into
either an effector or memory CD4Th1 or CD4Th2 cell, the latter being dictated largely
by the profile of cytokines being secreted by the DC [Germain 2004, Kapsenberg 2003].

3The humoral immune response can support cytotoxic activity, however this aspect of immunology
is beyond the focus of this thesis.
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Figure 2.1: The events leading to the activation of lymphocyte cells, adapted from
[Kindt et al. 2007] and [Janeway et al. 2005]. Lymphocytes have stringent requirements for
their activation; B and T cells each require the receipt of two signals, termed signal 1 and
signal 2, in order to become activated. Transduction of these signals are mediated through
the binding of a series of molecules and their corresponding receptors. Activation of B cells
requires the activation of CD4Th2 cells, and activation of CD8Tc cells requires the activation
of CD4Thl cells which must license and APC to express the required levels of co-stimulatory
molecule.
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The activation of a B cell is also contingent on its receipt of two signals. A B cell
derives signal 1 when multiple BCRs bind with some antigen. The B cell will ingest
the antigen, and process it into peptides, some of which will then be presented as
MHC-II:peptide molecules. An effector CD4Th2 cell specific for such MHC-II:peptide
complexes will bind to the B cell. An effector CD4Th cell expresses CD40L molecules,
and these bind with CD40 on the B cell to induce signal 2 in it. The B cell will then
differentiate into either a memory B cell, or a plasma cell.

The activation of CD8Tc cells is also dependent on CD4Th cell function. The
TCRs of CD8Tec cells are restricted to recognising peptides presented on MHC-I, rather
than MHC-II. Successful binding of a naive CD8Tc¢ cell’s TCR receptors with MHC-
I:peptide complexes expressed on an APC will deliver signal 1 to the CD8Tc cell.
Perhaps owing to the tremendous destructive potential of CD8Tc cells, they require
more co-stimulatory stimulation than CD4Th cells. DCs must be induced into express-
ing the levels of co-stimulatory molecules required to deliver signal 2 to a naive CD8Tc
cell, and this is accomplished through the licensing of the APC by a CD4Thl cell.
An effector CD4Th1 cell binds with MHC-II:peptide complexes on the APC, and then
licenses it through CD40:CD40L interaction. A second means through which CD4Th
cell can be required for the activation of CD8Tc cells is through the promotion of
non-classical MHC-T molecules? on APCs [Tang et al. 2006]. Hence, both the CD8Tc
and the CD4Thl cell must recognise MHC:peptide complexes derived from the same
pathogen before the cytotoxic immune response can initiate. Upon receipt of both sig-
nals 1 and 2, a CD8Tc cell will enter its proliferative cycle, and eventually differentiate
into either an effector CD8Tc cell, or a memory CD8Tc cell.

MHC-I is expressed by most of the host’s cells. These molecules specialise in
processing samples of a cell’s internal contents into peptides and presenting them
for the scrutiny of CD8Tc cells. Hence, CD8Tc cells specialise in combatting intra-
cellular pathogens such as viruses. MHC-II expression is generally restricted to par-
ticular phagocytic cells of the innate immune system, such as DCs and macrophages.
These cells process exogenous antigen that they have phagocytosed and present it as
MHC-II:peptide complexes. Through a process termed cross-priming such APCs are
also able to present peptides derived from exogenous antigen on MHC-I complexes
[Bevan 2006a]. This a critical process in the instigation of the cytotoxic immune re-
sponse against intra-cellular pathogens that do not infect DCs or macrophages.

2.1.3.3 Immunological memory

Another phenomenon that the adaptive immune system bestows upon the host is that
of immunological memory. The adaptive immune system takes around 10 to 17 days
to fully mount a response to a previously un-encountered pathogen. Where a second
immunization with the pathogen occurs, the adaptive immune system takes between 2
and 7 days to respond.

This increased rate of response to previously encountered pathogen is mediated
through particular forms of effector B and T cells: memory cells. When a B or T
cell differentiates into an effector cell, there is some probability that it will become a
memory cell. These cells are long-lived, and have less stringent requirements for their
activation: no signal 2 is required, and these cells can respond to reduced concentrations
of antigen.

It is this immunological memory that vaccines exploit in providing long term pro-
tection against particular pathogens. A typical vaccine comprises an attenuated form

4There are many different forms of MHC molecule, each of which is capable of presenting distinct
repertoires of peptide [Rodgers & Cook 2005].
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of the pathogen, providing a target for the development of lymphocyte memory cells,
in conjunction with substances called adjuvants. The use of attenuated pathogens pro-
tects the recipient from exactly that danger which the vaccine seeks to circumvent,
however, pathogens that are not capable of harming the host do not necessarily incite
a potent immune response [Matzinger 1994]. Adjuvants are substances that strongly
stimulate the immune system into action, hence facilitating the perception of an attenu-
ated pathogen as harmful, despite the fact that it is not. With the addition of adjuvant,
the immune system will generate a response against the attenuated pathogen, which
includes the generation of memory cells.

2.1.4 Instigation of the adaptive immune response

A typical instigation of the adaptive immune response commences with the infiltra-
tion of pathogen into a particular site of the host. Pathogenic action causes harm
to the local tissues, which alerts the cells of the innate immune system. Dendritic
cells, which reside throughout many of the body’s tissues as immature cells, are
highly sensitive to the presence of pathogenic materials and harm to the body’s tis-
sues [Kapsenberg 2003, Matzinger 2007]. Their constitutive phagocytic activity results
in their ingestion of the pathogen, and its subsequent presentation as MHC:peptide
complexes. DCs that perceive pathogens or harm to tissues become stimulated into
up-regulating their co-stimulatory molecule expression. As an aside, this is one role
of adjuvant in vaccines, to facilitate the perception of harmful substances by DCs.
DCs express a range of receptors, the Toll like receptors (TLRs), that are sensitive
to different classes of pathogen (such as viruses, bacteria, parasites and fungi). De-
pending on which TLRs are stimulated, DCs can be induced into secreting different
profiles of cytokine. In this manner, through perception by DCs, the class of pathogen
can influence whether a CD4Th response develops into a CD4Thl or CD4Th2 direc-
tion [Germain 2004, Kapsenberg 2003, Sousa 2006]. It has also been suggested that
the class of adaptive immune response generated is influenced by signaling of DCs by
the tissues, since certain classes of response are highly destructive to certain organs,
and administration of the same antigen in different tissues enlists different classes of
response [Matzinger 2007, Matzinger 2002].

DCs periodically mature and migrate from the peripheral tissues to the local lymph
nodes (or the spleen, depending on the site of pathogenic invasion) where they present
antigenic peptides to T cells. Owing to their co-stimulatory molecule expression, any
T cells specific for the MHC:peptide complexes that they present will become acti-
vated and enter their proliferative cycles. The circulation of lymph from the periph-
eral tissues, through the lymph nodes, and into the circulatory system results in the
transport of some pathogenic material directly into the lymph nodes, permitting the
activation of B cells. Antigen transported through the circulation of lymph may also
lead to its phagocytosis by lymph-node resident DCs that then present to T cells
[Lanzavecchia & Sallusto 2004, Sousa 2006].

Following activation, lymphocytes enter a proliferative cycle, where for several days
they repeatedly divide to produce a population of naive daughter cells. These naive cells
may be activated through the presence of the same antigenic materials that activated
their parents, since their receptors are largely identical®>. Upon completion of their
proliferative cycles, lymphocytes differentiate into effector cells, and leave the lymph
nodes.

5In the case of T cells, naive progeny resulting from proliferation have exactly the same TCR
structures as their parent cells. In the case of B cells, some mutation of the BCR occurs, and those
progeny harbouring mutations resulting in greater affinity for antigen are selected for survival.

18



2.1. Introduction to the immune system

Innate immune cells such as macrophages at the site of pathogenic invasion secrete,
and induce in the local tissues an expression of, a variety of molecules that attract
other immune system cells to the sites of damage. This process is called inflammation.
Effector lymphocytes re-entering the circulatory system after leaving the lymph nodes
migrate to the site of pathogenic invasion in response to inflammation. Here they
receive additional antigenic stimulus, termed local activation, which stimulates them
into performing effector functions.

The actions of the adaptive and innate immune systems integrate at the site of
infection to combat pathogenic invasion. Lymphocytes can contribute to the inflam-
matory process, recruiting cells of both the adaptive and innate immune systems. The
cytokine milieu can promote the activation of macrophages, inducing in them the secre-
tion of TNF-q, reactive oxygen species, and nitric oxide, substances which are harmful
to many pathogens but which can also cause damage to the tissues. DCs are induced
into immunogenic phenotypes, up-regulating co-stimulatory molecule expression and
migrating to the secondary lymphoid organs to prime further populations of lympho-
cytes. The cytotoxic immune response can enlist cells of both the innate and adaptive
immune systems to induce apoptosis in local tissue cells, such as those infected by
viruses. The humoral immune response results in the secretion of antibodies that can
mark pathogens for phagocytosis, or tissue cells for apoptosis.

If it persists, the immune response can cause considerable harm to the tissues.
The inflammatory process can recruit a huge number of cells that can disrupt tissue
organisation and function, and it can promote the generation of scar tissue. Cytotoxic
activity can directly destroy substantial portions of tissue, and the substances secreted
by innate immune cells can likewise cause widespread disruption of organ function. The
immune response is largely supported by the lymphocytes, and as such the following
section considers how the immune system is terminated.

2.1.5 Terminating the immune response

An effective immune response will clear the pathogenic invader from the host, after
which the large populations of lymphocytes, capable of mediating considerable damage
to the host’s tissues, are no longer needed. There are two processes by which the
adaptive immune system terminates, discussed in turn.

Lymphocytes require persistent stimulation of their BCRs or TCRs in order to
survive, and in absence of antigenic stimulation the effector cells generated to combat
a pathogen will enter apoptosis upon completion of this task. This form of lympho-
cytic death is called death by neglect [Parijs & Abbas 1998, Matzinger 1994]. It applies
throughout the lymphocyte lifecycle: naive cells also require some low level of stimu-
lation in order to persist.

Even in the presence of antigenic stimulation, effector lymphocytes cannot survive
indefinitely. Through a process termed activation induced cell death (AICD), lympho-
cytes that are persistently stimulated are induced into apoptosis. This is believed to
be a homeostatic mechanism to control the size of effector T cell populations during
the immune response [Kabelitz et al. 1993].

2.1.6 Immune system tolerance

The DNA rearrangement processes that are responsible for the creation of BCRs and
TCRs endow these populations of cells with the ability to recognise an extremely wide
range of structures, including those that constitute the host. A long-standing debate
in immunology concerns the mechanisms and processes whereby cells of the adaptive
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immune system are prevented from targeting the host®. It has been argued that all
self-reactive B and T cells are eradicated in the thymus and bone marrow, and hence
that self-reactive lymphocytes cannot enter the periphery. Under this argument, au-
toimmunity may be attributed to a failure of these selection and eradication mecha-
nisms. Whilst the role of the thymus and bone marrow in deleting many self-reactive
lymphocytes is largely acknowledged, it is now well appreciated that self-reactive lym-
phocytes do in fact exist in the periphery of healthy individuals; indeed some level of
self-reactivity is required to prevent death by neglect in naive lymphocytes. As such, a
variety of mechanisms are coming to light whereby the ability of these cells to mount
effective immune responses against the body are suppressed.

Self-reactive lymphocytes that escape the bone marrow or thymus can receive an
abundance of stimulation in the periphery, where the antigens to which they are reactive
are expressed in large quantities. As discussed above, this persistent stimulation of
lymphocytes leads to AICD, and the self-reactive lymphocytes will enter apoptosis.

A second mechanism mediating adaptive immune tolerance to the host is through
the induction of anergy in self-reactive lymphocytes [Parijs & Abbas 1998]. Anergy is
defined as unresponsiveness to antigenic stimulation, and also leads to eventual apop-
tosis. Anergy is induced in lymphocytes that, during activation, receive signal 1 in
absence of signal 2. T cells are activated through APCs, predominantly DCs, wherein
co-stimulatory molecule expression at levels to deliver signal 2 must be induced. As
noted above, direct recognition of pathogen or harm having occurred in the tissues can
lead to DC expression of co-stimulatory molecules. Where DCs phagocytose and then
present elements of the host to T cells, but where no pathogenic presence or tissue
damage has occurred, presentation will be in a tolerogenic context’, marked by the
absence of co-stimulatory molecule expression. T cells binding with such APCs will be
anergised. In the case of B cells, the lack of effector CD4Th2 cells capable of providing
signal 2 also leads to anergy [Matzinger 1994].

Lastly, recent years have seen the characterisation of a variety of regulatory
T (Treg) cells which act to suppress and and down-regulate adaptive immune re-
sponses, rather than promote them. A wide variety of T cell subsets capable
of performing such activities have been identified, of both CD4 and CDS8 wvari-
eties. These Tregs have been shown to modulate the immune response through
a range of mechanisms, including the secretion of cytokines that interfere with T
cell activation [Boehmer 2005, Shevach et al. 2001], down-regulation of APC abil-
ity to prime T cells [Chang et al. 2002], promotion of the generation of other
Treg subsets [Cortesini et al. 2001], and the direct apoptosis of activated T cells
[Smith & Kumar 2008, Tang et al. 2005]. Some such Tregs are specific in their sup-
pression, targetting particular T cells on the basis of the antigen that they recognise,
whereas others are non specific, secreting cytokines in a manner perceivable by any
neighbouring cells.

2.2 Experimental Autoimmune Encephalomyelitis

Experimental autoimmune encephalomyelitis (EAE) is an animal autoimmune dis-
ease that arises through the direction of immunity towards the central nervous sys-

5Tn 2000, the journal Seminars in Immunology dedicated an entire issue (volume 12, issue 3) to this
debate, with some of the most prominent figures in immunology sounding and critiquing the various
perspectives on how the immune system targets pathogenic invaders but not the host. For example, see
[Zinkernagel 2000, Silverstein & Rose 2000, Medzhitov & Janeway, Jr 2000, Langman & Cohn 2000,
Grossman & Paul 2000, Cohen 2000, Bretscher 2000, Anderson & Matzinger 2000].

7As opposed to immunogenic context.
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tem (CNS). It is one of the earliest developed animal models of disease, and has
been widely used as a model for studying multiple sclerosis [Baker & Jackson 2007,
Baxter 2007, Goverman 2009, Zamvil & Steinman 1990]. EAE is studied in a variety
of animals including, but not exclusively, mice, rats, guinea pigs and monkeys. The
clinical course of EAE varies with animal and with the immunization protocol used
to induce it, and across the different models a wide range of disease phenotypes can
be induced, from acute to relapsing to chronic paralysis, of varying degrees of severity
[Baker & Jackson 2007, Baxter 2007]. Depending on the protocol used to induce it,
a proportion of experimental animals perish from EAE. This thesis, and hence this
review of EAE, focusses primarily on the model of EAE used in the Kumar laboratory
[Kumar & Sercarz 2001, Kumar 2004], which is studied in mice.

EAE involves direction of immunity towards the myelin sheath, an insulatory mate-
rial that coats the neurons of the CNS, and which is necessary for their proper function.
The disease is typically induced through two methods: the administration of myelin
derivatives, such as myelin basic protein (MBP), in conjunction with adjuvants that
strongly stimulate the immune system into action; or through the adoptive transfer
of myelin specific effector T cells from one animal already induced into disease into
another [Zamvil & Steinman 1990].

The susceptibility of experimental animals to autoimmunity following administra-
tion of the exact same immunization protocol varies considerably. Some do not present
clinical symptoms at all, whilst others perish. The Kumar lab grades the severity of
EAE experienced by an experimental mouse on a scale of 0 to 5: 0, no symptoms;
1, flaccid tail; 2, hind limb weakness; 3, hind limb paralysis; 4, whole body paralysis;
5, death [Kumar et al. 1996]. Figure 2.2 demonstrates the variation in autoimmune
severities experienced by mice undergoing various interventions. In the EAE model
employed in the Kumar lab animals frequently experience spontaneous recovery from
autoimmune symptoms, as may be seen on the figure. It is this spontaneous recovery
that has attracted the interests of immunologists seeking to understand how the same
recovery, mediated through cells that are also found in humans, can be induced in
sufferers of multiple sclerosis.

Figure 2.3 depicts the major cell types that are involved in the Kumar laboratory’s
EAE model and its associated recovery. Their role in mediating autoimmunity and
recovery therefrom are discussed in sections 2.2.1 and 2.2.2 that follow.

2.2.1 EAE autoimmunity

A typical immunization for EAE entails a sub-cutaneous injection of MBP. This leads
to its phagocytosis by dendritic cells, and subsequent display as MHC-II:MBP on the
cell surface. The adjuvants that accompany immunization for EAE, CFA and PTx®,
induce DCs to adopt a highly immunogenic phenotype, making them strong primers of
CDA4Th1 cell immune responses [Menezes et al. 2007].

DCs residing in the periphery, having phagocytosed MBP and been induced into
maturity by adjuvant, migrate to the local lymph nodes, and there prime populations
of naive MBP-specific CD4Th cells [Goverman 2009]. These cell populations enter their
proliferative cycles, and adopt either CD4Thl or CD4Th2 polarizations. Having been
exposed to adjuvant, the DCs generally promote the adoption of CD4Thl polariza-
tions. However polarization adoption is probabilistic, and some CD4Th cells will still
adopt a CD4Th2 phenotype [Ando et al. 1989, Menezes et al. 2007]. Upon completion

8CFA, complete Freund’s adjuvant, consists of the inactivated bacterium mycobacterium tubercolo-
sis. PTx, pertussis toxin, is a protein produced by the bacterium mordetella pertussis. Both these
substances are powerful inducers of the immune response.
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DISEASE SCORE

DAYS AFTER IMMUNIZATION

Figure 2.2: The progression of EAE in individual mice amongst four experimental groups,
with five mice in each group. Group A experiences onset and then physiological recovery
from disease. Groups B, C and D have received various interventions that interfere with the
animal’s ability to recovery from clinical symptoms. Note the considerable variation in disease
progression experienced by mice of the same experimental group, having undergone the exact
same immunization procedure. Figure adopted from [Kumar et al. 1996].
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Figure 2.3: Abstract depiction of the major cell types involved in EAE autoimmunity and its
associated recovery. Red arrows indicate interactions leading to autoimmunity, blue arrows
indicate regulatory activity that counters the autoimmune response.

of their proliferative cycles, these T cells differentiate into effector T cells, migrate out
of the lymph nodes, and rejoin the circulatory system, eventually reaching the CNS
compartment.

CD4Thl and CD4Th2 effector cells are able to cross the blood-brain barrier and
gain entry to the CNS. There they derive local activation from APCs presenting MHC-
II:MBP. CD4Thl cells commence the secretion of pro-inflammatory cytokines such as
IL-2, and INF-v [Ando et al. 1989, Menezes et al. 2007].
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These cytokines constitute a pro-inflammatory context to resident antigen present-
ing cells, such as macrophages and microglia?, which become stimulated. Once stimu-
lated, these cells secrete TNF-a, reactive oxygen species (ROS), and nitric oxide (NO),
all of which are harmful to neurons. Sufficiently high doses of these substances cause
demyelination: the destruction of the insulator myelin sheath that covers the neurons
[Hendriks et al. 2005, Raivich & Banati 2004, Tambuyzer et al. 2009].

Following demyelination, myelin fragments such as MBP are phagocytosed by
macrophages, microglia and DCs. Macrophages and microglia express MHC-II:MBP
following this phagocytosis, and thereby provide further stimulus for local activation
of encephalitogenic'® CD4Thl and CD4Th2 infiltrates. The inflammatory conditions
now present in the CNS induce these APCs to up-regulate co-stimulatory molecule
expression, hence adopting immunogenic phenotypes. The DCs migrate to the cervical
lymph nodes (CLN), and there present MHC-II:MBP [Goverman 2009].

This presentation of MBP in the CLN by DCs provides further stimulus for the
generation of MBP-specific CD4Th cell populations. Once a CD4Thl presence is estab-
lished in the CNS compartment, MBP-presenting DCs will prime further populations
of these same cells in the CLN, and hence autoimmunity becomes self-perpetuating,
potentially persisting for long after the effects of immunization in the peripheral lymph
nodes have expired.

2.2.2 EAE regulation

Many mice induced into EAE spontaneously recover from autoimmune symptoms, even
when the mechanisms mediating regulation are interfered with, see figure 2.2. The
Kumar lab has identified a network of cells that has a regulatory effect on autoim-
munity, and mediates recovery from disease. This regulatory network is indicated
on figure 2.3 by blue arrows. The Kumar lab has characterised two forms of Treg
that play a significant role in recovery from EAE, CD4Tregs and CD8Tregs. Exper-
iments to deplete or incapacitate these cells results in labored recovery from autoim-
mune symptoms [Kumar et al. 1996, Beeston et al. 2010], whereas their artificial pre-
mature activation following induction for EAE protects recipients from autoimmunity
[Tang et al. 2007]. Further, the adoptive transfer'! of activated CD4Treg or CD8Treg
cells into mice prior to immunization protects them from subsequent attempts to in-
duce EAE [Tang et al. 2006, Kumar 1998, Kumar et al. 2001]. This section details how
these two Treg cell populations operate within the mouse immune system to mediate
recovery from autoimmunity.

Through the natural course of their lifecycles, CD4Thl cells die of AICD,
entering apoptosis and being subsequently phagocytosed by APCs, such as DCs
[Kabelitz et al. 1993]. The majority of encephalitogenic CD4Thl cells use the V38.2
TCR gene segment to encode their TCRs [Kumar & Sercarz 2001]. DCs derive and
present two peptides from two regions of these TCRs: framework 3 (Fr3), and com-
plementarity determining region 1/2. MHC-IL:Fr3 complexes are presented by DCs,
which prime populations of CD4Tregs [Kumar 1998, Smith et al. 2010].

CDA4Treg cells secrete IL-2 and INF-y cytokines necessary for the induction
of Qa-1:CDR1/2 expression on DCs [Tang et al. 2006], a process known as licens-

9Microglia are specialised APCs, similar to macrophages, that reside in the central nervous system.

10 Encephalitis relates to inflammation of the tissues of the brain.

1 Adoptive transfer experiments take cells from one experimental animal, in this case effector
CD4Treg or CD8Treg cells from mice undergoing recovery from EAE, and administer them to an-
other to observe the effect. Here, these cells conferred some protection from attempts to induce EAE
following the transfer.
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ing. Qa-1 is a form of non-classical MHC-I molecule that presents a substantially
smaller repertoire of peptides than classical MHC-I can. Qa-1:CDR1/2 presenta-
tion and CD4Treg cytokine secretion leads to the priming of CD8Treg populations'?
[Smith et al. 2009, Kumar 2004].

For around 8 hours following differentiation into effector cells, V38.2 TCR
CDA4Thl1 cells express Qa-1:CDR1/2 complexes, for which CD8Treg cells are spe-
cific. Effector CD8Treg cells are a form of cytotoxic T cell, and upon binding
Qa-1:CDR1/2 expressed on a CD4Thl cell are able to induce its apoptotic death
[Beeston et al. 2010, Tang et al. 2006].

On a system level, this rise in CD8Treg population number leads to a reduction
in the CD4Thl cells that mediate self-perpetuating autoimmunity: recently primed
CD4Th1 cells originating from the CLNs are induced into apoptosis before reaching
the CNS compartment, and hence the loop of self-perpetuating autoimmunity is broken.

It is only CD4Thl cells that are subject to regulatory activity [Kumar 2004,
Madakamutil et al. 2003]. The MBP-specific CD4Th2 cells escape regulation by
CD8Treg cells, and as a result of their unhindered expansion the immune response
deviates in a type 2 direction [Kumar 2004, Kumar & Sercarz 2001]. In the context
of EAE, CD4Th2 cells, and the cytokines they secrete, do not promote demyelination
and instead serve to counter the pro-inflammatory encephalitogenic context in the CNS
[Kumar 1998].

2.3 Summary

This chapter has served as an introduction to the immune system, and the manner in
which the immune response is instigated, regulated and terminated. It has explored
the domain of the simulation work conducted in this thesis: the particular EAE mouse
model employed by the Kumar laboratory. The perspective of immunology presented
here is somewhat simplified, and tailored towards understanding the processes under-
pinning EAE; the field of immunology extends considerably further than outlined in
this chapter. Cutting edge research continues to identify new cells, molecules, pathways
and processes that constitute the immune response. The immune system is increasingly
revealed to be one of considerable complexity, briefly explored here. It is the need to ad-
dress this complexity that has partially motivated immunological investigation through
i silico techniques.

Section 2.1 has only touched upon the myriad of cells that mediate and control
the immune response. Many of these cells overlap in the functions that they perform,
such as the ability to recognise particular pathogens, though the processes through
which they do so differ [Parnes 2004, Cohen 2004]. A particular immune insult will
attract the attention of a wide variety of different cell populations. There is extensive
communication between the cells of the immune system, which influence the nature of
one another’s function and role in the immune response. Such communication can be
mediated through direct cellular contact, or through cytokines. To date, a vast number
of different communication and cytokine molecules have been uncovered!3.

Cytokines themselves exhibit considerably complexity. One particular cytokine
may have a range of different effects on different cells, and several distinct cytokines

12CD8Treg cells that are specific for Qa-1 have been implicated in maintaining self-tolerance
and countering autoimmune behaviour in a variety of diseases by regulating self-reactive T cells
[Lu et al. 2006, Kim et al. 2010].

13Cell-bound molecules are typically assigned numbers of the form ‘CDzzx’, where zzx is an incre-
menting number following the discovery of new molecules. The immunology textbook Kuby Immunol-
ogy lists 339 such molecules, and 50 distinct cytokine molecules [Kindt et al. 2007].
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are capable of inducing similar functional changes on any particular type of cell. They
exhibit the properties of synergy and antagonism, where the effect of one cytokine may
only be realised in the presence of another, or where one cytokine may counteract the
effect of another. Similar principles apply for cell-bound molecules.

The particular form that an immune response acquires is influenced by a wide
variety of factors, including the recognition of certain qualities of the pathogen by cells
of the innate immune system, the tissues from which the immune response originates,
and the various subpopulations of lymphocytes that cross-regulate one another. T
cells lie at the heart of cross-regulatory and suppressive activities that shape the class
of immune response that occurs. These cells can target one another directly, and
can influence the APCs that prime T cell populations. The dendritic cell alone is
capable of influencing at least seven distinct T cell responses, each of which can further
influence DC behaviour [Sousa 2006]. Matters become even more complicated than
this: the evolutionary pressure on pathogens to trigger receptors that promote a class
of immune response that is not effective in dealing with them has been highlighted
[Matzinger 2002].

In summary, as with many biological systems, every level of the immune system
seems riddled with complexity [Cohen 2004, Edelman & Gally 2001]. There are count-
less processes that mediate positive and negative feedbacks on the particular directions
that an immune response might take. From the perspective of autoimmune behaviour,
there are simply too many pathways and possibilities for immunologists to have a clear
understanding of how autoimmunity manifests, let alone how to effectively extinguish it
in a manner that does not leave the hosts’s immune system significantly compromised.
The same can apply to a host of other pathogenic invaders that seem impervious to the
immune response, whose actions can result in chronic immunity with dire consequences
for the host.

It is this complexity that is leading immunologists to explore computational mod-
elling and simulation techniques as a means of complementing their traditional re-
search programs. Identifying how to best manipulate the immune system in com-
batting disease is likely to require a system-level holistic overview of its function,
and it is hoped that constructionist computational methods can assist in providing it
[Cohen 2007b, Chakraborty & Das 2010, Germain et al. 2011]. Existing applications
of computational methods in studying the immune system are the subject of the fol-
lowing chapter. A domain model of EAE is presented in chapter 4.
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Chapter 3

Modelling and Simulating
Immunological Systems

The previous chapter concluded by highlighting the complex nature of the immune sys-
tem, and how immunologists are beginning to complement traditional wet-lab research
with computational methods. It has been proposed that computational methods can
help provide a system-level overview of immune system function, necessary for identi-
fying the best strategies for combatting disease. It is the application of computational
approaches to immune system study that forms the focus of this chapter.

The chapter is organised as follows. Section 3.1 motivates the investigation of
the immune system through in silico techniques. An overview of mathematical and
agent-based modelling techniques is presented in section 3.2. Section 3.3 explores the
manner in which select computational works have provided a valuable complement
to traditional wet-lab techniques. A review of existing modelling work on EAE is
presented in section 3.4. The issue of building confidence in simulation results being
representative of the target system is articulated in section 3.5. This section draws on
representative examples of the literature to provide a critique of best practice in the
field. Finally, section 3.6 concludes this chapter.

3.1 DMotivation for modelling and simulating the
immune system

There is much overlap in the terminology employed in the literature on modelling
and simulating the immune system, hence the following terms and definitions are used
throughout this thesis. A model is assumed to be some abstract description of a
target system, theory, or phenomena [Polack et al. 2008]. It may be diagrammatic or
mathematical in nature. A simulation is an instantiation and execution of a model on
a computer.

A review of the literature reveals a number of ways in which modelling and sim-
ulation techniques are reported to benefit the field of immunology. These are broadly
summarised as follows:

e Simulations are more amenable to designing, conducting and collecting
data from intricate and revealing experimentation than the natural system
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[Forrest & Beauchemin 2007]. Simulations are simply code, and there are no
limitations on how it may be varied in facilitating investigation. On the contrary,
there are physical and sometimes ethical limitations to what can currently be
performed in the wet-lab. For example, whereas wet-lab technology may offer
the possibility of genetic ‘knock out’ experiments, where an experimental animal
may be prevented from producing a particular cytokine, simulation allows exper-
imenters to interfere with only one of several possible functions that the same
cytokine may perform.

e Simulations can form a common ground for the mass consolidation of experimen-
tal data [Chakraborty & Das 2010, Kirschner & Linderman 2009]. It is increas-
ingly appreciated that the advancement of high-throughput wet-lab experimental
techniques are generating more data than can be intuitively understood without
the aid of integrative tools [Cohen 2007a, Bauer et al. 2009, Germain et al. 2011].
Simulations can capture and integrate data from a wide variety of labs, using dif-
ferent experimental methods, and provide a system-level overview of what this
data represents.

e Computational approaches offer a platform on which to formulate and eval-
uate competing hypotheses of system operation, permitting experimenters
to assess how well different theories match established experimental data
[Chakraborty et al. 2003, Kirschner & Linderman 2009]. This may, for example,
lead to the identification of pathways or interactions not previously appreciated
[Chakraborty & Das 2010].

e By means of the points above, simulations can help in directing wet-lab experi-
mentation, allowing investigators to quickly exclude fruitless avenues of research
before incurring the considerable cost of wet-lab experimental work. Prelimi-
nary investigation in silico can point to interesting aspects of the system, can
highlight where knowledge is lacking, and can help design revealing experiments
to discern between competing theories [Cohen 2007a, Chakraborty & Das 2010,
Bauer et al. 2009).

A key benefit of modelling and simulation is the insight that may be gained across
scales, from molecular to cellular, from cellular to population, from different cellular
populations to the level of an individual, and beyond to societies [Cohen & Harel 2007].
The scales can be temporal as well as spatial, where molecular events on a short scale,
perhaps at the start of an immune response, may have profound effects on the overall
long term progression of the response [Germain 2001]. Observation across scales is a
feature of many modelling works which examine the roles that low-level system compo-
nents have on overall system behaviour. Most of the literature focusses on manipulating
interactions on one scale and observing at the scale above. The value of integrating
models across multiple scales has been highlighted, but the technology to do so has
not yet been established [Kirschner & Linderman 2009, Kirschner et al. 2007]. To give
a hypothetical example, application of computational methods have recently isolated a
potential target for vaccines against HIV [Dahirel et al. |, owing to this particular as-
pect of the virus’s conservation against mutation. It is hypothesised that this particular
element of the virus is critical to its function, and hence it cannot be quickly mutated
to avoid immune attack, as is the case with much of the rest of the virus’s structure.
Before deploying such a vaccine, it would be worthwhile knowing whether this virus
could mutate to circumvent the immune system, and if so, what the time scale for
this might be. As such, a timetable for vaccine deployment could be established. The
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multi-scale computational techniques of the future might be capable of simulating the
effectiveness of the vaccine at combatting the virus at the individual level, encompass
a notion of how quickly the virus can mutate, integrate this across entire populations,
and extrapolate whether such a vaccine is viable as a long term solution to HIV.

Though the field of modelling and simulating the immune system is growing, in
many regards it is still in its infancy. The above issue of multi-scale modelling is
not addressed in this chapter!, but another aspect of the field, felt to be absolutely
critical to its maturation and establishment as a viable complement to wet-lab research,
is that of confidence in simulation [Polack et al. 2010]. Simulations are abstractions
of their target systems, and much of the target system is unknown, which can be
problematic for creating simulations. Given these obstacles, it is vital that researchers
build confidence in the community that the results of in silico experimentation are
genuinely representative of the real domain [Polack 2010, Polack et al. 2010]. This
issue of confidence in simulation is a principle theme in this thesis, and its recognition
in the literature is a central focus of this chapter.

3.2 Review of modelling and simulation techniques

This section begins by reviewing mathematically based approaches to immune sys-
tem modelling, then computational agent-based approaches, and lastly provides some
examples of novel hybrid approaches that balance the tradeoffs between the two.

It should be noted that there is no ‘correct’ or ‘incorrect’ modelling paradigm for
investigating the immune system. Rather, the choice of which modelling tools one
adopts should be dictated by what is appropriate for the domain being modelled, given
the lines of investigation to be carried out. Consideration must be given to the number
of system entities that need to be represented, whether stochastic events are significant
to the system or whether purely averaged behaviours are appropriate, whether spatial
or population heterogeneity is important to the overall system dynamics, and the types
of assumptions that one can reasonably make of the target system [Bauer et al. 2009].

3.2.1 Mathematical approaches

A mathematical modelling technique that has found frequent application in explor-
ing the immune system is the ordinary differential equation (ODE). ODEs represent
populations of elements as real-numbered variables, and specify though coupled equa-
tions the interactions that dictate how population sizes change under one another’s
influence. ODEs have been used to model a variety of diseases and immune system
phenomenon, including influenza infection [Smith & Perelson 2011], the immune re-
sponse in tuberculosis [Marino et al. 2010], HIV infection [Perelson 2002], the duration
of DC-T cell interactions [Beltman et al. 2009], the phenomenon of T cell vaccination
[Borghans et al. 1998], amongst many others.

The following examples, taken from the substantial body of work examining the
dynamics of HIV infection, illustrate the principles of ODE modelling. Figure 3.1 de-
scribes a basic set of equations governing HIV infection of host cells, adapted from
[Perelson 2002]. The model maintains three populations: host cells that are free of
infection, infected host cells, and virions in the circulatory system. A large num-
ber of HIV and influenza-related works are based around this model, with extensions
made to reflect the circumstances of the system or intervention being modelled. For

'The reader is referred to [Kirschner & Linderman 2009, Kirschner et al. 2007] for discussion on
multiscale modelling of the immune system.
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This model characterises the dynamics of three populations: host target cells which
HIV virions can infect, T'; host cells that are already infected, I; and the number
of virus particles in the blood, V. The model describes the change in population
sizes over some period of time, dt. Given an initial population size at time zero, Ty,
the number of target cells changes according to constant rate at which new cells are
generated, \, the death rate per cell, §, and the rate at which viruses can infect target
cells, represented by kVT. The population of infected cells changes in accordance
with generation of newly infected cells, xVT', and the rate at which infected cells
die, represented by p. The virion population size in the blood is dictated by the
rate at which infected cells generate new virions, p, and the rate at which virion are
cleared from the blood, ¢. Virions may be cleared through their natural degradation,
by entering target cells, or through the actions of the immune system. All these
possibilities are captured as a single term in the model, and as such this model is
unable to discriminate between them.

Figure 3.1: A basic ODE model describing the dynamics of HIV infection, adapted from
[Perelson 2002].

example, figure 3.2 depicts the modelling of ritonavir, a protease inhibitor that pre-
vents the HIV virus from replicating [Perelson et al. 1996]. The basic model has been
extended to represent two populations of virion: infectious virions created before riton-
avir was administered, and non-infectious non-replicating virions created thereafter.
A second example based on the basic HIV infection model is depicted in figure 3.3
[Vaidya et al. 2010]. The authors model a system in which the initial infectious HIV
strain becomes resistant to an anti-retroviral drug. The resistant strain is, however,
less fit and is less able to infect target cells. Two populations of virion and infected cell
are maintained in the model, to represent each strain and the cells that they infect.

As may be seen in the examples above, the terms constituting coupled equations
in ODE models broadly capture the processes present in the system. Construction
of a model is typically followed by a parameter fitting stage, where a model’s output
is aligned with time-series data derived from wet-lab experimentation. In the HIV
examples above, the data is often the quantity of virions present in the blood, since
this is readily measured in the wet-lab. Parameter fitting is often accomplished through
least sum of squares regression analysis, where the squared difference between observed
wet-lab data points and those predicted by the model are minimised.

ODEs are computationally efficient to execute, and are amenable to a wide variety
of analytical techniques [Bauer et al. 2009]. They can be effective when investigating
the emergent dynamics that result from the interactions between large populations of
structurally homogeneous entities.

There are however several assumptions inherent in ODE modelling that have
prompted modellers to seek alternative representations. ODE models assume a well-
mixed space of elements, when in fact spatial considerations in vivo are critical to many
immunological processes. This is illustrated by an investigation into the spread of a
viral infection, where the author contrasts an ODE representation with an equivalent
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An example extension of the basic model of HIV infection (figure 3.1), adapted from
[Perelson et al. 1996] (note that the symbols have been changed). Time zero repre-
sents the administration of ritonavir, a protease inhibitor that prevents HIV virions
from replicating. The model captures two populations of virion, V; represents infec-
tious virions generated before drug administration (V;(t = 0) = Vp), whereas Vi
represents non-infectious virions that cannot replicate. As such they are considered
incapable of “infecting” target cells, since no new virions result of infection. In a
departure from the basic model of HIV infection, here new virions are released only
when infected cells die, rather than at a constant rate during their infection. This is
represented by the term Nul, where N is the number of virions released by a dying
cell and p is the rate at which infected cells die.

Figure 3.2: An extension of the basic model of HIV infection to represent the effect of protease
inhibitor ritonavir, adapted from [Perelson et al. 1996].

agent-based model [Beauchemin 2006]. In the ODE model, the rate at which infec-
tion spreads is related to the ratio of of uninfected cells to infected cells, whereas the
agent-based model incorporated an explicit notion of space, and allowed only those
cells neighbouring infected cells to themselves become infected. The author concludes
that the agent-based model better reflects real-world experimental data.

ODE models are suitable for representing large populations of elements, but are
susceptible to strange behavioural artifacts when populations are very small. In the real
world, the removal of the last member of a population entails a population size of zero,
however, typical ODE population decay mechanisms allow populations to approach
zero, but never truly reach it, and hence these systems allow for un-realistic revivals of
population number [Meier-Schellersheim & Mack 1999].

ODEs tend to have fewer parameters than their spatially-explicit counterparts,
potentially making them easier to parameterise, and the more appropriate modelling
paradigm if wet-lab data was derived from well-mixed sources, such as harvesting cells
from the spleen or blood [Bauer et al. 2009).

3.2.2 Agent-based approaches

Whereas ODE modelling represents all the entities of a particular variety as a single
real-numbered variable, agent based modelling provides an explicit discrete represen-
tation of each individual entity, such as a cell, in the system [An et al. 2009]. ODEs
assume all entities belonging to particular populations to be identical, whereas in the
agent-based paradigm agents can be heterogeneous, and maintain their own poten-
tially unique state. The dynamics of agents in the agent-based paradigm are dictated
through rules governing the behavioural changes that result from their interactions
with one another, and with their environment. Agent behaviours, though governed
by these rules, are often stochastic in nature. Hence, distinct agent-based simulation
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The above model represents an extension of the basic model of HIV infection (fig-
ure 3.1) which captures the development of virus strains that are resistant to anti-
retroviral treatment. It is adapted from [Vaidya et al. 2010], with some symbols being
changed. Population T represents target CD4™" cells that are susceptible to HIV in-
fection, I, represents target cells infected with virions susceptible to anti-retroviral
treatment, I, represents target cells infected with resistant HIV virions, and V; and
V., represent the populations of susceptible and resistant strains respectively. Target
cells are produced at constant rate A\ and die at a rate dr. Drug-sensitive virions,
Vs, infect target cells to produce infected cells, I, at rate 8, TV;. A fraction of these
virions, usBsT Vs, become resistant through mutation following infection at rate u.
Similarly, target cells become infected with drug-resistant virions at rate 5, TV,., and a
fraction of these virions, u. 3,17V, mutate following infection at rate p,.. Cells infected
with resistant and susceptible strains produce virions at rates p, and p, respectively,
and die at rate 0. Both forms of virion are cleared from the blood at rate c¢. The
particular anti-retroviral drug being administered reduces infection of target cells by
free virions, represented by the (1 — ¢5) and (1 — ¢,.) terms. As such, €5 and ¢, are
the efficacies of the drug against sensitive and resistant strains respectively; both hold
values between 0.0 and 1.0.

Figure 3.3: An extension of the basic model of HIV infection to incorporate virion resistance
to antiretroviral therapy, adapted from [Vaidya et al. 2010]

executions can yield different results, despite having the same inputs. For domains
where stochasticity or diversity in the history of agents can be influential on the over-
all system-behaviours, the agent-based approach can be a highly suitable modelling
paradigm [Bogle & Dunbar 2010, Germain 2001, Milanesi et al. 2009].

Since this paradigm permits the explicit modelling of individual cells and their
states, such as molecular expressions or the rules that govern changes therein, agent-
based modelling allows for the expression and exploration of hypotheses that are diffi-
cult to represent in ODE models [Forrest & Beauchemin 2007]. These may include, for
instance, the system-level effects of preventing the expression of a particular molecule,
altering its expression duration, or interfering with only one of several of its functions.

Agent-based systems often encompass an explicit representation of space, with the
movement of agents through this space dictating their interactions with one another.
Such explicit representation permits investigation into the system-level effects that arise
from processes inherently dependent on space, such as the structure of cells within lym-
phoid organs [Efroni et al. 2007], or the emergence of highly spatially-structured im-
mune responses to diseases such as tuberculosis [Ray et al. 2009]. There are, however,
examples of literature employing well-mixed space within the agent-based paradigm
[Garrett et al. 2007].

A variety of spatial representations may be found in the literature. Lattice grid
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representations, where space is discretized, are common, and both two dimensional
and three dimensional representations have been used [Segovia-Juarez et al. 2004,
Bogle & Dunbar 2008]. Continuous spatial representation has also found application
in the modelling literature [Jacob et al. 2004]. Lattice grid representations do not offer
the same granularity as continuous space, but are less computationally demanding;
realistic simulation of cells in continuous space requires computationally expensive col-
lision detection, whereas in lattice grid representations, the number of cells that may
occupy a grid space can be limited, and determining the cells that lie within one cell’s
neighbourhood is trivial [Bogle & Dunbar 2010]. Ongoing research is seeking to de-
velop algorithms providing cellular movement in a three dimensional lattice grid that
replicates cell motility observed in the real-world [Bogle & Dunbar 2008].

A downside to the agent-based approach is the considerable computational resource
required to execute realistic numbers of agents, or at least the numbers required for
particular emergent properties to emerge [Bauer et al. 2009]. Time in agent-based sys-
tems is typically discretised, and in each time step a large number of entities must
interact with the environment and each other, and then update their states, which
can be computationally demanding. In response to this demand, a number of tools
and programming languages are being developed that harness the recent technological
advances in multi-core processors and networked clusters of machines for performing
large-scale computation. One such example is the occam-7 process-oriented program-
ming language, being developed within the CoSMoS project [Welch & Barnes 2005].
Agents are represented as processes that have their own thread of execution; whereas
a sequential language such as Java? might be constrained to using a single process to
compute all agents at each time step, agents in occam-m may be computed in parallel
on multiple processor cores, making use of sophisticated message passing techniques to
communicate with one another [Andrews et al. 2008b]. Language technologies and pro-
gram usage patterns to facilitate the execution of occam-7 simulations on clusters are
being developed, which include, for example, how to implement and manage discrete
spatial representations in a manner that minimises the overhead of processes having to
communicate across a traditional LAN network [Sampson et al. 2009].

Another criticism raised against the agent-based paradigm concerns its documen-
tation [Bauer et al. 2009]. Whereas the equations underpinning ODE based systems
can be documented in a concise, unambiguous manner, agent-based simulations con-
sist of many lines of computer code written in any number of programming languages.
However, Bauer et al’s criticism might be better directed at the manner in which
agent-based paradigm is practiced, than at the paradigm itself. Whist discerning the
exact dynamics of an agent-based system by unravelling its code is a formidable task,
several groups of investigators are making use of diagrammatic modelling languages
in expressing the dynamics of their systems. The Harel & Cohen group employ stat-
echarts in the specification of agent-based systems, and generate the simulation code
directly from these diagrams [Kam et al. 2001]. [Andrews et al. 2010] has argued for
the underpinning of simulation activities with rigorous modelling activities, not for the
purpose of automated code generation, but for arguing that simulations are appropri-
ate representations of their target systems and for transparency of simulation-based
scientific investigation.

A purported benefit of the agent-based modelling paradigm over mathematical ap-
proaches lies in its intuitive nature. The modelling languages used to express agent-
based systems are, for many experimentalists and clinicians, more approachable than

The Java programming language specification is maintained by Sun Microsystems,
[Gosling et al. 2005].
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ODEs and readily engages them in the modelling process [Bauer et al. 2009]. Its per-
ceived parallels with the manner in which immunologists reason about the immune sys-
tem has lead to the promotion of the unified modelling language® (UML) as a tool for
the expression of agent-based simulation behaviours [Bersini 2006]. Indeed, Harel stat-
echarts, on which UML state machine diagrams are based, was originally put forward
for the modelling of complex systems [Harel 1987], and their similarity with the way
that biologists reason about biological systems has been noted [Cohen & Harel 2007].
UML is a collection of diagrammatic notations originally intended for the specification
of software systems. It is frequently used to specify systems to be implemented in lan-
guages of the object-oriented paradigm. Object-orientation, where system components
are represented as discrete entities responsible for maintaining their own state, shares
many parallels with the agent-based philosophy.

3.2.3 Hybrid techniques

Hybrid modelling and simulation approaches attempt to incorporate elements of both
mathematical and computational paradigms, in an effort to find a balance between
computational resource and the level of granularity required for a particular simulation
domain.

An illustrative example is found in the stage-structured models of
[Chao et al. 2004b, Chao et al. 2004a], wherein agent life cycles are divided into
stages, and all individuals in a particular stage are assumed to be identical. A single
integer indicates the number of entities associated with each stage [Chao et al. 2004b).
By using discrete, rather than real-valued, variables to represent population sizes, the
approach avoids the undesirable artifacts associated with ODEs when populations
sizes approach zero. The model does not explicitly represent space, and as such is
considerably more computationally lightweight than a typical agent-based system.
Probabilities dictating the transition of individuals between stages allows this approach
to capture an element of stochasticity.

A popular hybrid approach entails the representation of cells as discrete agents,
and lower-level molecules, such as cytokines, as continuous entities. [Ray et al. 2009]
make use of a two dimensional lattice grid, wherein cells are able to traverse between
neighbouring locations. Molecular diffusion, on the other hand, is modelled through
partial differential equations. Representing a different hybrid approach, the CyCells
simulation employs three dimensional representation of space, in which cells are repre-
sented as agents that move around continuous-space, whereas cytokines diffuse between
locations on a lattice [Warrender et al. 2006].

3.3 Integration of wet-lab and in silico techniques

The present section reviews a selection of literature that makes use of modelling and
simulation techniques to explore immunology. Special focus is given to the manner
in which these works complement real-world experimental techniques in advancing the
field of immunology.

For over a decade professors David Harel (a computer scientist) and Irun Cohen
(an immunologist) have collaborated on modelling and simulating biological systems,
in particular the immune system. Their collaboration has culminated in an agent-
based technology, called Reactive Animation, for specifying and implementing system

Swww.uml.org, [Rumbaugh et al. 2005].
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behaviours, and providing a visual interface to the system that permits real-time manip-
ulation of the underlying simulation [Efroni et al. 2005]. Visualisation is implemented
using Adobe Flash?, and the simulation engine is specified using Harel statecharts
[Harel 1987], which are executed in a software package called Rhapsody.

Reactive animation has been used to simulate the development of T cells in the
thymus [Efroni et al. 2003], focussing on the molecules and cytokines that dictate the
movement of cells around this highly structured organ. The simulation is constructed
in a bottom-up fashion, acquiring data from around 300 publications and consolidating
them into one simulation. By performing in silico knockout experiments the authors
have made several predictions concerning the molecular basis, and the role of competi-
tion between cells, in key processes involved in T cell development [Efroni et al. 2007].
Two of the predictions to arise from this simulation work have been experimentally
verified [Efroni et al. 2005].

A second example line of research that makes use of reactive animation technology
focuses on the lymph node, again following the group’s bottom-up approach to simula-
tion construction and parameterization [Swerdlin et al. 2008]. The simulation is used
to examine the role of lymph node size and antigen quantity on the number of plasma
and memory B cells produced following the generation of the immune response.

The published work on reactive animation places a great deal of emphasis on visu-
alisation, which both represents what is happening in the simulation, and allows the
user to manipulate the simulation in real time. Users are able to affect behavioural
changes in individual cells, or choose between different hypotheses governing cellular
behaviour which influence entire populations. Users can then observe the higher-level
effects of different hypotheses governing cellular behaviour, and as such can evaluate
the high-level implications of different behavioural hypotheses. The strength of the
reactive animation approach lies in its consolidation of large quantities of experimental
data, and the ability to visualise it; the authors have argued that visualisation of sim-
ulations is key to engaging the minds of wet-lab researchers and gaining an intuition
of system operation [Cohen 2007a).

Chao et al. employ their stage structured model of CD8Tc responses to antigen
to investigate the effects of antigen kinetics on the pool of memory T cells produced
[Chao et al. 2004a]. The authors conclude that non-replicating antigen (as might be
administered in vaccinations) does not produce as wide a variety of antigen specificities
in the resultant memory T cell population as does replicating antigen. Whilst the
administration of replicating and non-replicating antigen could be accomplished in
vivo, analysis of the entire repertoire of resultant antigen-specific memory cells could
not.

In further investigation, [Chao et al. 2005] create a novel computational model of
the T cell selection processes that occurs in the thymus that prevents large quantities of
potentially self-reactive cells from entering the periphery. Their computational model
represents TCRs, MHC molecules and peptides as strings, and simulates the selection
process by deleting randomly generated TCRs on the basis of their ability to react to
a set of other strings comprising the MHC:peptide complexes of the host. The authors
conclude that the range of MHC:foreign-peptide complexes that can activate a T cell
is related to the T cell’s affinity for the MHC complex, and that this phenomenon may
benefit the immune system in efficiently covering the large space of potential peptides
with limited T cells. Conclusions are drawn on the basis of simple experiments which
would nonetheless be highly challenging to conduct in the wet-lab.

4Previously Macromedia Flash. It is a multimedia platform for use on web-pages.
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Using a hybrid two-dimensional lattice grid simulation, [Ray et al. 2009] build on
previous work ([Segovia-Juarez et al. 2004]) investigating the immune response to my-
cobacterium tuberculosis (TB), an infectious disease that kills more people per year
than any other. The authors investigate the complex role of the cytokine TNF-« in
the immune response, and its success in clearing the bacteria. TNF-« is a highly
pleiotropic substance, having a wide range of effects on various cell populations. The
authors conduct a series of novel and intricate in silico experiments that annul partic-
ular effects of this cytokine on particular cell populations, whilst leaving other effects
in place. Such experimentation cannot be performed in vivo, where at best researchers
can knock out the genes encoding TNF-a or its receptors, thereby having wide ranging
effects on a large number of cell populations. The authors go on to conclude that it is
the bacteria, rather than the cytokine, that is the prime driver of granuloma® structure
by performing another in silico experiment that cannot be conducted in the wet-lab:
it is not possible to separate the effects of bacterial number and TNF-a. However the
separation is relatively trivial in silico; the authors permit the physiological progression
of the immune response, and then artificially fix the number of bacteria in the system
at a certain point during the response, thereby separating the relationship between
bacterial number and TNF-« secretion.

Simulation has been used to extrapolate beyond the limitations of wet-lab tech-
nology used to investigate interactions between T cells and DCs in the lymph node
[Linderman et al. 2010]. Two-photon microscopy is a technique that allows imaging of
living tissue, however it can only observe areas of around a square millimeter, and for
time frames of no more than a few hours. The authors extrapolate beyond the limita-
tions of wet-lab technology, to the level of an entire lymph node. They investigate the
relationships between the frequency of particular antigen-specific T cells amongst the
total population, the percentage of total DCs in the lymph node capable of priming T
cells, and the expression levels of MHC:peptide complexes by those DCs. Their findings
indicate that caution must be excised when interpreting wet-lab data using two-photon
microscopy, where researchers typically artificially raise the number of T cells and DCs
in the lymph node during an experiment. The authors go on to reflect upon the se-
lective pressure on pathogens to evolve means of interfering with the processes that
lead to T cell priming, and use their simulation to investigate the potential effects of
manipulating particular combinations of processes. Once more, these experiments can
not be engineered in the real-world system.

A second example of simulation used to extrapolate beyond the limitations of wet-
lab experimental techniques arises from the Chakraborty lab, who do so upon wet-lab
data in creating an agent-based simulation of T cell-dendritic cell (DC) interactions
[Zheng et al. 2008, Henrickson et al. 2008]. The simulation work is closely tied to ex-
perimental work, and the synergy of the two approaches allowed researchers to investi-
gate the nature in which DC density in the lymph node, and the quantity and duration
of MHC:peptide presentation on DCs impact T cell motility and activation. Collec-
tively, the authors conclude that there is compelling evidence that T cells integrate
signals from multiple DC interactions before entering proliferation.

There is a considerable body of work examining various aspects of HIV infection
dynamics through ODE modelling approaches. In an effort to reconcile seemingly in-
consistent wet-lab data, [Boer et al. 2010] investigate HIV viral production and clear-
ance rates in different host organs. The authors conclude that the majority of virions

5A granuloma is a specialised immune structure that forms through the aggregation of immune
system cells in response to intra-cellular parasites, with the purpose of containing and combatting the
invaders.
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are cleared in the lymphoid tissues, with very little exchange of virion from lymphoid
tissues back into the blood.

The cytotoxic CD8 T cell (CTL) response is known to be influential in the im-
munopathogenesis of HIV, however the mechanisms through which these cells operate
in this disease are unclear. Modelling of CD8 T cell depletion experiments has re-
vealed that these cells combat HIV infection through non-cytotoxic means; CD8 T
cell depletion has a negligible effect on infected cell lifespan [Klatt et al. 2010]. The
authors hypothesise CTLs may operate through non-cytotoxic mechanisms such as
production of factors that inhibit viral replication or entry into target cells. Viral es-
cape from the CTL response through mutation has also received modelling attention
[Ganusov et al. 2011]. Escape occurs at a higher rate during early acute infection, re-
ducing during the later stages of chronic infection. A number of possible explanations
emerge: competition for resource amongst a number of CTL responses that each target
a particular virus variant results in reduced magnitudes of response and hence less pres-
sure to escape through mutation; the broader CTL response also reduces the number
of functional mutations that are possible; and as particular HIV variants become dom-
inant, escaping mutations that result in reduced fitness can fail to become established.
With respect to treatment design, the authors conclude that provoking 5 equal sized
CTL responses early during infection could eradicate it.

Modelling has been applied to understand the effect of various drugs on patients,
and how HIV reacts to their administration. [Perelson et al. 1996] fit a model of unin-
fected and infected cells, and viral load in the blood to patient data following adminis-
tration of ritonavir, a protease inhibitor that prevents the HIV virus from replicating.
The authors derive values for the average lifespan of infected cells, the rate at which
new virions are created across the entire host, and the average time required for a
single virion to infect another cell and in turn start generating new virions. These
values cannot be discerened through purely wet-lab techniques, owing to problems in
observing at the single-cell level or across the entire population of infected host cells.
ODE modelling has also examined the development of resistant HIV strains to a second
anti-retroviral drug, enfuvirtide, a drug designed to interfere with the ability of HIV
virions to enter host cells [Vaidya et al. 2010]. The development of resistant strains
entails that the drug is unsuccessful with respect to arresting HIV infection. How-
ever, the authors demonstrate that continued treatment may have clinical benefits,
as resistant strains are less fit. Although the viral load in the blood plasma remains
unchanged, continued treatment can result in raised CD4Th cell levels, constituting
a less compromised immune system. A sophisticated framework capable of modelling
the development of, and competition between, different strains of HIV within a single
host, and both the T and B cell responses has been developed [Bagnoli et al. 2006]. It
has been used to examine the effects of three anti-retroviral therapies, HAART, mar-
aviroc and zinc-finger nucleases, accounting for a particular common mutation in HIV
that correlates with an expedited transition to AIDS [Sorathiya et al. 2009]. Of the
three drugs, only zinc-finger nucleases gene therapy is found to interfere with this HIV
phenotype switch in a clinically beneficial manner.

The HIV case studies highlighted above demonstrate a powerful integration of ODE
population-level modelling approaches with wet-lab research. ODE approaches capture
processes and events within the system as high-level relationships, without necessarily
indicating their low-level molecular bases. However, they allow for the inference of rates
and quantities that could not otherwise be measured in the wet-lab. This information
can inform and guide the development of treatments, which can themselves be modelled
using ODEs to predict their effects and identify best treatment strategies. The practice
of fitting ODE models to available wet-lab data also facilitates a powerful form of high-
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level hypothesis testing, as demonstrated by [Wu et al. 2011]. The authors examine
the primary CTL response to influenza infection, and compare different models where
the CTL response is driven by either the amount of virus in the system or the number
of antigen-presenting APCs available. Individually fitting these different models to the
available wet-lab data, and comparing their quality of fit indicates which hypothesised
mechanism best fits the data. In this case, the latter model provided a better fit, and
the authors conclude that the immune response is limited by antigen presentation by
APCs, rather than the availability of virions in the system.

3.4 Previous work on modelling EAE

The only known work on modelling and simulating EAE to date is that of
[Borghans et al. 1998]. The authors present a highly abstract ODE model of EAE,
encompassing two variables: one representing the number of autoimmune T cells, the
other representing the number of regulatory T cells®. The ODE model is used to in-
vestigate the phenomenon of T cell vaccination (TCV), a form of adoptive transfer
intervention wherein activated auto-reactive T cells are taken from one experimental
animal and administered into the other. If this is performed with either normal or
attenuated auto-reactive T cells, the recipient animal becomes resistant to subsequent
attempts to induce autoimmunity in it [Ben-Nun et al. 1981].

Two steady states, in terms of T cell population sizes, are identified in this system.
The first describes the case of zero auto-reactive cells, and zero regulatory cells. The
second reflects a balance reached between slowly proliferating auto-reactive T cells,
which fuel the slow proliferation of regulatory T cells, which in turn prevent the further
expansion of auto-reactive T cell number. The authors demonstrate that vaccination
with normal auto-reactive T cells can bring the system from the default steady state
of no cells to the balance state. If the dose of auto-reactive T cells is sufficiently large,
then transient autoimmune symptoms may be experienced whilst the regulatory T cell
population expands to sufficient number to reduce the auto-reactive T cell population.
Hereafter, TCV with large numbers of normal auto-reactive T cells causes perturbation
of the system, but not sufficiently so that autoimmune symptoms arise; the system is
immune to further attempts to induce autoimmunity.

Using their model, [Borghans et al. 1998] predict that TCV with attenuated au-
toimmune cells will convey only transient protection from autoimmunity. This is be-
cause TCV induces regulatory T cells, but does not produce additional auto-reactive
T cells since attenuated T cells cannot proliferate. TCV with normal auto-reactive T
cells, however, switches the system to the balanced steady state, conferring long term
protection against autoimmunity. The authors extend this prediction as a potentially
verifiable wet-lab experiment.

The authors go on to demonstrate how the remitting and relapsing form of au-
toimmunity observed in many human cases of autoimmune disease may be explained
through auto-reactive and regulatory T cells failing to reach the balanced steady state.
Instead, these cell populations oscillate in number: expansion of auto-reactive T cells
leads to expansion of regulatory T cells, which then aggressively reduce auto-reactive T
cell number, which starves the regulatory T cell population of the simulation required
to maintain their number, which then permits the further expansion of auto-reactive T
cells, and so the cycle continues. This behaviour could be realised in their ODE model

5CD4Treg and CD8Treg cells have been abstracted into a single entity. No other cells in the system
are explicitly represented.
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by particular manipulation of parameters, namely, increasing the ability of regulatory
T cells to abrogate the auto-reactive T cell population.

3.5 Methodologies and building confidence in simulation

“Because extrapolation of results to situations outside the range of exper-
iment is fraught with error, supplementation of experimental results with
the in silico simulations is useful.” [Linderman et al. 2010]

This quote is taken from [Linderman et al. 2010], referring to their simulation-borne
finding that artificially raising the number of T cells and DCs when performing two-
photon microscopy experiments in the wet-lab can substantially perturb the observed
system away from its physiological behaviour. However, we suggest here that exploring
natural systems through simulation is just as big an extrapolation, if not more so, than
the wet-lab convention that the authors refer to. This section explores the issue of
establishing confidence in the results produced by immune system simulations, and the
manner in which the literature has addressed it.

The benefits that modelling and simulation techniques can bring to the field of im-
munology are argued in a wide variety of prominent journal publications, for example
[Forrest & Beauchemin 2007, Germain et al. 2011, Chakraborty & Das 2010]. An in-
creasing number of journal publications report the use of computational methods along
side traditional techniques in deriving their results [Kleinstein 2008]. Yet despite this,
very few authors address, or even acknowledge, the issue of correctly interpreting sim-
ulation results in terms of the original domain. This is an important issue that requires
address within the field, considering that an incorrect or inappropriate simulation might
hold as much potential to mislead as it does to clarify.

Models and simulations of the immune system are, by necessity, abstract repre-
sentations of the target systems. It is computationally and conceptually intractable
to represent every aspect of the real world immune system, too little is understood
of much of the field. Typically, a small subset of the host’s cells are represented in a
simulation, and at a substantially reduced number than that which engage in the real
system’s immune response. Entities in a simulation may be labelled ‘T cells’ or ‘APCs’,
but they in fact represent a much wider set of real-world cells: is the ‘T” cell a Thl
cell, a Th2 cell, a Tc cell, or any number of other T cell subsets that are continually
discovered, and at which stage of its life cycle? The entities which comprise simula-
tions do not represent real-world cells in full, but rather an amalgamation of real-world
concepts, collectively abstracted to a level that is often arbitrarily determined. These
abstractions are intended to be representative of the real-world phenomena being ob-
served, and in doing so, the abstract entities must compensate for the activities of
real-world components that are not explicitly represented in the simulation. It follows
that parameter values do not translate directly from one domain to another; an im-
munologist may establish the lifespan of an effector CD8Tc cell, but this may not hold
across all T cell subtypes. Furthermore, if the immunological observation was made,
for example, in vitro by extracting such cells from an experimental animal, and placing
them in the presence of APCs to prevent death by neglect, then the figures may still
fail to exactly represent the lifespan of CD8Tc cells in vivo where they are subject to an
abundance of regulatory mechanisms not present in the petri-dish. At best, parameter
values acquired in the real immunological domain should be considered guidelines for
their corresponding values in simulation, not exact figures.

These factors all impact on how representative a simulation is of its target do-
main. If a simulation is being used to gain insight into an immunological phenomenon,
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then the conceptual separation between the simulation and the target domain must be
considered when interpreting and communicating results [Polack 2010]. Results from
simulation must be appropriately framed in the real domain, avoiding conclusions about
the real-system beyond what the simulation can truly attest to. The issue of establish-
ing confidence in simulation results is an open question, subject to ongoing research in
the wider community, and consideration in this thesis. It is also not a Boolean prop-
erty; confidence in simulation cannot be established absolutely, it is intimately related
to the simulation’s purpose, and the experimentation performed upon it. A particular
simulation at a particular level of abstraction may be suitable for investigating partic-
ular issues, but not others. Confidence must be established that a simulation’s results
are genuinely representative of the system that it simulates, given the nature of the
problem that it has been used to investigate.

This section reviews the literature on agent-based simulation of the immune sys-
tem, with a particular focus on the implications of current practice with respect to
establishing confidence in simulation results. Section 3.5.1 considers the issue of pa-
rameterisation, and calibration of simulations against real-world systems. The use of
sensitivity analysis in qualifying the significance of underspecified parameters is consid-
ered in section 3.5.2, which also touches upon the use of these techniques in exploring
simulation behaviours. A popular approach to building confidence in simulation is to
demonstrate the consistency of in silico results with those of real-world experimenta-
tion, which is the focus of section 3.5.3. Section 3.5.4 applies only to stochastic systems,
and examines the use of statistical methods to gain representative results from simula-
tion data. Finally, section 3.5.5 provides an example wherein two simulations of the
same disease have provided contradictory information, re-affirming the present issue of
confidence in simulation, and consolidating the sections that precede it.

3.5.1 Calibration, and the adoption of parameter values

As explored in this section, a widely adopted approach to simulation parameterisa-
tion is to adopt parameters directly from the literature, typically being taken from a
variety of sources; some in vivo, some in vitro, and often from experimentation con-
ducted in different labs using different systems or experimental models (for example,
human versus mouse). Agent-based simulations in particular tend to encompass many
parameters, the biological values of which are not always known. As such, modellers
frequently have to derive these values through other means, typically opting to estimate
the values themselves.

An alternative approach to pure estimation is to calibrate the unknown parameters.
In the context of simulation, calibration is the activity of adjusting parameter values” in
order to align simulation behaviour with that observed in the target system. As such,
parameters for which the corresponding biological data does not exist can be assigned
appropriate values, with some justification for their assignment. Furthermore, the ar-
guments above concerning the abstractive nature of simulations would suggest that all
parameters should be subject to calibration, even if their corresponding biological val-
ues are well known; these parameters can be adjusted to compensate for the activities
of elements of the real-world system that are not explicitly represented in the simula-
tion. If there is a lack of consensus in the immunological data, then calibration can
compensate for this disparity when determining parameter values; the value adopted is

"The calibration technique employed and reported in chapter 5 of this thesis extends beyond ad-
justment of parameter values, and considers adjustment of simulation mechanics also. Such use of
calibration is not reported in any literature reviewed here.
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that which best aligns simulation behaviour with that of the real-world system, given
the abstractions made in the simulation.

Despite the advantages that calibration would seem to bring to the parameterisation
of simulations, it is an activity that is often not acknowledged or reported as having
been performed in the literature. For example, the seminal works performed by the
Cohen & Harel laboratory, in which data is consolidated from a very wide variety
of sources®, do not report to have performed any calibration activities, despite stating
that literature estimates for particular parameters vary by several orders of magnitude®
[Efroni et al. 2003, Efroni et al. 2005, Swerdlin et al. 2008, Efroni et al. 2007].

Where the literature does indicate that calibration has been performed, the details
of which target data the simulation was calibrated against, or even the calibration
procedure itself, are often not reported. To illustrate, [Ray et al. 2009] state that cali-
bration was used in determining the values assigned to some parameter values, but do
not indicate which, or the calibration procedure followed, or the data against which
calibration was performed.

A very recent ODE model of the immune response to tuberculosis infection con-
tradicts these general trends [Marino et al. 2010]. Here, the authors publish the full
details of a sophisticated model fitting algorithm, and the data against which their
model was calibrated. The model itself is tied into the experimental work of one par-
ticular immunology lab, where a series of wet-lab experiments were performed to yield
data against which the mathematical model could be calibrated. Employing data from
only a single lab, thereby ensuring a high level of consistency, is again contrary to the
general trend in the literature of adopting data from a wide variety of sources.

An interesting case in parameter value adoption is found in the agent-based model of
influenza infection, published by [Beauchemin et al. 2005]. The authors report that all
but two of their simulation’s parameter values were adopted directly from another pub-
lication, an ODE model of the same disease ([Bocharov & Romanyukha 1994]), which
is stated to be more complex in representing a much wider variety of cells than the au-
thors’ present simulation. The authors of the ODE model report to have derived these
parameter values through estimation followed by calibration. Hence, Beauchemin et
al. directly adopt parameter values obtained through calibration of a different system,
representing a different set of cells, and which makes fundamentally different assump-
tions concerning spatial representation'?. We suggest that these parameters will not
necessarily translate directly across to a new representation, from ODE to agent-based.
It is noteworthy that, although Beauchemin et al. consider their model to be a suffi-
cient analogue to that of the original ODE model, they report notable differences in
behaviour between the two. A more rigorous process of calibration can aid in trans-
lating parameter values from one domain into another, compensating for differences in
abstraction, and providing a justification for the values that are adopted. A further ex-
ample of immunological simulation work that adopts parameters from other simulations
can be found in [Swerdlin et al. 2008].

It has been argued in this section that calibration can aid in parameterising sim-
ulations, allowing values to be adopted across domains and adjusted to compensate

8300 papers are reported to have been consulted in their simulation of T cell development in the
thymus [Efroni et al. 2005].

9[Swerdlin et al. 2008] cite literature that reports the frequency of B cells specific for a particular
antigen to lie in the range of 1 in 10k to 1 in 1000k.

10Coincidentally, it is Beauchemin who later conducts the comparison of ODE and agent-based
simulations of the same disease in arriving at the conclusion that different spatial representations
can have important impacts on the overall results of simulation, reported above in section 3.2.2
[Beauchemin 2006].
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for abstraction. It is especially useful in assigning suitable values to parameters for
which the biological counterpart is not known. However, returning to the notion that
one may hold varying degrees of confidence in simulation results, assignment of values
to parameters for which the biological analogue is completely unknown is less com-
pelling than the case where some guidelines may be extracted from the literature. The
following section highlights the value of sensitivity analysis in addressing this issue.
Sensitivity analysis techniques can establish which simulation parameters are influen-
tial with respect to its overall behaviour, and which are relatively inconsequential. If
an underspecified parameter is found to have no substantial influence on simulation
behaviour, then it can be argued that there is little cause for concern. If this is not the
case, then the effects of underspecified parameter values aught to be considered when
interpreting and relaying results of in silico experimentation.

3.5.2 Sensitivity analysis

Sensitivity analysis (SA) is an umbrella term for a collection of statistical techniques
that attribute variation in a system’s inputs to variations in its outputs. The techniques
have implications for parameterisation of a simulation, and its exploration. They oper-
ate by varying inputs and correlating the resultant variations in output. One-at-a-time
(OAT) SA techniques perturb only a single system input at a time, whereas in global
analyses all parameters are perturbed simultaneously. If the extent of one simulation
parameter’s influence is dependent on the value held by another, then global techniques
are more likely to reflect this fact than OAT methods [Saltelli et al. 2000].

SA techniques form a powerful basis for exploration of a simulation. Where a param-
eter is found to be highly influential, it may be concluded that the mechanisms or inter-
actions that it parameterizes are important in the simulation’s operation. These results
can be highly relevant when, for instance, using simulation to identify potential targets
in the system for combatting diseases or developing vaccines [Marino et al. 2008].

The techniques are also highly relevant to calibration and exploration of simulations
of the immune system. The application of SA to a simulation’s parameters can reveal
how influential particular parameters are with respect to its higher level behaviours.
This has implications for simulation parameterization, particularly where simulation
parameter values cannot be extracted from the literature, and where estimations or
calibrations are required to assign them appropriate values. If the real-world value
corresponding to a particular simulation parameter is not known, and if SA reveals
that this parameter is of little consequence to overall simulation behaviour, then as-
signing that parameter an estimated or arbitrary value may not impact the accuracy
of simulation results. Conversely, if a parameter is shown to be highly influential to
simulation output, yet the corresponding biological values cannot be ascertained to a
narrow band of values, then a great deal of caution must be exercised when interpreting
simulation results. Although none of the literature surveyed has directly acknowledged
this relationship, it is hinted at in the theoretical work of [Marino et al. 2008], who
note that reducing uncertainty in parameter values can lead to stronger predictions.

SA techniques are well established in particular fields, but have found little ap-
plication in the domain of immunological simulations [Saltelli et al. 2000]. They are
more readily applied to deterministic than they are to stochastic systems. Stochastic
simulations, reviewed in much of this chapter, can require considerable computational
resource when subjected so these analyses. The issue lies in their stochasticity: a de-
terministic system will always yield the same results given the same parameter inputs,
however this is not the case for stochastic systems, where many executions are required
to obtained representative averaged results. Thorough and comprehensive sensitivity
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analysis can require substantial exploration of a system’s parameter space, and if each
point in parameter space requires a large number of executions to obtain representative
results, then the total computational resource required can quickly escalate by orders
of magnitude.

The vast majority of immunological simulation works reviewed in compiling this
chapter do not employ any SA techniques in addressing the issues raised above, an ob-
servation shared by [Marino et al. 2008]. There are however some exceptions, reviewed
here.

In their agent-based investigation of influenza infection, [Beauchemin et al. 2005]
conduct an informal SA of their simulation. Simulation performance is investigated
whilst varying each parameter individually of the others, constituting an OAT ap-
proach. For each parameter in turn one value above and one below the default base-
line value are investigated. These values relate to “their biologically allowed range”
[Beauchemin et al. 2005]. The simulation’s behaviours in each case are plotted and
presented alongside one another. Though this analysis gives an intuitive appreciation
of which aspects of the simulation are influential on its overall performance, there is no
formal comparison between parameter sensitivities.

A second publication to employ a similar informal sensitivity analysis is
[Zheng et al. 2008]. Here the authors investigate the quantitative difference in sim-
ulation behaviour that arises from assigning parameters alternative values in an OAT
approach. The values selected are seemingly arbitrarily determined. The focus of
the analysis, in addition to providing some informal exploration of the simulation, is
to demonstrate that simulation results from which the authors draw conclusions are
stable under these variations in parameter values.

A more structured and comprehensive sensitivity analysis is applied to the work of
[Ray et al. 2009], who employ a global SA technique in separating and understanding
how several distinct effects that the cytokine TNF-a has on different cell populations
contributes to the progression of the immune response to TB. A purely conventional use
of this technique would attribute correlation coefficients to the influence of individual
parameters to system outputs, however in the authors’ novel application of this tech-
nique, the correlations with system output at various points during simulation time are
determined. In this manner the authors identify that certain parameters, and hence
mechanisms in the system, have effects that drastically reverse during the course of
the immune response. In a more recent ODE modelling publication, authors based at
the same lab again use SA to explore the role of various immune factors in granuloma
development in response to TB [Marino et al. 2010]. However, in neither case do the
authors consider parameter sensitivities in the context of the biological certainty un-
derpinning the values they are assigned when interpreting simulation results into the
original domain.

A highly novel method for using SA to explore behaviours across different scales
represented in the simulation is provided by [Marino et al. 2008]. The authors suggest
applications where, for example, one might examine how the number of T cells leaving
the lymph node affects the bacterial load present in the lung. Hence, the authors
highlight how the inputs to SA need not be simulation parameters, but may be emergent
properties within the simulation.

3.5.3 Verifying simulation predictions to build confidence

A popular approach to establishing confidence in simulation results in the literature
is to demonstrate that the simulation’s behaviour is consistent with that of the target
system under different experimental conditions. There are numerous examples to be
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found in the literature where a model or simulation has been constructed, after which
its behaviour has been contrasted with that observed in real-world systems, a selection
of examples of which are reviewed below. As noted above, confidence in simulation
is not a Boolean all-or-nothing property. It is related to the use of the simulation; a
particular simulation may be accurate with respect to certain classes of experiment,
but not others. Demonstrating simulation consistency with real-world data can increase
one’s confidence in the system, but the practice is not without its limitations.

Firstly, the contrast between in silico results and real-world data is often subjec-
tively made by the modeller, using no statistical techniques to quantify exactly how well
the two data sets are aligned. Such techniques do exist, for example the sum of squared
differences measure can be used to quantify the proximity between two data sets. Such
a measure has been used outside of computational immunology in assessing the align-
ment of various models of stem cell dynamics with in vivo data [Wath & Lio 2008].
The measure returned by this analysis is highly dependent on the particular data sets
being used, hence making comparisons between different data sets or models is difficult.
However, conventions of best practice and acceptable deviations could be be established
within the field. More applicable examples may be found in the form of statistical tests
such as the t test, or its non-parametric counterparts'', which can quantify the dif-
ference between two distributions and indicate whether it is significant or not. Not
only is it commonplace to subjectively assert the alignment of in silico and real-world
data, but authors frequently do so whilst highlighting areas of divergence between the
two, for example [Beauchemin et al. 2005, Warrender et al. 2006]. Without objective
measures to quantify whether deviations are statistically or scientifically significant or
not, it is difficult to assess their implications.

Secondly, immunology is a field that is rife with inconsistent or contradictory
data, arising from different labs using different experimental models or species of
animal, different experimental techniques, measured by different individuals with
their own subjective dispositions. We argue that comparison of in silico results
against data derived from multiple different sources is less reliable than when with
data from the same source or the same lab. Example works that argue the con-
sistency of in silico results with wet-lab results from a variety of labs include
[Chao et al. 2004b, Swerdlin et al. 2008, Linderman et al. 2010]. Given the contradic-
tory information contained across much of the immunological literature, authors who
select real-world data against which to contrast in silico results only after construct-
ing their simulations might be accused of “cherry picking”. This approach may be
strengthened by either explicitly citing the experiments against which a simulation is
to be contrasted before it is developed, or validating against experiments that are con-
ducted in a single laboratory. In the latter case, the simulation can be tied to the work
of a single lab. Two examples of this latter approach may be found in the literature.
In a relatively unique example, [Marino et al. 2010] perform extensive wet-lab exper-
imentation in order to acquire data necessary for parameterization of their model of
the immune response to TB infection. Though the authors do not cite the benefit of
acquiring data from a single consistent source as their motivation, the strength of their
approach is noted here. A second example of tying simulation work in with wet-lab
experimentation may be found in [Zheng et al. 2008], where simulation behaviour is
frequently contrasted with wet-lab results from a single strand of work (published in
[Henrickson et al. 2008]), and where the final conclusions of the research are based on

"The Vargha-Delaney A test is a non-parametric effect magnitude test, which is intro-
duced in chapter 6 [Vargha & Delaney 2000]. A review of basic statistics can be found in
[Kranzler & Moursund 1999].
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results from both in vivo and in silico study.

A stronger approach to arguing that a simulation is an accurate representation
of the target domain is by generating in silico predictions that are then verified in
the wet-lab. There can be no accusation of cherry-picking experiments: the predic-
tions are inherently linked to the simulation. This approach is advocated as best
practice in a recent review paper [Bauer et al. 2009], and has been accomplished by
[Efroni et al. 2007, Efroni et al. 2005] in their work on T cell maturation in the thy-
mus, where two of the predictions arising from their simulation have since been val-
idated. Omnce more, however, it is noted here that there are criticisms to be raised
against this approach. Wet-lab experiments can be time-consuming and expensive to
conduct. They can require the sacrifice of experimental animals, which in turn require
that experiments be ethically certified. Perhaps most importantly, they require ac-
cess to wet-lab researchers willing to carry out these experiments. The value of this
approach in providing confidence in a simulation is acknowledged, however one might
consider what happens if the prediction does not hold, given the effort required in per-
forming wet-lab experimentation. The modellers would be compelled to rethink and
redesign their systems, after which further predictions may be generated, and wet-lab
researchers may be re-approached. It is not hard to conceive that experimentalists may
grow weary of this process, should it persist. Though this approach certainly has merit
in conducting simulation-based research, it is suggested that a rigorous, comprehensive
simulation development methodology that serves to deliver confidence in simulations as
they are constructed would be highly valuable to the field. Such approaches, however,
do not exist. The CoSMoS project is actively engaged in developing methodologies to
assist in this manner.

3.5.4 Hypothesis evaluation, and acquiring representative results

This final section examining aspects of instilling confidence in in silico results is applica-
ble only to stochastic simulations. As noted above, subsequent executions of stochastic
simulations given the same input parameters can differ in the results that they generate.
When performing in silico experimentation, one hopes to derive results that are gen-
uinely representative of the system, rather than the result of stochasticity. In order to
achieve this, many simulation executions are performed, and the results are averaged.
However, the literature on immunological simulations contains no formal procedure or
convention used to establish the number of simulation executions required to provide
an acceptable level of accuracy in results.

The simulation-based research that originates from the Kirschner laboratory readily
reports the use of averaging techniques applied over multiple simulation executions
in deriving their results [Ray et al. 2009, Linderman et al. 2010]. In their work on
simulating tuberculosis, [Ray et al. 2009] collect either 10 or 15 samples, dependent on
the particular experiment being performed. When calculating simulation behaviours
at various points in parameter space, conducted during their sensitivity analysis, the
authors collect only 4 simulation executions per parameter set'?. In their work on
lymphocyte priming dynamics in the lymph node, [Linderman et al. 2010] collect 10
samples. It is implicit that the authors of these studies consider this level of sampling
sufficient to reduce experimental error for their purposes, however no procedure by

12[Maurino et al. 2008] note that, for this particular global sensitivity analysis technique, a large
number of samples in parameter space can compensate for “moderate” stochasticity in the absence
of any averaging at samples in parameter space, but no relationships are given between degree of

stochasticity and sample size.
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which this has been determined is presented, and intuitively, the numbers of samples
collected seem small.

The Cohen & Harel group’s simulation work, which makes use of their visualisation-
centric ‘reactive animation’ approach, reports no use of statistics to compile
data across multiple runs [Efroni et al. 2007, Efroni et al. 2005, Efroni et al. 2003,
Swerdlin et al. 2008]. The hypotheses that these simulations investigate are expressed
at a coarse granularity of molecular expression; most cells either express particular
molecules, or they do not, and for a few cells a single intermediate level of molecular
expression is also represented. Their literature leads one to conclude that hypothesis
evaluation is performed subjectively by examination of simulation visualisations. If
deviation in simulation behaviour under the different hypotheses investigated in these
works is very large, and consistently so, then this approach can suffice for the authors’
needs. However, were one to investigate effects at finer granularities, varying molecu-
lar expression levels or durations by smaller quantities, then we suggest that a more
rigorous and objective statistical framework would be required.

3.5.5 The need for confidence in simulation results

Assessing the accuracy of a model or simulation’s representation of the immune system
is a critical issue that must be addressed in conducting in silico experimentation. It
has been proposed here that simulations have as much potential to mislead as they
do to clarify and inform. A specific example of this can be found in the works of
[Ray et al. 2009] and [Marino et al. 2010]. Both examples, conducted at the same lab-
oratory, model the immune response to tuberculosis. Ray et al. make use of a spatially
explicit two dimensional agent-based representation, and model a small section of the
lung, whereas Marino et al. make use of a large ODE system that models both the
lung and a lymph node. Ray et al. demonstrate a major role for bacterial num-
ber in determining the size of granuloma, whereas Marino et al. find that bacterial
number is relatively inconsequential. The inconsistency is noted in the later work of
[Marino et al. 2010], who highlight the “importance of using different mathematical
approaches to explore a specific biological question to uncover the effects of different
process that are present in the system”. Had only one of these works been conducted,
researchers may have accepted a potentially incorrect finding, and, if following the
purported benefits that modelling and simulation bring to immunological research, de-
signed further experimentation around this fact. We suggest that the discrepancy in
the findings points to the pressing requirement for reliable and comprehensive valida-
tion techniques in creating immune system simulations. Could better methodologies
for the construction and exploitation of simulation, and rigorous statistical comparison
against established wet-lab data point to inappropriate abstractions or inadequate pa-
rameterization before in silico results are published to the wider community? At the
very least, could such techniques indicate the degree to which simulation-based results
are able to accurately represent the target domain?

To illustrate, [Marino et al. 2010] make an unusual assumption in not explicitly
representing bacterial load in their ODE system. Rather, time series data of bacterial
load in mice has been acquired from wet-lab experimentation, and this data is used as
an input to the ODE system. Hence, the ability of the immune response to combat
infection is not explicitly represented: the simulated immune system actions are not
reflected in bacterial number. The authors have used sensitivity analysis (SA) to explore
the influence of various system components on overall immune response, and have
derived a method to include the time series data in the SA'3. However, where SA alters

131t is this inclusion that has permitted their observation that bacterial number is relatively in-
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a parameter, and hence the influence of a particular immune system component, the
result on the immune response’s ability to combat the pathogen is not realised; pathogen
dynamics continue as they would had the change not been made. As such, the feedbacks
operating through the immune system’s response to changing bacterial number will
not be invoked, and the true wider implications of the parameter perturbation will not
be observed. The authors do not comment on the implications of this assumption,
but it seems likely that it is significant. If so, then the application of discriminatory
validation techniques might highlight this as an inappropriate assumption; we believe
that the establishment of such validation techniques is essential for the progression of
the simulation-assisted immunological research.

Citing various n silico investigations of T cell signalling pathways,
[Chakraborty & Das 2010] divides computational studies into type I and type II
simulations. The former describes simulations which aim to provide quantitative
insight into the system, whereas the second focuses on qualitative contributions, specif-
ically, identifying novel pathways or formulating hypotheses to explain experimental
observations. This thesis argues that, with the issues of simulation abstraction and
underspecified data presented above, quantitative simulations are in even greater need
of firm validation techniques than the qualitative variety. If one hopes to extract actual
hard numbers rather than trends from simulation, then it must be a demonstrably
accurate surrogate for the real-world system.

Though the conceptual separation has not been examined above, the issue of build-
ing confidence in a simulation’s accurate representation of a target system may be
thought of in two parts. Firstly, the mechanics of the simulation must be sufficiently
representative of the target system to replicate its results, ideally under a wide variety
of interventions or experiments. This relates to the entities in the target system, how
they are represented or abstracted, and how they interact with one another. The sec-
ond consideration is parameter values, the values that annotate the mechanisms of the
simulation. For instance, the simulation’s mechanics might dictate that cell B can kill
cell A, and the parameters then dictate the probability of this happening, or how long
is required for it to do so. Calibration and sensitivity analysis present potential strate-
gies for instilling confidence at the level of simulation parameters. The question of a
simulation’s mechanics is more difficult to address. The difficulty in identifying an ap-
propriate level of abstraction, which elements of the domain to include in a simulation,
is noted by [Forrest & Beauchemin 2007]. There exists no guidance in the literature
reviewed here with respect to this aspect of computational immunology. The approach
advocated by [Andrews et al. 2010], reviewed in section 1.1.3 and which this thesis ad-
heres to, is to approach computational immunology in an inter-disciplinary manner.
Through close collaboration, modellers and domain experts can work together to en-
sure that a simulation is a sensible and justified representation of the target system,
and that no obviously inappropriate assumptions are made. This aspect of confidence
in simulation is revisited in the discussion chapter, chapter 8, of this thesis.

The modelling and simulation of EAE reported in this thesis is of the agent-based
paradigm. As such, it permits the investigation of hypotheses at the level of molecular
expression, and examination of spatial behaviours. Many of the above issues of building
confidence in simulation are addressed. The simulation work is aligned with a murine
model of EAE as used in one particular laboratory. As such parameter values are
derived from the experience and knowledge of Dr. Kumar, who heads the lab.

consequential to the number of cells recruited into the immune response, a corollary for granuloma
size.
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3.6 Conclusion

This chapter has reviewed the existing literature on studying the immune system
through the use of computational modelling and simulation techniques. Section 3.2
examines ODE and agent-based modelling paradigms, the two most popular compu-
tational methods employed in the literature. Select examples from the literature that
illustrate exactly how computational methods have complemented wet-lab research
have been explored in section 3.3. The only known work on modelling EAE is reviewed
in section 3.4. Section 3.5 explores the separation between models and simulations,
and the real-world immune system. It motivates the need to establish confidence that
simulation results are representative of their target domains, and examines the manner
in which the literature addresses this issue. Shortcomings are noted, and the work of
this thesis in addressing them is motivated.

The next chapter details the construction of a domain model of EAE, the first stage
in the CoSMoS process.
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Chapter 4

Domain Model of Experimental
Autoimmune Encephalomyelitis

The first stage of the CoSMoS process is the creation of a domain model that captures
a comprehensive understanding of the domain [Andrews et al. 2010]. The domain is
EAE, as detailed in chapter 2. This chapter serves two purposes: section 4.2 presents
the latest iteration of the EAE domain model, largely expressed using the unified
modelling language (UML)! [Rumbaugh et al. 2005]; and section 4.3 assesses the ability
of UML to capture this complex immunological domain. Firstly, section 4.1 expands
on the motivation for creating and maintaining a domain model, and the use of UML
in doing so. Section 4.4 concludes the chapter. The work in this chapter contributes to
the thesis aim by directly addressing research objective 1, exploring the role of domain
modelling in the EAE case study.

4.1 Goal and motivation

The present chapter serves two purposes, the presentation of a domain model of EAE
expressed using the unified modelling language (UML) [Rumbaugh et al. 2005], and an
assessment of the strengths and weaknesses of UML in expressing this domain. The
domain model presented in this chapter represents a key component in the CoSMoS
process. It serves two purposes: to facilitate the exploration of the domain prior
to the construction of a simulation, and to present a comprehensive and transparent
understanding of the domain that underpins subsequent simulation-based experimental
work.

The nature of the immunological domain dictates that there exist aspects of EAE
that are unknown, or contested, within the literature. Rigorous domain modelling
highlights areas of inconsistency or underspecification, which must be resolved through
making assumptions of the domain. The model presents a medium through which the
modeller can interact with the domain expert, facilitating and directing discussion, and
it constitutes a mutually agreed scope of the domain that the simulation will represent.
The domain model is validated by the domain expert, which helps ensure that domain-
specific understanding that underpins in silico experimentation is reasonable. The

Lwww.uml. org
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demonstration that a simulation is an adequately faithful representation of the original
domain is an open question, and is addressed here through validation of the domain
model by the domain expert.

The second purpose of the domain model is in the facilitation of scientific trans-
parency. In order for one to have confidence that a simulation is a faithful represen-
tation of the real-world domain that it purposes to capture, its origins must be made
explicit. The manner in which various aspects of the real-world domain have been
captured within the simulation, and the assumptions made in doing so, are recorded.
The domain model is a key component in linking simulation work to the real-world
domain. The platform model, presented in the following chapter, provides additional
details pertaining to the manner in which the domain model has been implemented.

The domain modelling process is iterative and ongoing, involving both modeller
and the domain expert, reflecting the changes made to the simulation in facilitating
open-ended investigation of the domain. The present domain model represents its most
recent iteration.

The second half of this chapter provides an assessment of the applicability of the
unified modelling language (UML) to representing a complex immunological domain
such as EAE. The UML is a collection of diagrammatic modelling notations designed
to aid in the specification and construction of software systems. Its notations allow
for a wide range of specification scopes, from high-level system overviews to low-level
focusses on particular system components [Fowler 2004, Rumbaugh et al. 2005]. It
can represent both static and dynamic views of a system. Static views depict the
relationships that components hold with one another, whilst dynamic views express
the collaborations between system components and the changes to their internal states
that influence their behaviours.

The multiple scopes for specifying a system encompassed within the UML has made
it a popular modelling tool, and it finds application outside of the software domain
within which it was conceived [Fowler 2004]. There have been numerous applications of
UML to modelling biological systems, for example, [Garnett et al. 2008, Bersini 2006,
Andrews et al. 2008a] [Sadot et al. 2008, Efroni et al. 2003, Kam et al. 2001]?

The modelling of EAE presented here has provided insight into the strengths and
weakness of the UML in representing various aspects of the this complicated immuno-
logical disease. These observations form principles and practices that can inform others
seeking to model immunological systems. Whilst other graphical notations for express-
ing biological systems exist, none have been accepted as a universal standard by the
wider computational biology community [Le Novere et al. 2009]. It is this lack of stan-
dardisation, and the ambiguities and lack of universal applicability of existing nota-
tion, that has motivated the creation of the systems biology graphical notation (SBGN)
which seeks to achieve universal acceptance [Le Novere et al. 2009]. Despite this, the
SBGN is primarily targeted at biochemical systems.

4.2 Domain model of EAE

This section presents a domain model of EAE, largely expressed using the unified
modelling language (UML). It has been developed based on the literature surveyed in
chapter 2 and personal communication with the domain expert. The model is presented
in a top-down manner, comprising three layers that depict the system at different levels
of abstraction. They are:

2These authors used state charts [Harel 1987] as their modelling medium. State charts are the
basis for the state machine diagrams of UML.
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1. A system-level overview of the domain model. This highly abstract layer details
how the cells of the domain model interact in order to produce system-level
behaviours, and how these behaviours are believed to correspond to phenomena
observed in the real-world domain. This modelling stage does not make use of
any UML notation.

2. Modelling of system perspectives: decompositions of EAE’s complex onset and
recovery. This modelling layer describes in greater detail the cell-level events and
interactions that together constitute system-wide behaviours marking each stage
of disease and recovery. These models are expressed using UML activity and class
diagrams.

3. Cell-level dynamics. This layer represents the lowest-level modelling in the do-
main model, detailing the dynamics of individual entities in the system. UML
state machine diagrams have been used in expressing these models.

Section 4.2.1 presents the top level of modelling. It delineates the scope of the
domain model, and relates it to the real-world domain. Section 4.2.2 presents four per-
spectives of EAE. Lastly, cell-level dynamics are presented in section 4.2.3. Diversions
from the standard UML notation are indicated in the sections that make use of them,
and the standard UML notations are described in appendix section A.1 for reference.

4.2.1 Relationship between real domain and domain model

Figure 4.1 delineates the system of interest, and is termed an expected behaviours di-
agram. It does not conform to any UML notation. The diagram abstractly indicates
those entities of the real domain that are represented in the domain model, how the
interactions between them result in system-wide behaviours, and how these system-
wide behaviours are believed to constitute the phenomena observed in the real domain.
Hence, the figure indicates how the system described in the domain model relates to
the real domain.

There exists substantial quantities of literature on EAE, and various aspects of this
complex disease are independently studied by a wide variety of labs. It is computa-
tionally intractable to represent every aspect of the real-world system in models and
simulations, and as such a subset is investigated. It is not claimed that other aspects of
the system not represented in the domain model are irrelevant, only that those aspects
of the system that are represented are believed to be sufficient for the manifestation of
the phenomena observed in the real domain. Boxes annotated with ‘<<expected>>’
tags represent emergent phenomena that are expected to manifest at the large-scale
from low-level interactions of entities within the system. The entities themselves, and
an abstract indication of their interactions with one another, are represented at the
bottom of the diagram. The remainder of this section details how these domain model
entities relate to cells and molecules found in the real domain.

Experimentation carried out within Kumar’s lab has lead to observations that
catagorise into three distinct phenomena. EAE as resulting from sub-cutaneous im-
munisation with myelin basic protein (MBP), complete Freund’s adjuvant (CFA), and
pertussis toxin (PTx), leads to damage of the central nervous system (CNS). This
leads to paralysis in the subject. Following the induction of EAE, the majority of ex-
perimental animals experience physiological recovery from paralysis; no experimental
intervention is administered in facilitating recovery. Lastly, mice having undergone
recovery from autoimmunity are resistant to subsequent attempts to induce paralysis
with similar immunisation.
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Figure 4.1: An expected behaviours diagram depicting the phenomena observed in the real domain, and the behaviours manifesting from cellular interactions
believed to be responsibly for them.
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It is hypothesised that paralysis following immunisation with MBP, CFA and PTx
is the result of T cell autoimmunity targeting myelin as expressed by cells in the CNS.
Myelin is expressed by a variety of cells, and the domain model abstracts these into a
single cell titled the neuron. It is believed that MBP is phagocytosed by dendritic cells
(DCs) which prompts them to prime MBP-specific T cells. Multiple T cell sub-species
may comprise these populations, including CD4Thl, CD4Th2 and CD4Th173 cells.
The domain model abstracts the actions of CD4Thl and CD4Th17 cells into a single
entity, termed the CD4Thl cell. CD4Thl and CD4Th2 cells suppress the priming of
one another’s populations, largely through the secretion of type 1 and type 2 cytokines.
There are numerous types of cytokine secreted by each cell type, and their effects are
complex. They have been collectively abstracted into two domain model entities, type
1 cytokine, and type 2 cytokine.

Whilst both CD4Thl and CD4Th2 cells gain access to the CNS, CD4Th2 cells
do not contribute to paralysis. Upon infiltrating the CNS, CD4Th1 cells induce the
activation of macrophages and microglia that reside there. Microglia ordinarily reside
in the CNS, and the inflammatory context that follows the infiltration of CD4Thl
cells to the CNS results in the recruitment of macrophages to the site. These various
APCs have been abstracted in the domain model, and are represented as a single
cell type termed the CNS macrophage. The activation of CNS macrophages leads to
the secretion of pro-inflammatory molecules such as TNF-q, nitric oxide, and reactive
oxygen species. The domain model abstracts these molecules into a single entity titled
TNF-a. TNF-« is harmful to neurons, leading to demyelination: the stripping of myelin
from neurons. Neuronal myelin is not explicitly represented in the domain model, which
instead represents damage to neurons as their entering apoptosis.

The spontaneous recovery from paralysis observed in vivo is believed to be the result
of CD8Treg cells inducing apoptosis in MBP-specific CD4Th1 cells. The physiologi-
cal turnover of CD4Thl cells leads to their phagocytosis by DCs, and the subsequent
priming of CD4Treg populations by those DCs. CD4Treg cells license DCs to prime
CD8Treg populations; it has been established that the absence of CD4Treg cells in mice
induced into EAE results in increased paralysis and delayed recovery from autoimmu-
nity [Kumar et al. 1996]. It is believed that the role of these CD4Treg cells is to induce
the expression of Qa-1 in DCs, required for the priming of CD8Treg populations. These
CD8Tregs have been categorised as CD8aa TCRafS regulatory T cells by the Kumar
laboratory, and are simply termed CD8Treg cells in this domain model.

The cell-level events that lead to protection against subsequent attempts to in-
duce EAE are currently unknown. This domain model makes no claim concerning the
manifestation of this phenomenon, and it is not explicitly represented.

The inter-cellular interactions outlined above, and indicated on figure 4.1, are done
so at a very abstract level of detail. The following sections examine how these cellu-
lar behaviours manifest in system-wide emergent behaviours, termed perspectives, in
greater detail. EAE paralysis and its associated recovery are characterised by consider-
able complexity, and to facilitate exploration of how the cellular interactions contribute
to the expected behaviours outlined in figure 4.1 each behaviour is divided into two
perspectives. The resultant four perspectives describe the collective consequences of
cellular interactions, and may be considered as four stages of EAE and its recovery.
They are:

1. The initial establishment of autoimmunity in the CNS following immunisation.

3The role of CD4Th17 cells in EAE has not been explicitly investigated by the Kumar lab, but it
is acknowledged that they likely do mediate autoimmune behaviour in their model. For reference on
CD4Th17 in EAE, see [Zepp et al. 2011].
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2. The self-perpetuation of autoimmunity.
3. The establishment of regulation that results in the apoptosis of CD4Thl cells.

4. The type 2 deviation of autoimmune response that results from regulatory activ-
ity and ultimately leads to the termination of both autoimmune and regulatory
immune responses.

First, however, the spatial abstraction of a real-world experimental animal is de-
tailed.

4.2.1.1 Spatial representation in domain model

CNS \ spleen
effector CD4Th1 any T cell
and CD4Th2 cells
any T cell
mature DCs circulator y J
and apoptotic . ustem y
Tcells any T cell notin an y :
effector or apoptotic any T cell notin an
state effector or apoptotic
state
any T cell any T cell
CLN SLO
mature DCs
periphery

Figure 4.2: The spatial components of the domain model, and the manner in which the cells of
the domain model may migrate between them.

The present domain model abstracts the physical space of a real-world experimental
animal into six compartments, depicted in figure 4.2. The manner in which cells are
able to migrate from compartment to compartment is indicated.

The periphery represents the sub-cutaneous region of the experimental animal where
immunisation with myelin basic protein (MBP), complete Freund’s adjuvant (CFA) and
pertussis toxin (PTx) are administered for the induction of EAE. Immunogenic type
1 polarised DCs expressing MHC-II:MBP peptides migrate from the periphery to the
draining lymph nodes upon maturation. No other cells are considered to enter the
periphery.

The SLO (secondary lymphoid organ) compartment is an abstraction of the lymph
nodes that drain the region of the mouse where immunisation for EAE is administered.
In addition to the DCs that migrate to the SLO following immunisation, this com-
partment is considered to contain a small number of ordinary DCs. Any T cell that
is not in either an effector or apoptotic state can migrate into this compartment from
the circulatory system, and any T cell in any state may migrate from it back into the
circulatory system.

The CNS compartment represents the central nervous system of an experimen-
tal animal. It contains neurons, CNS macrophages, and DCs. Effector CD4Thl and
CDA4Th2 cells are able to migrate into this compartment from the circulatory system,
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however CD4Treg and CD8Treg cells are not. Neurons and CNS macrophages perma-
nently reside in this compartment, and DCs migrate from the CNS to the CLN upon
maturation.

The cervical lymph nodes (CLNs) of an experimental animal are lymph nodes in
the neck that drain the CNS. These are represented in the domain model by the CLN
compartment. It contains a small number of permanently residential DCs, and the ma-
ture DCs that migrate from the CNS compartment. Apoptotic CD4Thl and CD4Th2
cells are able to migrate from the CNS compartment into the CLN. Any T cell that is
not in either an effector or apoptotic state is able to migrate into the CLN from the
circulatory system. Any T cell, in any state, is able to migrate from the CLN into the
circulatory system.

The spleen compartment represents the spleen of an experimental animal. It con-
tains a large number of permanently residential DCs. Any T cell in any state may
enter or leave this compartment via the circulatory system.

The circulatory system compartment is the domain model’s representation of the
circulatory system of an experimental animal. Only T cells may reside in this com-
partment. It is through this compartment that T cells are able to migrate to the
other compartments represented in the domain model, with the exception of a direct
connection from the CNS to the CLN and from the periphery to the SLO.

4.2.2 Modelling perspectives

The following sections depict the manifestation of EAE perspectives, decompositions of
the disease into four stages covering its onset and recovery, from cellular-level events and
interactions. This is accomplished through the use of UML activity and class diagrams.
Only standard UML notation is employed in class diagrams, however several additions
have been made to the standard UML activity diagram notation, as described below.
As explored more fully in section 4.3.3 below, these additions have arisen owing to the
inability of standard UML constructs to satisfactorily represent important concepts in
the domain.

Figure 4.3a depicts the standard state transition of a UML activity diagram. Ac-
tivity diagrams that highlight the order in which activities are undertaken by entities
in the simulation for some outcome to be realized make frequent use of this sequen-
tial relationship. It should however be noted, when interpreting the activity diagrams
in this domain model, that the entity responsible for undertaking some action does
not mecessarily become inactive afterwards, as might be suggested by the sequential
relationship arrow; it may continue to interact with other entities in the system. For
example, a cell A may instill some effect in cell B, which may in turn lead to other
activities taking place. However, cell A has not necessarily terminated, it may go on to
perform other functions that are not depicted on the diagram, but that still contribute
to the perspective being modelled.

A number of concepts relevant to the domain being modelled could not be expressed
using standard UML activity diagram notations. As such, additional notation has been
created to represent these concepts. These are described below.

Figure 4.3b denotes a propagation relationship, conceived to demonstrate that an
entity may perform an action that has some consequence elsewhere, but without wishing
to imply that this activity stops. This relationship is indicated by an arrow originating
from a line that is perpendicular to the boarder of the activity, but does not lie in
contact with it. In the example, activity A leads to activity B. The occurrence of
activity B has consequences represented in activities C and D, which may be considered
as new paths of execution. However, the activity B does not terminate. Consequences
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(a) Sequential relationship. b) Propagating relationships.

(e) ‘Swim lanes’ used to depict compart-
ments where activities occur.

Figure 4.3: The types of relationship used in activity diagrams.

C and D may each occur any number of times whilst activity B is undertaken. New
occurrences of C and D cease once the transit from B to E is made. For example, activity
B might represent a cell in a proliferating state, in which case action C could represent
the creation of a daughter cell. That daughter cell would go on to interact with other
entities in the system, independently of the proliferating cell. Several daughter cells
may be created as a result of proliferation, before the proliferative activity ceases.

Figure 4.3c denotes a relationship that can be interrupted or down-regulated. Ac-
tivity A leads to activity B, however activity C has the consequence of either fully or
partially preventing that transit. For example, activity A could represent an activity
undertaken by a population of cells, and that activity could lead to some consequence
in another population of cells. Activity C may represent the secretion of some molecule
that interferes with the ability of the population represented by A having the stated
consequence on the population represented by B. The interference is not necessarily
absolute, it may be partial. Continuing the example, it may be that as a result of C,
A has a diminished ability to affect B, rather than that the relationship is completely
prevented.

Figure 4.3d depicts a contributory relationship. Activity A leads to a decision,
B, after which either activity D or E will commence. The nature of that decision is
influenced by activity C. C does instigate the decision (A leads to the decision), it
only influences it when it occurs. In the example, the contributory influence of C on
B is shown as being propagative, meaning that C may continue to influence many
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occurrences B, until a sequential transition away from C occurs.

The activities depicted on the activity diagrams that follow are largely cellular
state changes and interactions that take place in particular compartments of the do-
main model. Dotted lines, representing activity diagram ‘swim lanes’, have been used
to segregate groups of activities in accordance to the compartments in which they take
place. This is demonstrated in figure 4.3e, in which activity A takes place in compart-
ment X, and gives rise to activity B taking place in compartment Y.

Activities on the activity diagrams that follow are typically expressed at the level
of a single cell. However, there are in all cases many such cells undergoing similar
processes, and this is indicated in the text that accompanies the diagrams.

Note that some of the perspectives depicted are cyclic in nature, and hence do not
contain end states. Start states have been given for cyclic diagrams in order to facilitate
exploration of the diagram in the text.

The following sections model each of the four perspectives in turn. Section 4.2.2.1
depicts the initial establishment of autoimmunity in the CNS following immunisation.
This leads to the self-perpetuation of autoimmunity, modelled in section 4.2.2.2. The
manner in which the autoimmune response incites the regulatory response is described
in section 4.2.2.3. Lastly, recovery is marked by a type 2 deviation of the autoimmune
response, and this is depicted in section 4.2.2.4.

4.2.2.1 Initial establishment of autoimmunity

This section describes the onset of EAE autoimmunity, detailing the events that lead
from immunisation to the apoptosis of neurons in the CNS. These events are depicted
as an activity diagram in figure 4.4. Note that whilst the figure depicts activities at
the single-cell level, there are in all cases many such cells undergoing similar processes.

EAE is induced in experimental animals through the sub-cutaneous administration
of myelin basic protein (MBP), complete Freund’s adjuvant (CFA), and pertussis toxin
(PTx). MBP is phagocytosed by DCs resident in the periphery where immunisation
occurs, and this leads to their expression of MHC-II:MBP complexes. CFA and PTx are
powerful immunopotentiators, and induce a type 1 polarisation in DCs, prompting them
to upregulate co-stimulatory molecules. Following maturation, each DC will migrate to
the draining lymph nodes, represented in the domain model as the secondary lymphoid
organ (SLO) compartment.

Once in the SLO compartment, type 1 polarised DCs secrete type 1 cytokine. They
come into contact with MBP-specific CD4Th cells, which bind to the MHC-II:MBP
complexes they express. This binding delivers signal 1 to the T cells. The type 1
cytokines secreted by the DC prompts the CD4Th cells to primarily adopt type 1
polarisations, leading to their differentiation into CD4Thl1 cells. Note that the adoption
of either type 1 or type 2 polarisations by CD4Th cells is probabilistic, and not absolute.
Some proportion of the CD4Th population will differentiate into CD4Th2 cells, despite
the secretion of type 1 cytokine by the DCs on which they prime. CD4Th2 cells are
not believed to be of any significant consequence at this early stage of disease onset,
and as such their actions are not explicitly detailed on the diagram. However, their
behaviours are largely identical to that of CD4Th1 cells, as discussed in more detail in
sections 4.2.2.4 and 4.2.3.1 below.

The CD4Thl cells bind with the co-stimulatory molecules expressed by the DCs
on which they prime, and derive signal 2. Receipt of both signals 1 and 2 leads a T
cell to enter its proliferative cycle. During this cycle a CD4Thl cell will divide and
produce a naive daughter cell, a process termed spawning in this domain model. Whilst
in its proliferative cycle, a single CD4Thl cell may produce multiple daughter cells.
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Figure 4.4: UML activity diagram depicting the cellular interactions and events that lead to
neuronal apoptosis in the CNS following immunisation for EAE.

The majority of these naive daughter cells will immediately bind the MHC-II:MBP
complexes expressed by the priming DC, and follow a similar sequence of events as the
parent cell. Those that do not begin priming on the same DC as their parents assume
migratory behaviour.

Once the proliferative cycle is complete, a CD4Thl cell will differentiate into an
effector T cell and will resume migratory behaviour, leaving the SLO compartment.
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These cells will eventually migrate into the CNS compartment. The CNS compartment
is populated with CNS macrophages, some proportion of which express MHC-II:MBP
complexes. This expression is the result of physiological turnover of neurons in the CNS,
which the CNS macrophages residing there will phagocytose. The infiltrating CD4Th1
cells bind with MHC-II:MBP as expressed on these CNS macrophages, and become
locally activated. Local activation prompts CD4Thl cells to secrete type 1 cytokines,
which stimulate CNS macrophages to secrete TNF-a. In sufficient concentration, TNF-
« is harmful to neurons, and leads to their apoptosis.

4.2.2.2 Self-perpetuation of autoimmunity

Following the initial establishment of autoimmunity, a series of events lead to its self-
perpetuation. The key events and interactions between cells that constitute this be-
haviour are presented as an activity diagram in figure 4.5. Due to the self-perpetuating
nature of this autoimmunity the diagram has no end state.

Apoptotic neurons in the CNS compartment are phagocytosed by resident DCs,
and by CNS macrophages. Note that any single apoptotic neuron can only be phago-
cytosed by either a DC or a CNS macrophage; the use of the fork relationship here
represents the requirement for both DCs and CNS macrophages to phagocytose neu-
rons in order for autoimmunity to self-perpetuate. Both DCs and CNS macrophages
present MHC-II:MBP complexes as a result of phagocytosis. The type 1 cytokines se-
creted by CD4Th1 infiltrates in the CNS induce type 1 polarisation in DCs, prompting
their expression of co-stimulatory molecules.

Upon maturation, CNS-resident DCs migrate to the CLN, where they present MHC-
II:MBP to naive and proliferating CD4Th populations, delivering signal 1 to them.
Their type 1 polarisation leads DCs to secrete type 1 cytokine. As a result of this,
proliferating CD4Th cells preferentially adopt type 1 polarisations and differentiate
into CD4Th1 cells. Again, this preferential adoption of type 1 polarisations is not
absolute, even in the presence of DCs secreting type 1 cytokine some CD4Th cells
will adopt CD4Th2 polarisations. CD4Th2 cells play no role in the self-perpetuation
of the autoimmune response, and as such are not indicated on the diagram. The
co-stimulatory molecules expressed by the DCs on which CD4Th cells prime deliver
signal 2 to them, inducing these T cells to enter their proliferation cycles. Proliferating
CDA4Th cells spawn naive daughter cells, many of which are immediately primed on the
same DC as their parent cells. Upon completion of their proliferative cycles, CD4Thl
cells differentiate into effector cells and resume migratory behaviour. This leads them
to infiltrate the CNS compartment.

Effector CD4Th1 cells entering the CNS compartment are locally activated by CNS
macrophages expressing MHC-II:MBP. Following local activation, a CD4Th1 cell se-
cretes type 1 cytokine, which in turn stimulates CNS macrophages to secrete TNF-q.
In sufficient concentration, TNF-« is harmful to neurons, and results in their apop-
totic death. These apoptotic neurons are phagocytosed by CNS-resident DCs and CNS
macrophages. Hence, autoimmunity self-perpetuates.

Figure 4.6 depicts a UML class diagram of the cells and molecules involved in
both the instigation and self-perpetuation of autoimmunity. Immunisation with MBP,
CFA, and PTx results in MBP being phagocytosed by DCs that are induced into
immunogenic* phenotypes. This interaction is modelled such that a single instance of
MBP, CFA and PTx can only have these effects on a single DC, but that any single
DC may engage in this relationship with zero or more instances of MBP, CFA and

4Expressing MHC:peptide complexes in conjunction with co-stimulatory molecules.
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Figure 4.5: UML activity diagram depicting the cellular interactions and events that lead to the
self-perpetuation of autoimmunity following neuronal apoptosis resulting from immunisation for
EAE.

PTx. DCs also derive MBP from the phagocytosis of apoptotic neurons. A single
DC or CNS macrophage may phagocytose zero or more neurons, and a neuron can be
phagocytosed by at most one DC, or one CNS macrophage, but not both. DCs secrete
type 1 cytokines if they are type 1 polarised, however they do not if they are type 2
polarised. As such, any single DC may secrete zero to many type 1 cytokine molecules.
A single instance of a type 1 cytokine molecule is secreted by either a DC or a CD4Thl
cell, but not both. In addition to CFA and PTx, type 1 cytokine can induce a type 1
polarisation in a DC. Many type 1 cytokine molecules are required for this induction,
and since this interaction does not destroy the molecule, a single type 1 molecule may
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Figure 4.6: UML class diagram depicting the relationships between entities of the domain model
involved in the establishment and perpetuation of the autoimmune response.

engage in this relationship with several distinct DCs before it decays, however it may
only do so with a single DC at a time.

DCs that have phagocytosed MBP may present MHC-II:MBP complexes upon mat-
uration. Such DCs are able to prime many CD4Th cells, and as such are capable of
presenting many MHC-II:MBP complexes. Any particular DC may present between
zero and many co-stimulatory molecules, depending on whether expression has been
induced. Perception of either CFA and PTx, or sufficient type 1 cytokine prompts
this expression of co-stimulatory molecules. A co-stimulatory molecule is expressed by
exactly one DC. Co-stimulatory molecules deliver signal 2 to CD4Th cells, and prime
them to proliferate. However, a CD4Th cell is not necessarily a recipient of signal 2 in
its lifespan. Co-stimulatory molecules have been modelled such that a single instance
is sufficient to deliver signal 2 to a T cell. A CD4Th cell is either a recipient of signal
2, or it is not, and it cannot receive the signal more than once. Likewise, MHC-II:MBP
is modelled in such a manner that a single instance is sufficient to deliver signal 1 to
a CD4Th cell. A single instance of MHC-II:MBP is also sufficient to locally activate
a CDA4Th cell. Signal 1 can be delivered to a CD4Th1 cell only once, whereas local
activation may occur multiple times. An MHC-II:MBP molecule is able to engage in
these relationships with only one CD4Th cell at a time. However, it may participate
in many such events with many different CD4Th cells over the course of its existence,
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since CD4Th cells that differentiate into effector cells migrate away from the DC and
allow other cells to bind with it.

Upon receipt of signal 2, a CD4Th cell enters its proliferative cycle, during which
time it may spawn between zero and many daughter cells. A daughter cell has only a
single parent cell which spawned it. If a CD4Th cell perceives sufficient type 1 cytokine
upon receipt of signal 2, then it adopts a CD4Thl polarisation. Many type 1 cytokine
molecules are required for this induction, and since the perception of cytokine molecules
does not result in their destruction, any single molecule may engage in multiple such
relationships. CD4Th1 cells secrete many type 1 cytokine molecules upon being locally
activated. Simultaneous perception of sufficient numbers of type 1 cytokine molecules
can stimulate a CNS macrophage into secreting TNF-«. Only CNS macrophages secrete
this cytokine in this domain model, and as such a TNF-a molecule must have been
secreted by exactly one CNS macrophage. Simultaneous perception of sufficient TNF-«
molecules induces apoptosis in a neuron.

4.2.2.3 Establishment of regulation

The physiological lifecycle of T cells eventually leads all T cells to enter apoptosis,
including MBP-specific CD4Th cells. It is the apoptosis of CD4Th cells that leads to the
instigation of the regulatory T cell response that ameliorates autoimmune activity, as
depicted on figure 4.7. Following their apoptosis, these CD4Th cells are phagocytosed
by DCs. There is no constraint over which compartment a CD4Th cell resides in upon
entering apoptosis, and they may be phagocytosed by any DC. CD4Th cells contain Fr3
and CDR1/2 peptides, which are components of the cell’s T cell receptor (TCR). Upon
phagocytosis of a CD4Th cell, a DC processes these peptides and is able to present
them on MHC complexes. A pro-inflammatory cytokine milieu induces co-stimulatory
molecule expression on a DC.

If the DC resided in the spleen during its immature state, then it remains there
following maturation. Likewise CLN and SLO resident DCs do not migrate elsewhere
upon maturation. If the DC resided in the CNS, then it migrates to the CLN. These
migratory details are not indicated on the figure in the interest of reducing its complex-
ity. Once mature, a DC will express MHC-II:Fr3, which leads to the delivery of signal
1 to naive CD4Treg cells that encounter it. The co-stimulatory molecules expressed
by the DC deliver signal 2 to CD4Treg cells, causing them to enter their proliferative
cycles. During this cycle any single CD4Treg may produce a number of naive CD4Treg
daughter cells, which will either begin priming on the same DC as the parent cell, or
resume migratory activity. Upon completion of its proliferative cycle, a CD4Treg will
differentiate into an effector cell. As an effector cell, binding with MHC-I1:Fr3 on a DC
allows the CD4Treg to license the DC for Qa-1 molecule expression. Hence, the DC on
which the CD4Treg was priming becomes licensed, however an effector CD4Treg may
license any MHC-II:Fr3 expressing DC.

Once licensed for Qa-1 expression, DCs that have phagocytosed CD4Th cells are
able to express Qa-1:CDR1/2 complexes. Naive CD8Treg cells that encounter the
DC may derive signal 1 through binding with these complexes. Signal 2 is de-
rived through binding with co-stimulatory molecules expressed on the DC. As with
CD4Tregs, CD8Tregs enter their proliferative cycles upon receipt of both signals 1 and
2, and produce naive daughter CD8Treg cells during this process. Upon completion
of the proliferative cycle, a CD8Treg will differentiate into an effector cell and resume
migratory activity.

CD4Th1 cells express Qa-1:CDR1/2 for around 8 hours following their differenti-
ation into effector cells. During this period, an effector CD8Treg may bind with the
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Figure 4.7: UML activity diagram depicting the cellular interactions and events that lead to
the instigation and perpetuation of the regulatory immune response.

[ CDA4Th1 cell expresses Qa-1- ]

CDA4Th1 cell, and induce it into apoptosis. Apoptotic CD4Th1 cells, like any apoptotic
CDA4Th cell, may be phagocytosed by a DC which derives Fr3 and CDR1/2 peptides
from it. Both CD4Treg and CD8Treg cells secrete type 1 cytokine following local ac-
tivation, and this contributes to the pro-inflammatory cytokine milieu that induces
DCs into expressing co-stimulatory molecules necessary for the priming of further Treg
populations. Hence, the regulatory immune response perpetuates, as is reflected in the
lack of a terminating state on figure 4.7.

A class diagram facilitated discussion on the relationships between system entities
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Figure 4.8: UML activity diagram depicting the cellular interactions and events that lead to a
type 2 deviation of the immune response.

responsible for the establishment of regulation may be found in appendix section A.2.1.

4.2.2.4 Type 2 deviation of the autoimmune response

This section describes the last of the four stages of EAE and its associated recovery:
the deviation of the autoimmune response in a type 2 direction. Figure 4.8 depicts an
activity diagram showing the cellular interactions and events that lead to the type 2
deviation. Once more the actions depicted here are cyclic, type 2 deviation does not
occur as a single atomic action within the system, but emerges as a gradual shift in
behaviours spanning multiple populations of cells. However, the autoimmune response
does eventually terminate, and hence an end state is indicated.

Immunisation for EAE induces a heavily type 1 response, with CFA and PTx
prompting DCs to adopt a type 1 polarisation which causes priming CD4Th cells to
preferentially adopt a CD4Thl polarisation. As noted above, a DC’s influence on the
polarisation adopted by priming CD4Th cells is not absolute; although the majority of
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CDA4Th cells primed on type 1 DCs adopt CD4Thl1 polarisations, some still differentiate
into CD4Th2 cells. Both CD4Th1 and CD4Th2 cells migrate to the CNS compartment,
where they secrete type 1 and type 2 cytokines respectively. In the early stages of EAE,
CD4Th1 cells outnumber their CD4Th2 counterparts, and as such the CNS cytokine
milieu is composed primarily of type 1 cytokine. In sufficient concentration, type 1
cytokine leads to neuronal apoptosis.

DCs in the CNS phagocytose apoptotic neurons, and upon maturation adopt either
a type 1 or type 2 polarisation, depending on the balance of type 1 and type 2 cy-
tokines in their local vicinity. Likewise, by default a DC will not express co-stimulatory
molecules, these are induced in the presence of sufficient type 1 cytokine. A DC that
expresses both MHC:peptide complexes and co-stimulatory molecules is immunogenic,
and is able to prime T cell populations. Absence of co-stimulatory molecules renders a
DC tolerogenic, in which case it induces anergy in T cells, preventing their proliferation
and differentiation. Immunogenic DCs are either type 1 or type 2 polarising, which
influences the polarisation adopted by the CD4Th cells that they prime.

The physiological turnover of CD4Th cells leads to their phagocytosis by DCs,
and the subsequent priming of CD4Treg and CD8Treg populations. During the ~8
hours immediately following their differentiation into effector cells, CD4Thl cells are
susceptible to regulation, wherein CD8Tregs induce apoptosis in CD4Thl cells. At a
population level this regulatory action serves to reduce the number of CD4Th1 cells that
infiltrate the CNS compartment. CD8Treg cells do not regulate CD4Th2 cells, which
continue to enter the CNS and secrete type 2 cytokine. The reduction in CD4Th1 cells
results in the cytokine milieu in the CNS shifting towards a type 2 dominance. DCs
able to present MBP will adopt type 2 polarisations, and prime predominantly CD4Th2
cells. Once more, this adoption of type 2 polarisations by the CD4Th population is
not absolute, and some CD4Thl cells will continue to be primed, however many of
these will be subject to regulation. As the quantity of CD4Thl cells infiltrating the
CNS reduces, so too does the quantity of type 1 cytokine being secreted there. This
results in a reduction in neuronal apoptosis, and hence a reduction in MBP-presenting
DCs migrating to the CLN. DCs migrating from the CNS to the CLN will fail to
express co-stimulatory molecules, hence becoming tolerogenic and unable to prime T
cell populations.

As the number of CD4Th cells primed in the system reduces, so too does the num-
ber of DCs presenting MHC-II:Fr3, and consequently Qa-1:CDR1/2. The regulatory
immune response terminates alongside the autoimmune response, and experimental
animals recovery from paralysis.

Appendix section A.2.2 presents a UML class diagram-lead discussion on the rela-
tionships between system entities responsible for the type 2 deviation of the immune
response.

4.2.3 Depicting single-entity dynamics

The following sections detail the complete dynamics for the various physical entities
included in this domain model, at the single-entity level. Dynamics are expressed
using standard UML state machine diagram notation. In facilitating the expression of
transition guards, the following symbols have been used:

‘&’: logical conjunction. (A & B) evaluates to true when both A and B are true, and
false otherwise.

‘|’: logical disjunction. (A | B) evaluates to true when either A or B are true, and false
otherwise.
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‘9(condition)’: used to indicate probabilistic events. Will evaluate to true with some
probability.

‘A(condition)’: used to indicate temporal events. Will evaluate to true when some
period of time has elapsed.

Section 4.2.3.1 examines the single-cell dynamics of the various T cells represented
in the domain model. Section 4.2.4 explores the dynamics of dendritic cells and CNS
macrophages, and neurons are the subject of section 4.2.5. Lastly, section 4.2.6 focusses
on the dynamics of MBP and the various cytokines represented in the domain model.

4.2.3.1 T cell dynamics

Figures 4.9, 4.10 and 4.11 depict state machine diagrams of CD4Th, CD4Treg and
CD8Treg cells respectively. The three T cell types represented in the domain model
share many similarities. They commence their life cycles in a naive state, in the circu-
latory system, and assume migratory behaviour. All naive T cells can migrate into the
SLO, the CLN, and the spleen from the circulatory system, and vice versa.

Migratory behaviour continues until a T cell encounters a DC presenting
MHC:peptide complexes for which it is specific. Thereupon the T cell will cease migra-
tory behaviour and bind to the APC. It derives signal 1, leading it to enter a partially
activated state. In the case of CD4Th cells, a polarisation is adopted at this point.
These cells become either CD4Th1 of CD4Th2 cells, depending on the local cytokine
milieu, largely influenced by whether or not the DC secretes type 1 cytokine. A pre-
dominantly type 1 cytokine milieu increases the probability that a CD4Th1 polarisation
be adopted, whereas lack of type 1 cytokine promotes CD4Th2 polarisation.

If the DC to which the T cell binds expresses co-stimulatory molecules, then the
T cell derives signal 2, and enters a proliferative state. Whilst in either a naive or
partially activated state, a T cell may survive some period of time without receiving
signal 1 and then signal 2 before dying of neglect. This is represented on the state
machine diagrams as A(neglect).

T cells remain in a proliferative state for some period of time, represented as
A(effector) before they differentiate into effector cells. Whilst proliferating, a T cell
divides and creates naive daughter cells of the same type, a process termed spawning
in this domain model. The time required for this to occur is represented as A(prolif ).
Daughter T cells are created in the same location as their parents, indicated by the H
state in the state machine diagrams.

Effector T cells detach from the DCs on which they prime, and resume migratory
behaviour. If primed in either the CLN, SLO or spleen compartments, these T cells
re-enter the circulatory system. Effector T cells lack the adhesion molecules required
for them to migrate back into the CLN or SLO compartments, however they may re-
enter the spleen. Effector CD4Thl and CD4Th2 cells are able to migrate into the CNS
compartment, where they remain until they enter apoptosis, upon which they may
migrate into the CLN.

Effector T cells require local activation before they may secrete cytokines. It re-
quires some time following differentiation into an effector cell before a T cell may be
locally activated through TCR:MHC:peptide interaction. TCR:MHC:peptide interac-
tion prior to the elapse of this time, represented by A(localAct), may allow a T cell
to perform some effector function, but not cytokine secretion. In the case of CD4Treg
cells, TCR:MHC-II:Fr3 binding at any point during their effector cycles results in the
CD4Treg cell attempting to license the DC with which it is bound. For CD8Treg cells,
TCR:Qa-1:CDR1/2 binding with a CD4Thl cell results in the induction of apoptosis
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Figure 4.9: State machine diagram depicting the dynamics of CD4Th cells.

in the CD4Thl cell. After A(localAct) has elapsed, TCR:MHC:peptide binding induces
cytokine secretion in effector T cells. CD4Thl, CD4Treg and CD8Treg cells secrete
type 1 cytokine, whereas CD4Th2 cells secrete type 2 cytokine.

As with naive and partially activated T cells, effector T cells must receive stimu-
lation from TCR:MHC:peptide binding regularly to avoid entering apoptosis through
neglect. For those cells that reach locally activated states, effector lifespan is still
limited, and persistent stimulation of this form leads to activation induced cell death
(AICD). Apoptotic T cells are eventually phagocytosed by APCs.
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Figure 4.10: State machine diagram depicting the dynamics of CD4Treg cells.

4.2.4 DC and CNS macrophage dynamics

Dendritic cells are responsible for priming T cell populations. Their dynamics are
depicted on figure 4.12. Dendritic cells begin their existence in an immature state, and
mature some time later, represented by \(maturation).

In an immature state a DC is highly phagocytic, and the capacity to perform
phagocytosis is reduced following the maturation of the cell. DCs may reside in five
compartments in the domain model: the CNS, CLN, SLO, periphery, and the spleen.
If the DC is in any of the CLN, SLO or spleen during their immature lifespan, then
they do not migrate to away from these compartments upon maturation. However,
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Figure 4.11: State machine diagram depicting the dynamics of CD8Treg cells.

upon maturation DCs residing in the CNS or the periphery migrate to the CLN and
the SLO respectively.

For a DC to present MHC:peptide complexes, it must be capable of presenting
both the MHC and peptide components. The peptide components considered in this
domain model are MBP, Fr3 and CDR1/2. MBP is derived from phagocytosis of a
neuron or from direct phagocytosis of MBP following immunisation. Fr3 and CDR1/2
are derived from the TCRs of CD4Th cells. In addition to phagocytosis of such cells,
capacity to present peptides is probabilistic: only a very small proportion of phago-
cytosis events lead to the derivation of presentable peptides. This is represented as
d(derive presentable peptides) on the diagram.
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Figure 4.12: State machine diagram depicting the dynamics of dendritic cells.

A DC is able to express MHC-II molecules upon maturation. Qa-1 molecules can
only be expressed once the DC has been licensed to do so by a CD4Treg cell. By default,
a mature DC does not express co-stimulatory molecules upon maturation. Expression
is induced by the perception of a sufficient concentration of type 1 cytokine, and may
be induced through licensing by either a CD4Th cell or a CD4Treg cell. Co-stimulatory
molecule expression may be induced at any point following maturation.

Upon maturation a DC adopts either a type 1 or type 2 polarisation. Type 1
polarised DCs secrete type 1 cytokine. The decision of which polarisation to adopt is
entirely dependent on the balance of type 1 versus type 2 cytokine in the location of
the DC upon maturation.

DCs expire once their lifespan is exceeded, represented as A(ezpire).
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Figure 4.13: State machine diagram depicting the dynamics of CNS macrophages.

CNS macrophages exist only in the central nervous system (CNS). The only
MHC:peptide complex that they present is MHC-II:MBP, and in a similar manner
to DCs, the presentation requires the phagocytosis of a neuron, and is probabilistic.
Some small proportion of CNS macrophages express MBP immediately, represented
by &(basal expression). This is to reflect the fact that the physiological turnover of
neurons, which is not in itself represented in the domain model, will result in their
phagocytosis by CNS macrophages, and the presentation of MHC-II:MBP complexes.

CNS macrophages exist in immature and mature states. Whilst immature they are
more phagocytic than when mature. Maturation occurs some time into their lifespan,
represented by A(maturation), but may also be induced through perception of a suffi-
cient concentration of type 1 cytokine. Perception of sufficient concentration of type 1
cytokine induces TNF-« secretion in CNS macrophages. Both immature and mature
CNS macrophages are able to express MHC-II molecules.

CNS macrophages do not exist indefinitely, and expire after some period of time,
represented by A(expire).

4.2.5 Neuron dynamics

Neurons reside exclusively in the CNS compartment. Their dynamics are depicted on
figure 4.14. All neurons express MBP. They are alive until perception of sufficient con-
centration of TNF-« induces their apoptotic death. Apoptotic neurons are eventually
phagocytosed by an APC.
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Figure 4.15: State machine diagram depicting the dynamics of myelin basic protein (MBP).

4.2.6 Cytokine and MBP dynamics

Myelin basic protein (MBP) is the substance for which encephalitogenic T cells are
specific; it is integral to autoimmune activity. Type 1 and type 2 cytokines influence a
variety of cellular behaviours that dictate the progression of autoimmunity and recovery.
Although these entities of the domain model do not strictly carry state, state machine
diagrams have been used to depict the system from their perspectives.

MBP dynamics are depicted on figure 4.15. It is introduced to the system through
two means: it is manufactured and expressed by neurons, or it is injected into the
system by an experimenter. Neurons that enter apoptosis are eventually phagocytosed
by an APC. Likewise, MBP residing in extra-cellular space as a result of immunisation
is eventually phagocytosed by an APC.

Once internal to the APC, there is a probability that MBP will be successfully
processed for presentation as MHC-II:MBP complexes. This is represented as d(derive
presentable peptides). If MBP is successfully presented on MHC, then the MBP mole-
cule is destroyed when the APC expires, if it is not, then it is considered to be destroyed
immediately; it is of no further consequence to the system.

Type 1 cytokine, depicted in figure 4.16, is secreted by a variety of cells: CD4Thl
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Figure 4.16: State machine diagram depicting the dynamics of type 1 cytokine, and its influence
on other cells of the domain model.

cells, CD4Treg cells, CD8Treg cells, and dendritic cells (DCs). Once secreted it exists
in extra-cellular space for some period of time before it decays. Whilst in extra-cellular
space, a type 1 cytokine molecule may be perceived by a variety of cells, and may
influence their subsequent behaviours. Note that the induction of behavioural changes
in cells requires the simultaneous perception of multiple cytokine molecules. Perception
of a cytokine molecule by a cell does not destroy the molecule, and it continues to exist
in extra-cellular space after dis-engaging from the cell.

Perception of sufficient type 1 cytokines by a CD4Th cell can result in it adopt-
ing a CD4Thl polarisation, however this adoption is preferential, not absolute. The
probability of a CD4Thl polarisation being adopted is represented as d(type 1). If
type 1 cytokine is perceived as a sufficiently dominant constituent of the local cytokine
milieu, then a maturing DC will adopt a type 1 polarisation. Type 1 cytokine percep-
tion also induces co-stimulatory molecule expression in mature DCs. Lastly, sufficient
concentrations of type 1 cytokine induce TNF-a secretion in CNS macrophages.

The dynamics of type 2 cytokine, and its influence on other cells of the domain
model, are depicted on figure 4.17. The dynamics of type 2 cytokine are identical to
those of type 1 cytokine, with the exception that it is secreted by CD4Th2 cells only.
Its influences, however, differ. It has two influences over cells of the domain model.
When perceived in sufficient concentration, it induces a preference for CD4Th cells to
adopt type 2 polarisations, again this preference is not absolute. It may also induce
type 2 polarisation in DCs if perceived as a sufficiently dominant constituent of the
local cytokine milieu.

TNF-a, figure 4.18, is secreted only by CNS macrophages and exists in the CNS
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Figure 4.17: State machine diagram depicting the dynamics of type 2 cytokine, and its influence
on other cells of the domain model.

t [ secreted by CNS macrophage ]

4 N\

in extra-cellular space in CNS

[ perceived in sufficient

induce apoptosis
concentration by neuron ]

in neuron

not perceived

[decay ]

Figure 4.18: State machine diagram depicting the dynamics of TNF-a, and its influence on
other cells of the domain model.

compartment. When perceived in sufficient concentration it induces apoptosis in neu-
rons.

4.2.7 Temporal and numerical aspects of EAE

The three layers of modelling outlined above describe the cellular interactions and
events that together constitute EAE onset and recovery, but they do not parameterise
these dynamics. Table 4.1 outlines various temporal aspects to EAE. It depicts the
major population-level events that characterise EAE, and the times at which these are
observed to occur in vivo. Also indicated are the times associated with certain cell-level
events. The following items describe probabilistic and numerical details concerning the
cells involved in EAE. These figures are derived through interaction with the domain
expert.

e There exists around %0 the density of DCs in the CNS as exist in the SLO and
CLN compartments.
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e At the peak of the regulatory immune response, there exist around % the number
of CD8Tregs as CD4Tregs.

e There exist around % the number of CNS macrophages in the CNS as neurons.
e A DC is around 7 times the size of a T cell.
e CD4Th1 population expansion following immunisation is around 10 to 50 fold.

e Increase of DCs in the SLO compartment following immunisation is around 2 to
4 fold.

e The probability that the phagocytosis of a cell leads to the successful derivation
and presentation of peptides is only a few percent.

There are a great many other aspects to the present domain model that require
parameterisation, however these details are not known in the domain and can hence
not be specified at this time. They are the subject of calibration activities as reported
in the following chapter.

4.3 Reflection on the use of UML

The present section draws upon the experience of creating the EAE domain model in
analysing the strengths and weaknesses of UML in modelling this complex immunolog-
ical domain.

The analysis commences with section 4.3.1, which examines the benefit of a top-
down approach to creating and documenting the domain model. Section 4.3.2 moti-
vates the address of complexity through the derivation of perspectives of the domain’s
higher-level behaviours, and decomposing them into manageable sub-behaviours that
can be modelled in turn. Section 4.3.3 reflects on the suitability of representing perspec-
tives using activity diagrams, and highlights issues of representing the compounding
concurrency of ever increasing numbers of cells that engage in activities that lead to
the emergence of system-wide behaviours. The use of expanding regions, an activity
diagram notation, in expressing this concurrency is covered in section 4.3.4. UML
sequence diagrams represent another diagrammatic notation for expressing dynamic
interactions between entities, and their suitability for depicting the manifestation of
high-level behaviours from cell-level interactions is considered in section 4.3.5. Sec-
tion 4.3.6 considers the value of modelling perspectives using class diagrams, and notes
that an entity’s history is important when considering the relationships that it may
or may not engage in. In continuation of this, section 4.3.7 considers how the various
temporal factors related to a particular relationship between two entities in the do-
main can lead to ambiguities when that relationship is expressed on a class diagram.
Section 4.3.8 considers the expression of single-entity dynamics using state machine
diagrams.
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4.

Time : Event ;

0 days immunisation with MBP, CFA and PTx in the periphery

3-5 days Detectable proliferation of CD4Thl and CD4Th2 cells in the SLO
5-7 days Detectable infiltration of CD4Thl and CD4Th2 cells in the CNS
10-15 days || Visible paralysis of mouse

10 days Detectable proliferation of CD4Treg and CD8Treg cells in CLN
30 days CDA4Th cells no longer found in CNS

30-40 days || Recovery from EAE

(a) Times at which population-level events occur in EAE. The times given are estimates, not exact

figures.
Event : Time
Duration of Qa-1:CDR1/2 expression on CD4Th1 cells following differentiation into effector cells || 8 hours
Time required for spawning of daughter CD4Th1, CD4Treg and CD8Treg cells 1 day
Time required for spawning of daughter CD4Th2 cell 1.5 day
Time T cell spent in proliferative state 5 days
AICD death occurs in CD4Th1, CD4Treg and CD8Treg effector cells 5 days
AICD death occurs in CD4Th2 effector cells 8 days
Time a naive T cell spends in lymph node 12 hours
Time a naive T cell spends in the spleen 5 hours
Time a naive T cell spends in the circulatory system 30 min

(b) The times associated with cell-level events in EAE. The times given are estimates, not exact figures.

Table 4.1: Temporal aspects to EAE.
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4.3.1 Reflection on the process of creating a domain model

EAE is a highly complex, stochastic and dynamic disease. The system-wide be-
haviours such as paralysis and recovery manifest through large-scale low-level interac-
tions amongst a wide variety of cells spanning several spatial compartments. System-
wide behaviours emerge from the balance of population-level dynamics, and as a result
of the many feedbacks that exist between cell populations: shifts in disease severity can
be either swift or prolonged. The complex nature of this disease renders the task of
deriving and presenting a domain model non-trivial. The top-down modelling approach
reported above was arrived at following a variety of attempts to capture different as-
pects of the domain using different diagrammatic notations. The top-down approach
represents the most successful manner of both exploring the domain in deriving the
model, and presenting it to third parties.

The top-down manner in which the EAE domain model above is presented com-
mences with a high-level system overview before expanding upon particular behaviours
and dynamics. The purpose of constructing and maintaining a domain model is two
fold: to conceptually explore the domain prior to engaging in simulation construction,
and to present a comprehensive and transparent perspective of the domain that un-
derpins the in silico experimentation that follows, such that it be open to scientific
scrutiny. The benefit of adopting a top-down approach to modelling with respect to
each purpose is considered in turn.

Domain modelling is an iterative task, and the model of EAE presented above
represents the current iteration. Construction of the first iterations of the domain
model, based upon domain-specific literature and interaction with the domain expert
was performed in quasi-top-down manner; diagrams were iteratively amended as in-
consistencies arose and additional information from the domain was brought to light.
Nonetheless, a focus on top-down exploration of the system is advocated. The ob-
servation of phenomena in the real-world system, such as mice developing paralysis
and undergoing spontaneous recovery, readily motivates one to construct hypotheses
concerning the manifestation of these phenomena, and eventually design experiments
aimed at confirming or falsifying them. When modelling, appreciation of hypotheses
concerning the manifestation of system-level emergent behaviours arising from cellular
activities and interactions serves to inform and guide the specification of single-entity
level dynamics.

A top-down presentation of a domain model is considered a more intuitive ap-
proach to presenting a comprehensive and transparent perspective of the domain than
a bottom-up presentation. EAE is a highly complex disease, arising from a large range
of interactions between a multitude of cells spanning several spatial compartments.
Inviting the reader to conceptualise system-wide behaviours from single-entity dynam-
ics by reporting them first is believed to be considerably less intuitive than expanding
upon system-wide behaviours by presenting the model in progressively increasing detail.

The top-down approach employed in constructing and presenting the EAE domain
model comprises three levels of modelling:

1. System-level overview of the domain model components, how their interactions
integrate to provide high-level behaviours, and how these high-level behaviours
are believed to contribute to phenomena observable in the real-world domain.
This phase indicates which aspects of the domain are to be incorporated into the
model, since only a subset of the entire real-world domain is represented.

2. Decomposition of disease progression into various perspectives. System-level pat-
terns in EAE disease are identified, termed perspectives, and their hypothesised
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manifestation from cellular-level interactions are explored. This modelling level
entails tackling the complexity of EAE by breaking it into more manageable sub-
sets of behaviour.

3. Specification of single-entity level dynamics. The physical low-level entities of
the system, such as cells and molecules, are considered as individuals and their
behaviours specified.

Level 1 in the EAE domain model was graphically modelled in figure 4.1. It provides
third parties with an immediate overview of the domain being modelled, the cells that
are hypothesised to play a significant role in the real-world phenomena and the system-
level behaviours that result from their interactions. The bottom layer of this diagram
expands upon the behaviours abstractly indicated in the top layer, which indicates how
they tie together to constitute the system being modelled. Note that this diagram does
not conform to any UML notation.

The second level of modelling broaches the complexity of EAE onset and recovery
by deriving several perspectives of disease progression. Experience indicates that the
disease is too complex to capture on a single diagram, and this decomposition is neces-
sary to relate different aspects of the disease to the cellular interactions that comprise
them. The perspectives derived in modelling EAE relate to four stages of disease pro-
gression. Each of these perspectives has been modelled using UML activity and class
diagrams.

The third level of modelling represents the highly stochastic and dynamic low-level
entities of the domain. The cellular events and interactions that lead to the perspec-
tives indicated in the second level of modelling are hypothesised to be the dominant
behavioural patterns and transitions exhibited by cells of the domain; owing to stochas-
ticity, there may be great variation in the behaviours that are actually exhibited by
individual cells. The full range of behaviours that cells and molecules can exhibit are
captured through use of UML state machine diagrams in specifying entity dynamics.

The sections that follow examine the strengths and weaknesses of UML in repre-
senting particular aspects of EAE. The expected behaviours diagram of level 1 is not
considered, since it does not adhere to any UML formalism.

4.3.2 Tackling complexity through perspectives

A primary purpose of the domain model is to convey understanding, and as such there
is a clear motivation to avoid excess complexity on diagrams. The need to separate
aspects of EAE disease progression into subsets of behaviour arose following attempts
to capture the entirety of the disease’s manifestation from single-entity interactions on
a single diagram. This could not be accomplished as the full multi-dimensionality of
EAE cannot be captured on a single two-dimensional diagram.

Figure 4.19 represents an attempt to capture every entity in the domain model
as a class diagram. Relationship cardinalities have been omitted, yet despite this the
diagram is marked with considerable complexity; there are 16 entities represented on
the diagram sharing a total of 35 relationships between then. Each entity is connected
to a mean average of ~4% others, and the DC entity alone is connected to 11 other
entities. Furthermore, many of these relationships are subject to constraints which
have not been graphically depicted. For example, a particular type 1 cytokine molecule
instance can only have resulted from secretion by a single cell: either a DC, CD4Thl,
CD4Treg or CD8Treg. Information of this nature can only be captured as constraints,
of which there are sufficiently many that depicting them all on a single diagram would
render it incomprehensible.
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Figure 4.19: UML class diagram attempting to capture every entity and relationship within
the domain model on a single diagram.

The use of activity diagrams to describe the manifestation of system-level and
emergent behaviours arose after attempting to capture how single-entity interactions
lead to these behaviours as class diagrams. Figure 4.20 depicts an attempt to model
the manifestation of autoimmunity as a class diagram. Depicting emergent proper-
ties of the domain as classes on class diagrams has previously been demonstrated
by [Garnett et al. 2008], where the emergent property was the route through which
molecules flow within the structure of a plant. In the present domain of EAE this
approach of depicting an emergent phenomena such as ‘autoimmunity’ as a class on a
class diagram is deemed inappropriate. An ‘autoimmunity’ cannot be instantiated as
a physical entity, and as such it is unclear what cardinalities should be assigned to the
‘autoimmunity’ end of relationships.

Emergent behaviours within EAE, such as the establishment of autoimmunity in
the CNS or the manner in which regulation results in type 2 deviation of the autoim-
mune response, are instead modelled as high-level behaviours, and termed perspectives.
The manner in which perspectives manifest through low-level cellular interactions are
depicted on activity diagrams. The EAE domain model details four perspectives, which
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Figure 4.20: An example sequence diagram showing the interactions between participants A,
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are derived as various stages of disease onset and recovery. The expected behaviours
diagram of figure 4.1 contains only two high-level behaviours, covering autoimmunity
harming neurons and regulation ameliorating autoimmunity. Each of these ‘expected
behaviours’ is divided into two perspectives; this is in the interest of maintaining the
clarity of the expected behaviours diagram: indicating each of the four perspectives
and how the cells of the system relate to each of them would result in an excessively
cluttered diagram. It is another example of the top-down manner in which EAE is
modelled and presented.

4.3.3 Modelling perspectives as activity diagrams

Each perspective has been modelled as a UML activity diagram, which treats the per-
spective as a higher-level behavioural system property and details how these behaviours
are believed to manifest through cell-level events and interactions.

UML activity diagrams permit any abstract concept to be represented as an activity,
and are thereby highly amenable to depicting the order in which cellular events and
interactions occur in constituting a higher-level behaviour. However, activity diagrams
do not convey the large scale concurrency and stochasticity that exists in the real
domain. The cellular events and interactions depicted on perspective activity diagrams
are mostly expressed at the single-cell level, however for the perspective being modelled
to occur in the real domain requires that a large number of cells engage in the activities
being expressed. Furthermore, activity diagrams should not be interpreted as implying
that all cells exhibit the behaviours indicated, cells are highly stochastic entities, and
different individuals of the same type may experience vastly different paths through
their possible range of dynamics. Manifestation of a particular perspective requires
that sufficiently many, but not necessarily all, cells follow the activities indicated on the
diagrams. Lastly, the cells that do engage in the activities depicted on the diagrams
do not necessarily do so simultaneously, at each point in time there may be many
populations of cells undertaking each of the activities depicted on the diagrams.

Activity diagrams imply a sequential transfer of execution that does not exist in
the real domain where, as noted above, cells act concurrently and will continue to
perform functions after the concept described by an activity has occurred. Some of
these concurrent activities are particularly important to the perspective being modelled,
and as such have lead to the development of the propagating relationship, depicted in
figure 4.3. Similarly, EAE disease and recovery is mediated by feedback loops between
networks of cells. The stimulus for the regulatory immune response is related to the
intensity of the autoimmune response, and since the regulatory response ameliorates
the autoimmune response, these two system-wide behaviours are coupled. Changes in
the intensities of these two immune responses arise from population-level dynamics,
which may be cyclic in nature, and are hence difficult to depict on activity diagrams.
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The desire to depict these relationships, the ability of one activity to interfere with
the succession of a second activity to a third, and the influence that one activity has
on the particular outcome of another, motivated the interruptible and contributory
relationships depicted on figure 4.3.

The concurrencies and feedbacks existing throughout the populations of cells in-
volved in EAE, when expressed using activity diagrams, have resulted in forks that do
not necessarily have corresponding joins. Under the strict ‘token passing’ interpreta-
tion of execution through these diagrams, many would never truly terminate. Whilst
the corresponding immune responses in the real-world often do terminate eventually,
they may correspond to a huge number of instantiations of all the activities depicted
on the diagram, and hence this lack of termination is not entirely a mis-representation.
The cyclic nature of the perspectives being modelled has lead to activity diagrams that
contain no end state, and could be considered to have no start state, though these have
been provided to facilitate exploration.

Whilst some activities depicted on activity diagrams may occur in any spatial com-
partment, there are others that occur in only certain locations. Activity diagram ‘swim
lanes’, dotted lines that segregate activities on the diagram, are ordinarily used to indi-
cate responsibility for an activity. In the present domain model these dotted lines have
proven informative in indicating the spatial compartments in which particular events
and interactions take place.

4.3.4 Depicting compounding concurrency with expansion regions

The use of activity diagram expansion regions in depicting the compounding concur-
rency in cell populations has been considered. Expansion regions are a notation used in
activity diagrams to indicate multiple invocations of some activity or activities. The re-
gion marks an area of the diagram where actions occur once for each item in a collection
comprising the region’s input. Inputs and outputs are denoted using small adjoining
boxes.

Figure 4.21a shows an example expansion region, where the output of A leads to
multiple instances of B leading to C. All invocations of B and C must complete before
activity D is undertaken. A shorthand compact notation for a single activity being
invoked multiple times is shown in figure 4.21b, where activity B is executed multiple
times before C is executed.

Figure 4.21c¢ depicts three different applications of expansion region concepts to
a simple hypothetical perspective from the EAE domain, where immunisation leads
to the maturation of many DCs, each of which go on to prime many T cells. The
first example, (I), shows the encapsulation of expansion regions, reflecting the fact
that each of many DCs primes many T cells. When applied to a larger and more
realistically scoped perspective however, entailing many more compounding concurrent
activities, this notation has the potential to add significant complexity to the diagram.
Furthermore, with cyclic paths in perspectives, it is not clear where the termination of
the expansion region should lie.

The second example, (II), makes use of the compact notation. The output collec-
tions have been omitted in an attempt to indicate that the activities that follow an
expansion region do not have to wait for all the invocations of the region to complete.
However, whilst the number of outputs from a region does not have to equal the number
of inputs, this discrepancy indicates that the region acts as a filter, with some activ-
ities being dropped [Fowler 2004]. This is not the intended interpretation. As such,
the third example, (III), makes use of multiple outputs from a region containing only
a single input, to indicate that many invocations may follow the activity.
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(b) An activity diagram compact expansion re-
gion.

immunization

an

immunization

(c) Activity diagram expansion regions applied to a hypothetical perspective
from the EAE domain.

Figure 4.21: Examples of activity diagram expansion regions, and their potential application
in depicting compounding concurrency.

Although the third example appears to most closely and match the intended con-
cept, it fails to do so satisfactorily. The undesired implication of a sequential transfer
of control remains, that T cells cannot commence being primed until all DCs have
matured as a result of immunisation. It is more likely that these activities are ongoing
and overlapping. Expansion regions are not currently used in the EAE domain model,
however their potential is noted and further exploration of their semantics is warranted.
However, this lies outside the scope of the current thesis.

4.3.5 Modelling perspectives as sequence diagrams

UML sequence diagrams offer another diagrammatic notation for expressing how system
entities collaborate in some dynamic behaviour. A simple example sequence diagram
is presented in figure 4.22. Like activity diagrams, sequence diagrams allow for the
depiction of concurrent and alternative paths of execution (not shown).

The possibility of modelling perspectives using sequence diagrams in place of activ-
ity diagrams has been considered, however this was decided against. The depiction of
time linearly along only one dimension would prevent the expression of cyclic groups
of events, which appear in all of the perspectives modelled as activity diagrams. Fur-
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Figure 4.23: The use of UML class diagram composition relationships depicting mutually ex-
clusive expression of MHC:peptide complexes on cells.

thermore the vertical notation depicting ‘lifelines’ during which messages are passed
between participants implies that participants pass control to one another and wait
until other lifelines have completed before they are themselves able to continue. This
is in contradiction with biological reality, where entities are entirely concurrent and do
not block one another from being able to interact with one another. Although activity
diagram sequence relationships also imply a transfer of execution, it is felt that the
sequence diagram notation, and its implication of participants being ‘blocked’, is even
less appropriate.

4.3.6 Modelling perspectives as class diagrams

Activity diagrams are effective in indicating cellular-level events and the orders in
which they occur for higher-level behaviours to manifest. The activities depicted on
such diagrams are typically expressed at the single-cell level, despite the fact that
populations of cells are required to perform these actions in order for system-level
properties to emerge. Activity diagrams offer no means of specifying the quantities of
entities that engage in the particular activities depicted on the diagram, and as such
class diagrams have been created in an effort to provide this information.

There is some redundancy between the information conveyed between class dia-
grams of EAE, as evidenced by the lack of a class diagram for the first perspective, the
manifestation of autoimmunity. Once drawn, the information on this diagram was suf-
ficiently similar to that of the self-perpetuation of autoimmunity perspective that the
two were combined into a single diagram. Some concepts, which are expressed on mul-
tiple diagrams, are common throughout the domain model. Examples include the fact
that a cytokine can only be secreted from one source, or that a particular MHC:peptide
complex instance is expressed by only one of the several cell types able to express it.
Such constraints have been expressed in the text accompanying the class diagrams; the
issue of rendering a class diagram excessively complex through the depiction of large
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numbers of constraints was noted above.

The mutually exclusive nature in which cell-surface molecule instances such as
MHC-II:MBP can be expressed by only one of the multiple cell types capable of ex-
pressing them is effectively captured using composition relationships, as demonstrated
on figure 4.23. These relationships have ‘no sharing’ semantics that entail only one
composition relationship may be exercised by a particular entity instance at a time
[Fowler 2004]. Furthermore, the destruction of the ‘owner’ instance entails the de-
struction of all ‘owned’ instances; the apoptosis of a cell includes the destruction of all
MHC:peptide complexes it may be expressing. However, the same does not hold for
cell-cytokine secretion relationships, where a cytokine instance can only be secreted by
one of several cell types, but the apoptosis of the cell does not entail the destruction of
the cytokine instance.

The generalization relationship has been used in only one context in the perspective
class diagrams, denoting that both CD4Th1 and CD4Th2 cells are examples of CD4Th
cells. Conceptually, generalization may be considered to have no place on a domain
model class diagram. CoSMoS domain models are not intended to provide software
specification, where generalization is a fundamental aspect of quality coding practice.
At the biological level, cells and molecules have no notion of generalization, however
these concepts can prove useful when attempting to abstract behaviours into a domain
model. They can serve to reduce the number of associations on diagrams. In the EAE
domain model generalization has been used to indicate that CD4Th1 and CD4Th2 cells
arise following differentiation of CD4Th cells, but that both contain Fr3 and CDR1/2
peptides necessary for the priming of Treg populations (e.g. figure A.4).

EAE is a highly dynamic and stochastic system, particular instances of cells may
take very different paths through the dynamics depicted on their state machine dia-
grams. Cells may engage and disengage with many other cells through the course of
their lifespans. Some might do this many times, others might never participate in a
particular interaction that they are capable of. These dynamic aspects of EAE are not
well represented on class diagrams, where the notation may hinder rather than support
comprehension of the domain being modelled. Class diagrams are intended to repre-
sent static relationships between entities, yet cells, molecules and their interactions are
inherently dynamic. This can lead to ambiguity when interpreting class diagrams, as
detailed in the following section.

4.3.7 Temporal ambiguity on class diagrams

When interpreting an association and its cardinality on a class diagram, which together
specify the nature of the relationship between two entities, the time frame over which
the relationship holds is not necessarily apparent. A cardinality is used to indicate the
number of instances that engage in a particular relationship. However, there are multi-
ple temporal aspects of a relationship that are relevant to the EAE domain, and these
cannot all be simultaneously graphically depicted. Hence, interpretation of a cardinal-
ity can be ambiguous. To illustrate, figure 4.24a shows the relationship between a type
1 cytokine molecule and a CNS macrophage cell. A type 1 molecule ‘stimulates’ a CNS
macrophage, and both ends of the relationship are annotated with ‘0..5%8’ cardinalities.
The following items illustrate the relationship between a type 1 molecule and a CNS
macrophage, and how different aspects of this relationship result in the requirement
for different cardinalities.

e Over the course of its lifespan, a CNS macrophage may perceive any num-
ber of type 1 cytokines, depending on the state of the simulation. Some CNS
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macrophage instances may perceive none, if their lifetime corresponds to a pe-
riod of no immune activity in the CNS. Others may perceive a great many over
their lifespans. This suggests that cardinality A should be ‘0..5%’.

e For a CNS macrophage to become stimulated, it must simultaneously perceive a
number of type 1 cytokines exceeding some threshold. This suggests cardinality
A should be ‘%’. However, this does not reflect that fact that not all CNS macro-
phages will be stimulated during their lifetimes. A cardinality of ‘0..%%’ could
be interpreted as reflecting the optional nature of this relationship, but it does
not capture the notion that stimulation requires simultaneous perception of a
threshold number of cytokine molecules.

e Perception of a cytokine molecule by a cell is not considered to destroy it, following
perception a molecule may disengage from a cell. Hence, any particular type 1
cytokine may engage in stimulating many CNS macrophages over the course of its
existence, which suggests a ‘0..%’ cardinality for B. However, a cytokine molecule
can only be perceived by a single cell at any single point in time, suggesting a
‘0..17 cardinality.

A further example of ambiguity concerning the timeframe over which relationship
cardinalities apply may be found on figure 4.24b, which depicts the relationship that
a CD4Th entity has with itself, describing the manner in which cells proliferate. It
is tempting to interpret cardinalities as the number of instances that engage in the
relationship at any single point in time. Under this interpretation, this relationship
would indicate that a cell may provide any number of daughter cells simultaneously,
for example that it may divide 5 ways to produce 5 daughter cells. However, this is
biologically incorrect, a daughter cell is produced through cell division, and only one
such daughter cell may be produced at a time. The relationship is intended to describe
the fact that a CD4Th cell has only a single parent cell, but that a parent cell may
spawn any number of daughter cells during its proliferative cycle.

EAE is a highly dynamic and stochastic domain, cells engage and disengage fre-
quently. Some instances of entities may engage in particular relationships many times,
others not at all. There are many temporal aspects of the relationship that are rele-
vant to the domain, and UML class diagrams present no means to reflect this. Each
end of a relationship is permitted only one cardinality. There are no guidelines on the
temporal domain over which a cardinality applies, and further, in EAE this is specific
to the particular relationship. Modelling dynamic and stochastic systems such as EAE
using a notation intended for specifying static relationships can lead to ambiguities
that confuse interpretation of the domain, rather than supporting it.

4.3.8 Capturing single entity dynamics

UML state machine diagrams have been used to specify low-level behavioural dynamics,
and have been constructed for all cell types in the domain model, and for molecules
that influence system dynamics.

Many of the biological cells of this domain model, such as the T cells or the DC,
have complex multi-dimensional dynamics. Further, these dimensions are not necessar-
ily completely orthogonal. These features of cellular dynamics can complicate the con-
struction of state machine diagrams that describe them; expressing high-dimensional
partially-orthogonal information on a two-dimensional diagram is challenging. For ex-
ample, figure 4.9 captures the dynamics of CD4Th cells as a state machine diagram.
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(a) The relationship between type 1 cytokines and CNS macrophages. The cardinalities
have been labelled ‘A’ and ‘B’ to facilitate discussion in the text.
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(b) The relationship that a CD4Th cell has in producing additional instances of itself

Figure 4.24: Select relationships between entities in the EAE domain model.

The locations in which CD4Th cells may reside are depicted as a mutually exclu-
sive set of states that are orthogonal to the rest of the cell’s dynamics, such as its
states of maturation. However, these sets of states are not entirely mutually exclusive:
state transitions resulting from TCR:MHC-II:MBP binding can only occur when the
T cell resides in the SLO, CLN, spleen or CNS compartments; there are no APCs in
the circulatory system. The diagram is not incorrect, since cross-reference with CNS
macrophage and DC state machine diagrams (figures 4.13 and 4.12) reveals that these
APCs cannot reside in the circulatory system. Depicting these constraints diagram-
matically on the CD4Th cell state machine diagram would increase its complexity and
hinder its comprehensibility, which undermines the goal in presenting a transparent
and informative domain model. UML state machine diagrams allow for transitions to
be guarded, and this notation has been employed in dealing with partial-orthogonality.
For example, figure 4.13 depicts the conditions for maturation in a CNS macrophage.
The transition from ‘highly phagocytic’ to ‘reduced phagocytic capacity’ is guarded by
‘maturation’, being allowed to occur only when a CNS macrophage matures.

State machine diagrams are effective in capturing dichotomous and categorical con-
cepts, where states do not overlap. Molecular expression in the present domain model
has been represented in this manner, a DC either expresses MHC-II:MBP or it does
not. However, were the domain model to be more representative of the underlying biol-
ogy, MHC expression levels might be modelled as a variable quantity. There is evidence
to suggest that DCs express low levels of MHC-II whilst immature [Kindt et al. 2007],
and that expression is up-regulated following maturation. Naive T cells require more
TCR:MHC bindings with an APC to derive signal 1 than effector cells require to derive
local activation. Continuous-domained aspects such as levels of molecule expression or
rates of cytokine secretion cannot be captured using UML state machine diagram no-
tation, and would require equations or textual accompaniment.

Two other concepts have proven highly relevant to modelling EAE, yet UML state
machine diagrams do not provide a notation to express them. First is the notion that
a transition may occur only after some period of time has elapsed. This is highly
relevant to the stages of a cell’s lifecycle, and nearly every cell’s state machine diagram
contains such a notion. This has been represented by a guard containing a statement of
the form A(condition), used to indicate the passage of sufficient time. Secondly, EAE
is a stochastic system, and some transitions occur probabilistically. Such transitions
have been modelled as guards containing statements of the form J(condition). It is
envisaged that both temporal and probabilistic conditions are highly relevant concepts
in many biological and complex domains, and modelling such domains requires that
they be representable.
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Several of the state machine diagrams in this domain model depict single states that
have no transitions to alternative states, and that are orthogonal to other aspects of the
diagram. An example of this may be found on figure 4.13, where a CNS macrophage is
always capable of expressing MHC-II. It is unconventional for states on state machine
diagrams to exist in isolation such as this, however it is relevant and informative with
respect to the present domain.

The EAE domain model contains several examples of domain aspects modelled
as states that are not necessarily the internal state of the entity being modelled. It
may be argued that the spatial compartment in which a cell resides is not part of
its internal state, yet is has proven informative to indicate on cellular state machine
diagrams which compartments the cell may reside in, and the conditions necessary for
it to migrate elsewhere. A similar approach has been employed in [Garnett et al. 2008].
More extreme examples are comprised of state machine diagrams depicting the influence
of cytokines on cells of the system; figures 4.16, 4.17 and 4.18 pertain to type 1 cytokine,
type 2 cytokine, and TNF-«. The main focus of these diagrams has been to indicate the
conditions necessary for their perception to induce behavioural changes in the various
cells of the system. The influence a molecule has on another entity of the domain is not
part of its internal state. Yet it is felt to be informative to consolidate this information
onto a single diagram.

4.3.9 Summary

There exist aspects of EAE that are both well captured, and not well captured using
UML notations. It is the complex, dynamic, and high partially-orthogonal dimensional
aspects of the disease that UML does not represent well. Unsatisfactory attempts
to capture the entirety of the domain within single diagrams lead to the approach of
defining perspectives of the domain; decomposing its high-level complexity into more
manageable components to be modelled individually.

Perspectives have been modelled using UML activity diagrams. This notation was
chosen for its ability to represent any abstract event as an activity, and link them
together in order. However, the notation does not capture the large-scale concurrency
or stochasticity of the real domain. In wvivo there exist many populations of cells
undergoing different activities depicted on the diagrams at many points in time; there
is no sequential transfer of control as suggested on the activity diagram, a single cell
may interact with many others at the same time, and may continue to do so after it
has instigated an event in another cell.

Sequence diagrams were considered for the modelling of perspectives, but their even
stronger implication of transfer of control, and ‘blocking’ of cell activity whilst some
other activity is undertaken lead to a preference for activity diagrams. In addition,
the cyclic nature in which nearly all high-level system behaviours manifest from the
activities of low-level entities could not be depicted on sequence diagrams, owing to
their monotonic depiction of time down the vertical axis.

The concurrent and cyclic nature of several perspectives, when depicted on activity
diagrams, has lead to fork relationships that do not have corresponding joins. Under
strict ‘token passing’ interpretation of activity diagrams many of these diagrams do
not terminate, and some do not have end states. Whilst unorthodox, this is not an
inaccurate reflection of the real domain.

There were three relational concepts that could not be depicted using standard
activity diagram notation, but were considered sufficiently fundamental to the domain
that a bespoke notation was created. The first is the notion that entity A may con-
duct an activity that simultaneously leads to others being instigated in other entities,
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without A’s activity terminating. Next is the notion that entity A undertakes an activ-
ity that partially disrupts a second activity from inducing a third. Lastly, the notion
that one activity actively influences a decision resulting from a second activity without
inducing it, or itself terminating.

Class diagrams are considered to be of limited benefit in depicting EAE, owing
to its highly dynamic and stochastic nature. Class diagrams can become highly con-
nected, and require numerous constraints to accurately reflect the real domain, all of
which add to the diagram’s complexity and hinder its comprehension. Furthermore,
an entity’s ability to engage in some relationship frequently depends on its history of
interactions with other entities. In such dynamic systems there are various temporal
aspects to a relationship between two entities, and these cannot all be depicted, leading
to ambiguities when interpreting diagrams.

UML state machine diagrams have proven effective in depicting single-entity dy-
namics. Once more, it is high and partially-orthogonal dimensionality that raises issues.
However, these have been satisfactorily overcome through use of guards. It is noted
that many transitions depend on probabilistic or temporal conditions, and notations
were devised to represent these aspects.

The expected behaviours diagram reflects the most abstract level of modelling in
the EAE domain model. It depicts the phenomena observed in the real domain, and
describes how, at a very abstract level, domain model entities interact to produce
system-wide behaviours believed to be sufficient for the manifestation of real-world
phenomena. The diagram does not conform to any UML notation, since none could be
found that provides for the specification of such concepts.

4.4 Conclusion

As stated in section 4.1, the goal of this chapter has been twofold: to present the latest
iteration of the EAE domain model, and to provide an assessment of UML’s ability to
express this complex immunological domain. It has contributed to the thesis aim by
directly addressing research objective 1: to explore the role of domain modelling in the
EAE case study. Note that further contribution to this objective is made in chapter 8,
which reflects upon the confidence that domain modelling brings to simulation-based
work.

Section 4.2 presents the EAE domain model. Diagrammatic modelling is performed
at three layers of abstraction, and is largely expressed using UML notations. The model
is presented in a top down manner, commencing with a highly abstract depiction of how
domain model cells interact to produce system-wide behaviours believed to significantly
contribute to the phenomenon of paralysis and subsequent recovery as observed in
vivo. EAE’s complexity has been tackled by presenting four perspectives of the disease,
which correspond with four stages of onset and recovery. Activity and class diagrams
describe how domain model cells and molecules are involved in manifesting each of
these perspectives. Lastly, the lowest level of modelling entails the specification of cell
and molecule dynamics through the use of state machine diagrams.

Construction of the EAE domain model has afforded insight into the ability of UML
to represent this complex immunological domain, as reported in section 4.3. UML is
effective in describing many aspects of the disease, however the qualities of the domain
that are difficult to express are large scale concurrency, stochasticity, and partially-
orthogonal high dimensionality.

The next chapter describes the creation of ARTIMMUS, a simulation of EAE that
is based on the domain model expressed here.
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Chapter 5

Developing and Calibrating an
EAE Simulation Platform

This chapter describes the derivation of the platform model from the domain model of
the previous chapter. The platform model serves as a specification for a simulation of
EAE, named ARTIMMUS': “artificial murine multiple sclerosis.” The platform model
is presented in section 5.2. Next, section 5.3 reports on the novel procedure used to
calibrate ARTIMMUS, and guide its development to an appropriate representation
of real-world EAE. Section 5.4 briefly reflects upon the role of visualisation in the
development of ARTIMMUS, providing insight into simulation’s mechanics at each
iteration and supporting assessment of whether they are an adequate representation of
the target domain. Lastly, section 5.5 concludes the chapter. First, however, section 5.1
provides a motivation for the work carried out here.

5.1 Goal and motivation

This chapter reports the specification and calibration of ARTIMMUS, a simulation
platform on which in silico investigation into EAE can be performed. The creation
of the simulation platform provides a case study for investigating the calibration of
immunological simulations, specifically how the calibration process might contribute to
establishing confidence in a simulation’s faithful representation of the target domain.
Hence, the chapter specifically addresses research objectives 2 and 3: to create an agent-
based simulation of EAE, and to investigate and develop techniques for calibrating
agent-based simulations.

5.2 Platform model

The present section constitutes the platform model of ARTIMMUS. Much of the model
is implicit. Rather than reproduce large quantities of the domain model, section 5.2.1
instead indicates the manner in which the domain model is interpreted into the platform
model, detailing which aspects are considered to constitute part of the platform model,
and which are not.

89



5. DEVELOPING AND CALIBRATING AN EAE SIMULATION PLATFORM

The remaining sections describe how specific aspects of the domain model are im-
plemented. These sections make explicit the assumptions that are adopted where the
domain model is not able to fully specify a particular behaviour. Section 5.2.2 details
the implementation language of ARTIMMUS, and shows how the computer code is
organised. Section 5.2.3 describes the abstraction of physical space. The simulation’s
representation of immunisation for EAE is described in section 5.2.4. The turnover
of cells is described in section 5.2.5. Section 5.2.6 denotes how APCs in ARTIMMUS
undergo periodic transitions from immature to mature states. The representation of
blood flow in the simulation, which dictates the migratory behaviour of many motile
cells is described in section 5.2.7. Section 5.2.8 indicates how normal distributions are
used to represent the period of time that elapses between cellular state transitions. The
implementation of local activation of T cells is described in section 5.2.9. Section 5.2.10
reports on the conditions that dictate the adoption of polarisations by DCs and CD4Th
cells. The manner in which the simulation is initialised, such that simulation artifacts
arising from cells starting in identical states and locations are minimisd, is detailed
in section 5.2.11. The mechanism representing the decay of cytokine molecules is de-
scribed in section 5.2.12. Lastly, the implementation of T cell specificity is covered
by section 5.2.13. Many of these sections reference ARTIMMUS parameters, of which
a full listing is provided in appendix section B.1. Note that parameters are named
according to their function; for example, the names of all parameters relating to T cells
begin with the text “T'Cell..” Parameter names are indicated in italics.

5.2.1 From domain model to platform model

The EAE domain model of the preceding chapter explores EAE instigation and recovery
at several levels of abstraction: a highly abstract system-level overview of the cells
believed to be responsible for disease onset and recovery; a decomposition of disease
onset and recovery into four system-level behaviours, indicating how these manifest
from cell-level interactions; and the full dynamical behaviours of individual cells in the
system.

The individual cell-level behaviours are expressed as state machine diagrams, and
it is these that form the specifications for the simulation platform: cellular behaviours
are coded on the basis of state machine diagrams. The other diagrams, which cover
system-level behaviours, describe the expected result of the large scale simulation of
individual cells. These diagrams are in no way used as specification for code in the
simulation platform; these behaviours should emerge as a result of cellular interactions
represented in the state machine diagrams.

5.2.2 Simulation architecture

The ARTIMMUS simulation platform is developed in Java, and within the MASON!
simulation framework [Balan et al. 2003, Luke et al. 2004]. Java belongs to the object
oriented programming paradigm, wherein logical entities in the program are explicitly
represented and are responsible for maintaining their own state. As such, the object
oriented paradigm maps well onto the concept of agents in agent-based modelling.
MASON provides facilities for spatial representation, visualisation, and inspection of
state within the simulation. It provides a simulation engine that manages the execution
of simulation agents. Time is discretized into time steps; every time step the state of
every cell and compartment in the simulation is updated.

''Multi-Agent, Simulator of Neighborhoods (MASON),
http://www.cs.gmu.edu/~eclab/projects/mason/.
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Figure 5.1: Class diagram depicting organisation of classes in the simulation platform in terms
of inheritance hierarchies and interface implementations. The majority of associations are not
shown, in aid of readability.

Figure 5.1 depicts the organisation of classes in the simulation platform, focussing
on inheritance and implementation of interfaces; the majority of associations are not
shown, as these may be derived from the domain model presented in the previous chap-
ter. The simulation platform makes extensive use of abstract classes, inheritance, and
interface implementation. The simulation ultimately consists of cells all of which in-
herit from Cell_Impl, and spatial compartments in which they exist, which inherit from
Compartment2D_Impl. Both these abstract classes implement Steppable, the MASON
interface required for execution within the simulation engine. The class EAESimulation
is the driver of the simulation, and is responsible for its initialisation.

There are many behavioural aspects common to multiple cell types. Such be-
haviours, such as maintaining the state of a T cell, are coded as far up the hierarchy
tree as possible. This coding practice reduces redundant code, and leaves a single point
of code maintenance should it ever need amendment. Where cells are concerned, all
classes encoding cellular behaviour are abstract, with the exception of those that may
actually be instantiated to directly represent a cell of the domain model. A similar
programming pattern is used for coding the simulation’s spatial compartments. These
share many commonalities, which are implemented in Compartment2D_Impl and inher-
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ited in the concrete subclasses. In either case, abstract classes are often used to provide
default behaviours which are overridden by specific exceptions where necessary.

The simulation platform makes use of interfaces with respect to the MHC:peptide
complexes that cells may express. This serves to reduce the complexity of code. For
example, a CD8Treg is specific for Qa-1:CDR1/2, which may be expressed by either a
DC or a CD4Th cell. From the perspective of the CD8Treg class, it need only establish
whether an instance of a cell implements the Qa_1_CDR12 interface to know whether
they may interact through this complex, rather than querying whether the cell is an
instance of the CD4THelper or Dendritic Cell types.

The Molecule abstract class is the superclass for all the cytokines (Typel, Type2
and TNF-a) and peptides (Fr3, CDR1/2 and MBP) of the system. Cytokines are not repre-
sented as individual agents in the simulation. Rather, their concentrations in space are
maintained by Compartment2D_Impl and represented as real numbers; this is discussed
in further detail in section 5.2.3. The concrete cytokine classes are programmed using
the singleton pattern, and as such references to these singletons are used when cells
either secrete cytokines into the compartment or request their concentration. These
singleton instances are also referred to by cells when being phagocytosed by APCs;
the APCs need not know what form of cell is being phagocytosed to establish which
peptides they contain, these references to these singleton peptides are passed directly
to the APC by the cell being phagocytosed at the time.

5.2.3 Spatial representation

Physical space is explicitly represented within ARTIMMUS through use of a two di-
mensional lattice grid, graphically depicted in figure 5.2. The lattice grid consists of
four layers, one for each type of entity explicitly represented in the simulation. There
is one layer to maintain the location of cells, and one for each of the cytokine types:
type 1 cytokine, type 2 cytokine, and TNF-q.

Cells occupy grid spaces in the lattice, and may move between them. There are
two sizes of cell considered in the simulation: T cells, and all other cells. T cells are
assumed to be % the size of all other cells. A single grid space is equivalent to the area
of a single larger cell. As such, a soft upper limit of 7 T cells may occupy a single grid
space, however for all other cells only a single cell may occupy a given grid space.

Cytokines diffuse around the grid, in accordance to algorithm 1, which is adapted
from [Andrews & Timmis 2006]. Diffusion is performed at each time step in the sim-
ulation, and is implemented as an atomic operation. At each time step the majority
of cytokine contents of a particular grid space are randomly diffused to one of its eight
neighbours. Cytokine concentrations are represented as real numbers, however diffusion
operates only on whole numbers, moving quantities of multiples of 1.0 to neighbours
at a time. Concentrations less than 1.0 remain in the same grid space.

With respect to cells, lattice grids are toroidal only in the horizontal dimension.
Cells migrating into a compartment are placed at the top of the lattice grid, those
moving off the bottom of the grid are considered to have migrated elsewhere. With
respect to cytokines, grid spaces are both vertically and horizontally toroidal.

5.2.4 Immunisation mechanism

Immunisation for EAE is accomplished in vivo through the administration of MBP, PTx
and CFA. These immunisation substances do not find explicit representation within the
simulation, which instead represents immunisation through the appearance of MBP-
presenting immunogenic type 1 polarising DCs in the SLO compartment. Hence, the
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Figure 5.2: The lattice grid based spatial representation of ARTIMMUS. Each grid space in
the lattice may contain cells and molecules, such as cytokines, with bespoke layers representing
the spatial occupancy of each within the lattice. The ability of cells to move and for molecules
to diffuse between grid spaces is indicated.
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Figure 5.3: ARTIMMUS’s immunization mechanism, and how it is parameterised. The label
“Simulation_immunizationLinear” has been omitted from parameter names.

periphery compartment of the domain model is not represented in the platform model,
and is not implemented in ARTIMMUS.

The immunisation mechanism, depicted in figure 5.3, is parameterised through 4
parameters: Simulation_immunizationDCO0, Simulation_immunizationLinearFreq, Sim-
ulation_immunizationLinearGradient, and Simulation_immunizationLinearInitial. The
last specifies the number of immunisation DCs placed into the SLO compartment at
time zero, as a one-off event. The remainder parameterise a linearly reducing num-
ber of DCs that are added to the SLO periodically. The period is defined by Sim-
ulation_immunizationLinearFreq. Simulation_immunizationDC0 and Simulation_imm-
unizationLinearGradient describe the level of DCs inserted at time zero, and the rate
of linear decay. Every Simulation_immunizationLinearFreq hours, the value described
by these two parameters, given the current simulation time, is rounded to the nearest
whole number of DCs which are then placed in the SLO.

93



5. DEVELOPING AND CALIBRATING AN EAE SIMULATION PLATFORM

Algorithm 1: Cytokine diffusion algorithm. Designed as an atomic operation,
all of the cytokine molecules present in a grid space at the start of the opera-
tion are distributed amongst its neighbours. Algorithm has been adapted from
[Andrews & Timmis 2006].

input: grid, lattice grid containing cytokine concentrations
output: grid, lattice grid containing cytokine concentrations following diffusion

newgrid <— grid.clone

for x «— 1 to grid.width do

for y «— 1 to grid.height do
quantity <— newgrid[z][y]

if quantity # 0 then

share «— |quantity = 8| // + represents modulus operation
grid|z][y] «— quantity // reduce by ‘quantity’
gridlx — 1]y — 1] & share // increase by ‘share’

gridlz][y — 1] <— share
gridjz + 1]y — 1] <— share

gridx — 1][y] & share
grid[z + 1][y] +— share

gridlz — 1][y + 1] <= share
grid[x][y + 1] & share
gridlz + 1][y + 1] < share
remainder «— quantity — (8 x share)
repeat remainder times
// select random gridspace from the neighbourhood
xi «— (random(3) — 1) + =
Yl — (random( )—1)+y
grid|zi][y ]

5.2.5 Cellular turnover

Neurons enter apoptosis upon exposure to a sufficient concentration of TNF-« in a
single time step. Upon phagocytosis by an APC, a new neuron is placed at the exact
same location as that which preceded it.

The basal size of T cell populations are homeostatically maintained, through a
mechanism that acts independently of any proliferative activities, which reflects the
activities of the thymus in creating new T cells. The probability that a naive T cell is
inserted into the simulation at each time step is calculated as the initial population size
of the particular T cell type, divided by the mean lifespan of a naive T cell, multiplied
by the proportion of an hour that a single time step represents. T cells created in this
manner are inserted into a random location in the circulatory system.

Like neurons, DCs and CNS macrophages are replaced by new cells upon entering
apoptosis. The immature cells that replace such apoptotic cells are placed at random
locations within the compartments where they originated from.
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5.2.6 Periodic migration of DCs

There exist two forms of DC in the simulation: those capable of migratory behaviour,
and those that are not. Non-migratory DCs are those placed in the spleen, SLO and
CLN compartments upon simulation initialisation. Migratory DCs exist in the CNS as
immature cells, and move into the CLN compartment upon maturation.

This migratory behaviour is periodic, DCs remain in the CNS compartment as im-
motile immature cells for some predetermined period of time, randomly determined for
each individual DC, before commencing migration to the CLN compartment. Once in
the CLN migratory DCs continue to follow the blood flow for some randomly deter-
mined period of time before coming to a rest somewhere in the compartment.

5.2.7 Migratory behaviour

Compartments in ARTIMMUS are represented as lattice grids. In each time step a
motile? cell may move to any of the eight grid spaces surrounding the one in which
it current resides, or it may remain stationary. Cell movements are calculated by
considering horizontal and vertical movements independently. In the horizontal plane,
a cell has equal probabilities of moving left, right, or remaining stationary.

Cells migrating into a compartment are placed at the top of the lattice grid. Con-
versely, traversing beyond the bottom of the lattice grid is interpreted as the cell leaving
the compartment. The probabilities of vertical movement, being a move down, up, or
remaining vertically stationary, are dictated by the time required for a T cell to migrate
through the compartment. The times required for migration through a compartment
are compartment-specific, and are represented by parameters of the form CLN_time-
ToCrossOrgan, many of which hold literature defined values. Figure 5.4 indicates how
the probabilities of a cell performing a particular vertical movement are derived, based
on a compartment’s height, and how many time steps a cell will generally remain in a
compartment for.

5.2.8 Probabilistic timing of events

Many of the cellular state transitions described in the domain model are implemented to
occur after some probabilistically determined period of time. For example, on average
DCs remain immature for a particular period of time, however individual DCs differ in
the exact durations they spend in this state. Such state transitions are implemented
through use of normal distributions, as depicted in figure 5.5. When a cell enters a
particular state, event A, a probability distribution is used to select an absolute time in
the future for the transition to the following state, event B. Hence, such distributions
describe the duration of time cells spend in particular states. They are parameterised
by a mean and standard deviation®. Note that, since a normal distribution is used to
describe the durations of time spend in particular states, it is possible that event B will
be selected to have occurred before event A. This is guarded against by converting all
events occurring in the past into events occurring 1 hour after event A.

2Not all cells are motile. T cells are motile only when not bound to an APC, neurons are never
motile, and APCs are motile only in certain states.

3The parameters of ARTIMMUS that describe standard deviations actually describe twice the
standard deviation. Hence, their values indicate that ~95% of transitions must occur within a particular
period of time surrounding the mean.
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proportion of total time steps that result in a net downwards movement = o = 35
There are three constraints on the probabilities of moving down (z), up (z), or remain-
ing stationary (y): all possible movements must sum to 1.0; any upwards movement
must be reflected in the probability of downwards movement, in order to traverse the
compartment in ¢ time steps; and the probability of remaining stationary is the mean
of probabilities of moving up and down. This last constraint is an assumption made to
make the equations solvable. The constraints are mathematically expressed as follows:

r+y+z=10 (5.1)

r=z4+a« (5.2)
y= <$"2”) (5.3)

Derivation of how to calculate z, y, and z:

z=x—« (5.4)

y:<x—;—z>:<x+:;—a>:<2x2—a> (5.5)
r+y+z2=10
az+<2$_a>+($—a):1

2
2c+ 2z —a) + 2z — 200 =2
6z — 3a = 2

- (57)
. (1‘;50‘> (5.6)

Figure 5.4: The calculation of probabilities that a migrating cell, such as a T cell, will move
either downwards, upwards, or remain at its current vertical level in a particular time step.
Probabilities are represented within the range 0.0 to 1.0. The probabilities of moving down, up,
or remaining vertically stationary are represented by x, z and y respectively. The calculations
are derived through consideration of a compartment’s height, and how long a cell has to traverse
this distance.
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Figure 5.5: Depiction of how the absolute time of events is determined through a normal
distribution of possibilities. When event A occurs, the absolute time at which event B is
to take place is derived from a normal distribution of relative times in the future. Simulation
parameters specifying the mean and 2x the standard deviation describe the distribution. Event
B cannot take place in the past, hence absolute time for B that are less than the time of event
A are converted into future times.

5.2.9 Local activation of T cells

The domain model stipulates that effector T cells cannot secrete cytokines until they
have been locally activated. The intended meaning of local activation is that the T
cell has left the location at which it was primed and is re-stimulated at the site of
the immune response. In order to prevent T cells in ARTIMMUS from being locally
activated by the APCs on which they prime, a time limitation has been placed on their
ability to be locally activated. T cells can only derive local activation some time after
differentiation into effector cells, parameterised by TCell_timeLocalActivationDelay.

5.2.10 Polarisation selection by DCs and CD4Th cells

Upon maturation DCs become either type 1 or type 2 polarising. Type 1 polarising
DCs secrete type 1 cytokine that induces preferential selection of CD4Th1 polarisations
by CD4Th cells. The polarisation selected by a DC is dependent on the local cytokine
milieu at the time of maturation. If the total proportion of type 2 cytokine in the
cytokine milieu is less than the figure represented by the parameter DendriticCell -
cytokineType2PolarizationRatio then a type 1 polarisation is adopted. Otherwise a
type 2 polarisation is adopted, including the case that there is a complete absence of
any type 1 or type 2 cytokine in the milieu.

CDA4Th cells adopt either a CD4Thl of CD4Th2 polarisation upon entering their
proliferative cycles. One more, the decision of which polarisation to adopt is based on
the local cytokine milieu in the grid space where the cell resides. If the proportion of
type 1 cytokine in the milieu is greater than or equal to 80%?*, then a type 1 polarisation
is preferentially adopted. Otherwise, including the case that there exist no cytokines
in the milieu, a type 2 polarisation is preferred. The adoption of a polarisation is
probabilistic, with the probability in each case parameterised through CD4THelper_-
diff08 and CD4THelper_diff00 respectively.

5.2.11 Simulation initialisation

Simulation initialisation, at time zero, is done in a manner that minimises simulation
artifacts arising from cells starting in identical states and locations. DCs and CNS
macrophages are created to be part way through their lifespans as immature cells; this
prevents large quantities of these cells entering maturity at unrealistically similar times.

4Represented at 0.8, percentages are scaled onto the range between 0.0 and 1.0.
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The initial populations of naive T cells are placed in randomly determined com-
partments, excluding the CNS. Some proportion of migratory DCs are placed in the
CNS as immature cells, whereas the remainder are placed in the CLN compartment
as mature cells. The exact proportion is dictated by the proportion of a DCs entire
lifespan that is spent in an immature state.

5.2.12 Cytokine decay

In addition to diffusing around compartmental space, cytokines also decay over time.
This has been implemented in discrete time as follows:

T

1

=i ()7 o)

Where 7 is the duration of time represented by a time step, in hours (e.g., 0.125), A
is the decay rate, also in hours, and C; is the concentration of cytokine in a particular
grid space at time ¢. Cytokine concentrations, represented as real numbers, subject to
this implementation of decay will never reach a concentration of exactly 0.0. As such,
at each time step, the concentration of cytokine in a particular grid space is set to 0.0
if it is less than the value indicated by the parameter Molecule_decayThreshold. This
thresholding adds realism to the simulation; cytokines secreted by cells in vivo do not
have infinitely far reaching influence.

5.2.13 T cell specificity

Upon contact of a T cell with a cell expressing MHC:peptide for which it is specific, a
binding between the two cells is probabilistically determined. This reflects the range
of specificities that in wvivo T cells have for particular MHC:peptide complexes. A
successful binding will lead to further interactions between the cells. In the case of T
cells induced into their proliferative cycles, the T cells become immotile, bound to the
APC for the duration of their proliferative cycle. In contrast, an unsuccessful binding
does not lead to cellular interaction.

The determination of whether a binding is successful is conducted when the two
cells first contact one another, as indicated by their occupancy of either neighbour-
ing or the same grid spaces, and is probabilistic in nature. All T cells that are not
created through proliferation are assigned specificities upon creation, represented as a
real number randomly selected to lie between the values indicated by the simulation
parameters TCell_specificityLowerLimit and TCell_specificityUpperLimit. These two
parameters obey the constraint:

0.0 < TCell_specificityLowerLimit < T'Cell_specificity UpperLimit < 1.0

Daughter cells arising from proliferation inherit the specificities of their parent
cells. This specificity represents the probability that contact with a neighbouring cell
for which a T cell is specific will result in a successful binding.

5.3 Calibration of simulation platform

The present section describes the calibration procedure used to align the simulation
with in vivo progression and recovery of EAE. The parameter values that result from
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calibration, and the manner in which each parameter was subject to the following
procedure, are denoted in appendix section B.1.

Calibration is an essential stage in the construction of a simulation platform for the
following reasons, with each discussed in turn in the text that follows:

1. The domain model, and by necessity the simulation platform, are abstractions
of the cellular and molecular interactions that govern real-world EAE. It is not
known in advance whether the abstractions and assumptions that constitute a
particular iteration of the domain model will reproduce real-world behaviours
when simulated.

2. There are a great many simulation parameters for which the corresponding in
vivo values are either not known or are not known exactly.

3. Since the domain model and simulation platforms are abstract representations of
real-world EAE, in vivo parameter values, if known, will not necessarily translate
directly into the simulation platform.

The domain model presented in chapter 4, and the platform model outlined above,
are the end result of an iterative development process; the first iteration and implemen-
tation of the domain model as a simulation platform did not realise the system-level
dynamics observed in vivo. Through undertaking the present calibration process, the
abstract representation of cellular and molecular interactions and dynamics are brought
to a point that can satisfactorily reproduce disease onset and recovery as observed in
VI0.

With regards the second point, the parameter values of the simulation platform
are arrived at through three means. Some values are based on domain expertise or
literature. Where no domain-specific guidance exists for the value a parameter should
adopt, arbitrary values are assumed. Finally, many but not all parameters are subject
to calibration, their values altered to best align simulation behaviour with that observed
i Vivo.

Point 3 above states that real-world parameters, where known, will not necessarily
translate directly into simulation parameters. The real-world elements of the domain
that find explicit representation within the simulation platform must compensate for
the effects of those elements that do not. It is hypothesised that those elements not
represented are not critical to disease progression and recovery, however this is not
known absolutely; they may have some effect. Consider the type 1 and type 2 cytokines
of the domain model. These are abstractions of a myriad of real-world cytokines,
abstracted on the basis of their promotion of either a type 1 or type 2 T cell response.
Were the secretion and decay rates of all these real-world cytokines to be known with
great certainty, none would translate directly into the simulation platform. Calibration
aligns simulation behaviour with that observed in vivo, and in doing so the effects of
the missing elements are to some degree compensated for.

The result of calibration is the amendment of the simulation’s mechanics and/or
the tuning of its parameter values. The early stages of calibration focus primarily on
altering the abstractions and assumptions underpinning the cellular and molecular dy-
namics and interactions; where these simulation mechanics are incorrect, the deviation
of simulation behaviour from the real-world EAE are very large. Once the simulation’s
mechanics are relatively stable and its dynamics more closely match the target system,
calibration focusses on simulation parameters to make relatively minor changes to the
simulation’s system-level behaviours.
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The end result of calibration is a simulation platform that encompasses mechanics
and parameter values that satisfactorily reproduce the dynamics of real-world EAE.
This state of the simulation is referred to as the baseline in subsequent chapters, and
forms a basis against which experimentation may be contrasted and interpreted.

The following sections describe the collaborative calibration procedure, a novel cali-
bration procedure that makes extensive use of domain expertise and calibration against
multiple real-world experimental scenarios. Its application in developing ARTIMMUS
to a satisfactory level of abstraction is also described. Section 5.3.1 motivates calibra-
tion against a domain expert’s expertise. The calibration procedure itself is described
in section 5.3.2. Section 5.3.3 expands on the criteria for calibration, motivating the use
of multiple real-world experimental scenarios as opposed to just one. The calibrated
simulation’s dynamics are presented in section 5.3.4, and section 5.3.5 explores areas
of this baseline behaviour that are recognised as being inconsistent with that of the
domain.

5.3.1 The role of domain expertise in calibration

The collaborative calibration procedure consults the domain expert with respect to how
well the simulation is aligned with in vivo behaviour. This is to mitigate the significant
uncertainty and variance in data from the real domain, which does not exist in a format
that the simulation may be directly calibrated against. Figure 5.6 highlights the type
of data typically derived from EAE experiments in vivo. Figure 5.6a shows the mean
severity of EAE, measured on a 5 point scale [Kumar et al. 1996], experienced by groups
of 6-8 mice of different strains following the same induction of EAE administered in
each group. There is considerable variation in EAE progression experienced by each
strain of mouse. Figure 5.6b shows the severity of EAE experienced by groups of 5
mice of the same strain, with each group undergoing a different intervention. It can
be seen that within groups of genetically identical experimental animals undergoing
exactly the same intervention, there is considerable variation in the severities of EAE
experienced. Figure 5.6¢ indicates the number of CD4Thl cells found in different
bodily compartments at various times following immunization in several experimental
animals. It can be seen that there is once again significant spread in the data, with
several examples where there are no data points lying on the calculated mean values.
Acquiring data such as this can require the sacrifice of an experimental animal, and
since genetically identical animals undergoing exactly the same EAE induction can
experience significantly different responses (figure 5.6b), it is difficult to compile a
representative progression of EAE in terms of individual cell population number.

Data of this nature can be challenging to calibrate a simulation against. The sim-
ulation platform can be executed many hundreds or thousands of times in order to
obtain highly representative averaged values for a particular metric of interest. The
same fidelity of data is not available in the immunological literature, where the number
of samples obtained in acquiring an average rarely exceeds ten. Whereas a computa-
tional simulation can readily provide exact numbers of a particular cell type over time,
the data of figure 5.6¢ only indicates their number, there is not an easily established
exact mapping between the metric used and the actual number of cells observed by the
instrument. For this reason the calibration process consults with the domain expert,
who is uniquely placed to interpret how data arising from the simulation may map to
that which he has encountered of the real-world domain. In this manner the simulation
platform is calibrated against the domain expert’s understanding of the domain, some
of which is captured in the domain model, rather than directly against any particular
immunological data.
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(a) The mean EAE severity experienced
by groups of 6-8 mice of different strains
following the same induction of EAE ad-
ministered in each group. Adapted from
[Madakamutil et al. 2008].

(b) EAE severity experienced by each of 5
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(¢) An indication of the number of CD4Th1 cells (EI = expansion index on the y-axis) residing in
a selection of organs at various times following the induction of EAE from [Menezes et al. 2007].
Organs examined were: lymph nodes (LN), spleen (Sp), blood (Bl), lungs (Lu), bone marrow
(BM), liver(Li), mesenteric lymph nodes (mLN), thymus (Thy).

Figure 5.6: Examples of clinical data pertaining to the progression of EAE in mice.
severity is scored on a scale of 0 to 5, “1, flaccid tail; 2, hind limb weakness; 3, hind limb
paralysis; 4, whole body paralysis; 5, death.” [Kumar et al. 1996].

EAE
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5.3.2 Calibration process

The process through which the simulation platform is calibrated is as follows.

1. The simulation is executed with a “best guess” set of parameters and representa-
tive median results collected, thereby avoiding assumptions concerning normality
of distrubtions.

2. The domain expert identifies aspects of simulation dynamics that deviate from
his perspective of the real system. Both domain expert and modeller discuss to
identify the source of the deviation in the simulation. Both parties’ input are
invaluable: the domain expert brings a wealth of domain-specific understanding,
whilst the modeller, having built the simulation, has a detailed understanding
and intuition of how this information has been abstracted and how the simulation
operates.

3. Potential avenues of model and simulation amendment and development are iden-
tified, and each one is independently integrated into the simulation in turn. In
each case the simulation is then executed to once more obtain representative
median results.

4. Subsequent interactions between domain expert and modeller re-examine the re-
sults and decide upon which amendments are to be permanently adopted into the
simulation. As such, the calibration process is iterative.

Throughout this calibration process, the simulation’s behaviour is examined un-
der two disparate experimental circumstances: that of normal EAE progression and
recovery following induction of EAE; and the progression of EAE with the regula-
tory network disabled. The motivation for calibration against multiple experiments is
explored in the following section. This calibration procedure performs qualitative align-
ment of simulation against in vivo dynamics; quantitative comparison is not possible
for reasons highlighted above: simulation is highly abstractive, encompasses far fewer
cells than exist in an experimental animal, and the existing in vivo data on EAE is
unsuitable for direct comparison with simulation data.

As noted above, the calibration process is undertaken as a collaborative effort be-
tween the modeller (Mark Read) and the domain expert (Dr. Vipin Kumar) in person
at TPIMS®. The calibration process calls for a great deal of collaboration between the
two parties, who must work closely to identify potential sources of misalignment be-
tween the simulation platform and the target system. Given very different backgrounds
of the two parties, it is felt that this activity is best performed in person, face to face.

5.3.3 Calibration against multiple data points

One use of simulation, as reported in the following chapters, is in performing predictive
experimentation: investigating experimental scenarios that are not possible in the real-
world. This is a situation where confidence in a simulation’s faithful representation
of the domain is important; the real-world system’s behaviour under these circum-
stances is not known. An important feature of the present calibration procedure is
its calibration against multiple experimental scenarios, such as knock-out experiments.
Calibration against multiple experimental conditions instead of only one helps avoid
the fitting an incorrect model to a single data point. This is illustrated in figure 5.7.

STorrey Pines Institute for Molecular Studies (TPIMS), San Diego, USA. The institute at which
Dr. Kumar and his lab are based.
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Figure 5.7: Abstract depiction of how calibration against multiple experimental scenarios can
lead to identification of simulation abstractions that better approximate the dynamics of the
real-world domain. A simulation with inappropriate mechanics (e.g., s1) may be fitted to a
single datapoint (z2), but will fail to faithfully replicate real-world dynamics (r) under other
experimental scenarios. Simulation calibration against multiple data points (x1 and x2) could
reveal a simulation to be an inappropriate abstraction of the real-world domain, and lead
to further development (s2). This increases confidence in predictive in silico results under
experimental scenarios that cannot be conducted in the wet-lab (shaded area, and x3).

The space of different experimental scenarios is represented along the x axis, and the
system’s behaviour under those scenarios is depicted on the y axis. The function r(x)
represents the behaviour of the real-world system under scenario x, which originates
from the interactions and dynamics of the many cells and molecules that comprise
the real-world system. Scenarios x1 and z2 are established experiments, where the
real-world system’s behaviour is known. The grey box around scenario x3, on the
other hand, represents a series of experiments that are problematic to perform in the
real-world, and which are to be investigated in silico.

The function sl represents a highly abstract and naive simulation representation
of the real system. It has been calibrated against the scenario x2 only. Function s2
represents another simulation, whose alignment with real-world system behaviour has
been demonstrated under both scenarios x1 and x2. The figure demonstrates that an
inappropriately naive model can be fitted to a single data point, however its behaviour
at other data points can vary considerably from that of the real-world system. It is
conceivable that the parameters of an incorrect model can be manipulated such that its
behaviour corresponds to any single datapoint. Simulation s2 may have been derived
when attempting to further match s1 to the scenario x1, and realising that s1 was too
naive to properly replicate the rich behaviours of the real-world system; some element
of r was inappropriately represented or abstracted, and hence s2 is created. Simulation
s2 is still not an exact analogue of the real-system, but it is demonstrably better than
s1.

Following this logic, the present EAE simulation platform is calibrated against the
domain expert’s expertise under two experimental scenarios: that of physiological re-
covery from autoimmunity following the induction of EAE, and the progression of EAE
in mice where the ability of the regulatory network to regulate CD4Th1 cells has been
revoked®. The demonstrable ability of the simulation to replicate multiple real-world

SThis is achievable in the real domain through a number of different interventions
[Kumar et al. 1996, Beeston et al. 2010]. It is achieved in the simulation through setting the parameter
CD8Treg_cd8TregToCD4ThelperSpecificity DropOff to 0.0, hence revoking the ability of a CD8Treg to
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experiments affords confidence in the results of subsequent predictive experimentation.

Criteria against which the simulation was evaluated for the first scenario are the
population level events described in the domain model, section 4.2.7 and table 4.1a.
In addition, the domain expert indicated that the effector CD4Treg population peak
should should not substantially outnumber the CD4Thl1 population peak.

The criteria for the second scenario are similar to the first, with the exception
that the CD4Th1 population will not generally have been abrogated by 50 days; this is
however stochastic, the CD4Th1 population may reduce to zero in absence of regulation
in some cases, but not in the general case.

5.3.4 Calibrated simulation platform dynamics

Upon the completion of the calibration process, the simulation platform is considered
to satisfactorily reproduce the in vivo dynamics of the target system under two ex-
perimental set ups: the onset and physiological recovery of EAE, and the prolonged
autoimmune symptoms experienced when the regulatory network has been abrogated.
The simulation platform’s dynamics under these two experimental circumstances are
shown in figure 5.8, which depicts the number of effector T cells throughout the system
over time. Note that the ‘physiological regulation’ scenario is considered to be the
baseline behaviour of the simulation.
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——CD4Th2 ——CDA4Th2
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(a) Physiological regulation. (b) Regulation disabled.

Figure 5.8: Effector T cell population dynamics of the calibrated ARTIMMUS simulation.

5.3.5 Outstanding discrepancies between simulation platform and in
vivo behaviour

Although the domain expert has deemed the simulation’s behaviour to be sufficiently
representative of the real-world to commence experimentation, there remains one aspect
of simulation behaviour that deviates from the in vivo system. It is the time at which
effector Treg cells are first generated in the system. The domain expert believes that
these cells appear a few days earlier in vivo than occurs in the simulation platform.
The present section explores three potential causes of this discrepancy.

Firstly, T cells in the simulation traverse and explore spatial compartments in a
random fashion, albeit in a manner that results in their migration out of the compart-
ment within the required time. In vivo, mature DCs form a highly organised network

induce apoptosis in a Qa-1 expressing CD4Th1 cell.
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of cells that specialise in presenting antigen to T cells in a highly efficient manner,
greatly enhancing the likelihood that T cells will interact with DCs carrying antigen
for which they are specific [Lindquist et al. 2004].

Secondly, DC maturation and migration in the simulation is entirely periodic. An
immature DC residing in the CNS will mature only when a pre-determined period of
time has elapsed; during this time it is unsusceptible to any cytokine or environmental
influence. However, in vivo, inflammatory conditions can promote the early matura-
tion and migration of DCs [Kindt et al. 2007, Janeway et al. 2005]. It is possible that
this accelerated maturation promotes earlier presentation of MHC:peptide complexes
required for Treg priming in vivo than in the simulation.

Finally, the simulation platform represents substantially fewer T cells than exist
in the real-world system. The presentation of MHC:peptide complexes required for
initial Treg priming results from physiological turnover of CD4Th cells. Since the
CD4Th population is relatively small during the initial stages of the simulation, naive
CD4Th cells resulting from proliferation will readily gain access to APCs and enter
their proliferative cycles. Hence, these cells will enter apoptosis only at the end of their
full life cycles. Transitions between T cell states are probabilistic; the period of time
that a cell remains in a particular state is extracted from a normal distribution. It is
possible, though relatively unlikely, that a CD4Th cell will spend a smaller than average
duration of time in each of its lifecycle states prior to entering apoptosis. However, in a
system containing many orders of magnitude more cells than currently represented in
the simulation, a large number of CD4Th cells will transit through their life cycles very
quickly, and hence provide the peptides required to prime Treg populations earlier than
currently occurs in the simulation platform. Hence, the computational restrictions that
prevent the simulation from containing realistic numbers of cells can affect the onset
of processes within the system that require threshold quantities of cells to engage in
some low probability behaviour.

5.4 Importance of visualisation and state inspection

The domain model presented in the preceding chapter was arrived at in an iterative
manner, partially through simulation-based inspection of the system-level behaviours
that arise from the cellular dynamics incorporated in each iteration. The iterative de-
velopment of the simulation platform, and the models that underpin it, has greatly
benefited from visualisation of the simulation. The creation of graphical user interfaces
can be time consuming activity; a key motivation for adopting the MASON framework
is the visualisation capability that it provides. A full screenshot of the completed sim-
ulation platform is provided in figure 5.9. The facilities provided by MASON allow the
user to double click on a grid space and inspect and manipulate the state of individual
cells and cytokine concentrations contained therein. These facilities have allowed close
inspection of the system-level behaviours that arise from the cellular-level dynamics
implemented in the simulation platform.

Since it is not known what system-level behaviours will arise from a particular set
of cell-level dynamics upon execution, hence the need for iterative development, it can
be unclear as to whether an unexpected system-level behaviour is a genuine result
of a particular set of cell-level dynamics, or a coding error. Visualisation, and par-
ticularly inspection of cell states, has aided significantly in establishing which is the
case. This concurs with the value attributed to visualisation in “debugging” simula-
tion code, expressed by [Efroni et al. 2003]. Furthermore, in concurrence with Cohen’s
third requirement for useful models of biological systems, to “engage the mind of the
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experimentalist with understandable, visual representations”, visually observing the
interactions between cells and the system-level behaviours that result has greatly aided
understanding of the system being modelled.
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Figure 5.9: Screenshot of the ARTIMMUS simulation. The top right window is being used to
inspect the state of a particular cell in a grid space in the CLN compartment.

5.5 Conclusion

This chapter has reported the specification and construction of ARTIMMUS, the arti-
ficial murine multiple sclerosis simulation platform. Section 5.2 presents the platform
model. Derived from the domain model, the platform model serves as a specification for
the simulation platform. Explicit representations of system-level of emergent properties
are removed from the domain model, since these must emerge from the simulation’s
low level dynamics rather than be programmed directly into it. Any implementation-
specific amendments and additions are reported in the platform model.

The domain model of the previous chapter and the platform model presented here
represent the current iteration of the CoSMoS process; the initial iterations of the CoS-
MoS process failed to produce a simulation that adequately reproduced the dynamics of
the real-world system. Simulation development and evaluation against the real-world
domain is driven by the collaborative calibration procedure outlined in section 5.3.
ARTIMMUS is calibrated against the model of EAE employed by a single specific lab-
oratory. As such, rather than adopting parameters values from disparate sources, as
is the approach of many immunological simulation works reviewed in chapter 3, guide-
lines on parameter values are obtained directly from the domain expert. The role of
the domain expert in the calibration process is to mitigate the considerable variation
found in immunological literature. Furthermore, in circumstances where a particular
aspect of the immune system is simply unknown in immunology the domain expert
can provide guidance and intuition as to the best course of action. The collaborative
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calibration procedure is novel in its simultaneous calibration of the simulation against
multiple real-world experimental scenarios. As explored in section 5.3.3, it is felt that
this feature of the procedure helps avoid fitting an incorrect simulation against only a
single data point.

Lastly, section 5.4 reflects upon the role of simulation visualisation in exploring
simulation dynamics, and assessing whether they are representative of its mechanics or
arise through coding errors.

This chapter has addressed research objectives 2 and 3: to create an agent-based
simulation of EAE, and investigate and develop techniques for calibrating agent-based
simulations. The following chapters report in silico experimentation performed on
ARTIMMUS, and explore statistical techniques for interpreting in silico results in the
context of EAE.
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Chapter 6

Explorative Experimentation

The previous chapter reported the specification and calibration of ARTIMMUS, a sim-
ulation platform for the investigation of EAE. The present chapter is concerned with the
statistical exploration of the dynamics comprising ARTIMMUS, and the interpretation
of results of in silico exploration.

Section 6.1 presents the motivation and goals of this chapter. Section 6.2 establishes
several simulation responses, metrics of simulation behaviour required for the analyses
performed in this chapter. The section goes on to develop a system for assigning similar
autoimmunity severity scores to ARTIMMUS as are used in wet-lab experimentation.
In terms of the CoSMoS process, this system constitutes a mapping between the results
model and the domain model. A technique for establishing the relationship between
the accuracy of averaged simulation results, and the number of simulation executions
sampled in generating them is derived in section 6.3. This is referred to as the consis-
tency analysis technique. Section 6.4 describes the application of a global sensitivity
analysis, based on latin hypercube sampling, to ARTIMMUS. This analysis explores
simulation mechanics, and how the various pathways and components of the simula-
tion constitute its overall behaviour. Section 6.5 derives a novel robustness analysis
technique that is used to explore the fragility of simulation behaviour with respect to
those simulation parameters that were assigned arbitrary values, as described in the
previous chapter. The theory underpinning section 6.5 is expanded upon in section 6.6
to propose a method for employing robustness analysis jointly with sensitivity analysis
to qualify the significance of simulation-derived results in terms of the original domain.
This chapter is concluded in section 6.7.

6.1 Motivation and goal

This chapter is concerned with the exploration of simulation through statistical tech-
niques, and the interpretation of in silico results into the original domain. The chapter
addresses research objectives 4 and 5: to perform novel in silico experimentation using
ARTIMMUS, and to develop and apply statistical techniques for interpreting in silico
results in the context of EAE.

Chapters 1 and 3 have explored how simulations are abstract representations of their
target domains, and how in silico results cannot necessarily be directly interpreted into
the original domain. Rather, the link between simulation and the real-world must be
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established. Real-world experimentation in the Kumar lab makes use of a scale for
grading the severity of autoimmunity experienced in an experimental animal on a 6
point scale, reviewed in section 2.2. This chapter makes use of statistical and signal
processing techniques in developing a system to grade simulation results on a similar
scale. As such, in silico results may be considered and discussed in similar terms to
those of the wet-lab. Note that results will still not necessarily translate directly across,
but the grading mechanism does to some extent bridge the gap.

Agent-based simulations such as ARTIMMUS are stochastic in nature, and a pre-
liminary consideration for interpreting in silico results in terms of the real domain is
ensuring that they are representative of the simulation itself. This is handled by the
novel consistency analysis technique described in this chapter. It is used to estab-
lish the number of simulation executions required to minimise the effect of simulation
stochasticity on averaged simulation results to an acceptable level.

The chapter makes use of a sensitivity analysis technique in exploring the influence
and criticality of cells, pathways and parameters to ARTIMMUS’s overall dynamics.
Broadly speaking, such methods relate variation in a system’s output to variation in
its inputs. Global sensitivity analyses operate by simultaneously perturbing system in-
puts and measuring how the simulation’s outputs respond. The pathways, interactions
and mechanics that comprise the simulation are annotated by parameter values. For
example, CNS macrophages can apoptose neurons through the secretion of TNF-a, but
the exact secretion rates and sensitivities to this cytokine are dictated by parameter
values. Parameters found to be highly influential on simulation behaviour represent
critical pathways and components within the system. Conversely, those found to be
relatively uninfluential indicate either redundancies in the system, or pathways and
components that are of no consequence. Global sensitivity analyses that reveal this in-
formation can not be performed in real-world experimental animals, and as such they
constitute novel in silico experimentation.

The last strand of work reported in this chapter concerns establishing the signifi-
cance of simulation-based results in terms of the original domain. This relates to the
certainty one has in the values that simulation parameters are assigned. Chapter 5
details how simulation parameters are devised: some are informed by domain-specific
knowledge, some are iteratively tuned in order to obtain results that match in vivo
behaviour, and some are arbitrarily assigned. If simulation behaviours and predictions
critically hinge on parameter values that were assigned arbitrary values, then the pre-
dictions may not hold for the real-world domain, and might instead be artifacts of
arbitrarily assigning particular parameter values.

To explore this possibility, this chapter develops and employs a novel robustness
analysis to investigate the ranges of parameter values for which simulation behaviour is
statistically consistent. If simulation behaviour changes significantly when arbitrarily
assigned parameters are perturbed by a small amount, then choosing different values for
these parameters may have a substantial impact on simulation results. Such a discovery
does not necessarily undermine activities to explore a system through simulation, but
it is important to convey such criticalities when presenting simulation results; other
members of the scientific community may have reason to query or contest assumptions
and parameter values used. If the biologically plausible ranges of parameter values
are known, then these robustness and sensitivity analysis techniques may be used to
identify the simulation behaviours at the extremities of ranges. These represent the
range of behaviours that established data can attest to, and experimentation that
results in behaviours exceeding such ranges have a stronger case for being argued as
significant in terms of the real domain. The way in which sensitivity and robustness
analyses can accomplish this are explored in this chapter.
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Figure 6.1: The eleven responses derived from simulation behaviour, displayed on graphs depict-
ing baseline T cell dynamics and mean EAE severity over time. These are: (a), the maximum
effector T cell population sizes, the times at which they occur, and the number of CD4Th1 cells
at 40 days; (b) maximum EAE severity, and EAE severity at 40 days.

Firstly, however, sensitivity and robustness analyses require that system responses,
metrics of simulation behaviour, be defined. The results of sensitivity and robustness
analyses can only be considered in terms of the system responses. The chapter com-
mences by deriving nine responses based on effector T cell dynamics. A further two
responses are derived from assigning EAE autoimmunity severity scores to simulation
behaviour.

6.2 Analysis responses

Sensitivity and robustness analysis techniques make use of system responses in their
analyses. A response is some aspect of system behaviour that may be measured. Anal-
ysis results express the relationship between system parameters and system responses.

A number of responses have been adopted in analysing ARTIMMUS. Nine are
derived directly from the four T cell populations that exist within the simulation.
These are: the maximum number of effector CD4Th1, CD4Th2, CD4Treg and CD8Treg
cells reached within the simulation at any point during its execution; the time at
which each of those four peaks are attained; and the number of effector CD4Th1 cells
residing within the simulation at 40 days post immunisation. These responses are
graphically depicted in figure 6.1a. This choice in responses allows analyses to reveal
how parameters influence different aspects of autoimmune and regulatory behaviour
independently. The strength of each immune response is indicated by the peak number
of T cell populations, and the speed of onset is represented by the time at which they
occur. The number of effector CD4Th1 cells residing in the system at 40 days reveals
the extent to which autoimmunity has been curtailed.

A further two responses result from assigning EAE severity scores to simulation ex-
ecutions. The significance of an in vivo experimental intervention is expressed through
changes in autoimmunity severity experienced by groups of mice. To better integrate
simulation-derived results with those obtained in vivo, a means of assigning autoim-
munity severity scores to simulation executions has been devised, and is discussed in
section 6.2.1.

Two additional responses are based on this in silico EAE severity scoring system,
depicted in figure 6.1b. They are the severity of EAE at 40 days post-immunization,
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and the maximum severity experienced at any point in time. These responses permit
analysis of how simulation parameters influence the severity of autoimmunity in the
simulation, and the ability of the regulatory immune response to combat it. Further,
they align with similar measures employed in vivo.

6.2.1 In silico EAE Severity Scoring

This section describes the derivation of a system to grade the severity of autoimmunity
experienced by simulation executions using the same 0 to 5 scale as employed in real-
world experimentation. This scoring permits a better interpretation of simulation-
derived results into the real-world domain.

In wvivo, the severity of autoimmunity experienced by an experimental animal is
scored on a scale of 0 to 5, describing the extent of paralysis in the mouse, as described
in section 2.2. The significance of an intervention’s effect is measured in terms of this
scale, typically differentiating the maximum scores reached by individuals in control
and experimental groups, or the length of time for which EAE symptoms persist.

This disease score is measured by observing an entire mouse; it results from a wide
range of complex interactions between the mouse’s immune system and its central
nervous system. The number of immune cells, their levels of activity, the degree of
inflammation, and the resilience of the mouse’s central nervous system to the effects of
immune system cells all contribute to the overall severity of paralysis.

Figure 6.2a shows the in vivo progression of EAE in groups of five mice. The
mice depicted in window A experience physiological recovery, through the action of
regulatory T cells. The mice in window C are similarly induced into EAE, however
their CD4Treg populations have been depleted until around 30 days. It is difficult to
differentiate the progressions of individual mice, as such figures 6.2b and 6.2¢ provide
clarification. The progressions of EAE differ significantly between individual mice.
EAE symptoms in control mice, window A, are generally less severe than in those in
which CD4Treg cells have been temporarily depleted, window C.

Further evidence of the variation of autoimmunity experienced amongst indi-
vidual mice, and the influence of regulation in mediating recovery, is provided by
[Beeston et al. 2010]. The authors investigate the manner through which CD8Treg
cells induce apoptosis in encephalotigenic CD4Th1 cells, and conclude that regulation
is critically dependent on the perforin pathway' [Beeston et al. 2010]. The authors
investigate the potential for pre-immunization vaccination with Fr3 and CDR1/2 pep-
tides, derived from encephalitogenic CD4Thl cells, to reduce autoimmune symptoms
in mice. The control groups of mice receive sham vaccinations, whereas experimental
groups receive the peptides. This is performed in both wild-type (perforin +/+) and
perforin —/— (knockout) mice, comprising a total of four experimental groups. The
maximum EAE scores experienced by individuals in each of these four groups are re-
ported, and are replicated in table 6.1a. The proportion of mice that reach a maximum
of each possible score can be calculated, as shown in table 6.1b.

In Beeston et al.’s perforin-knockout mice, immunisation for EAE results in a ~40%
mortality rate, as opposed to ~10% in control mice. 78% of control mice experience
maximum EAE severities of level 3 or less, whereas only 22% of mice with disabled reg-
ulatory capacity experience severities of level 3 or less. Whereas [Kumar et al. 1996]’s
experimental procedure temporarily disables regulation through depletion of CD4Treg
populations for 3 weeks, the regulatory pathway in perforin-knockout mice is perma-
nently obstructed. As a result, the severity of autoimmune symptoms are increased.

! The perforin pathway is one of many though which cells can induce apoptosis in one another.
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Figure 6.2: Example in vivo data on the progression of EAE in individual mice under conditions
of physiological recovery, regulation temporarily disabled. Data taken from [Kumar et al. 1996]
figure 3, windows A and C. Figures 6.2b and 6.2¢ provide clarification of the data; hence lines
are slightly staggered.

A faithful in silico EAE severity scoring system should reproduce the variation in
the autoimmunity progressions of individual mice, and the difference in progressions
resulting from intact or obstructed regulatory capacity. The remainder of this section
details how data from [Beeston et al. 2010] and [Kumar et al. 1996] is used to calibrate
an in silico EAE severity grading system meeting these requirements. The grading
system operates by relating the rate of neuronal apoptosis in the simulation to EAE
severity scores.

6.2.1.1 Relating rate of neuronal apoptosis to EAE severity

The in silico EAE severity scoring system operates by assigning scores based on the
rate of neuronal apoptosis, since this is a direct result of autoimmune activity. The
relationship between rates of neuronal apoptosis and the corresponding EAE severity
score is based on threshold values for the number of neurons apoptosed in an hour of
simulated time.

Threshold values are calculated through calibration against in vivo data, obtained
from [Beeston et al. 2010] as described above, in which mice undergoing two experi-
mental procedures are investigated. These are: the physiological recovery from EAE in
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’ Mice H Treatment ‘ Maximum score for each mouse ‘
Perforin +/+ || control (5,4,3,3,2,2,2,1, 1)
vaccination | (3,1, 1, 1,0, 0, 0, 0, 0, 0, 0)
Perforin —/— || control (5,5, 5,4,4,4,3)
vaccination | (5,5, 5,54, 4,4,4,3,3,1)

(a) Wildtype (perforin +/4) and perforin —/— (knockout) mice vaccinated with either
CD4Thl-derived peptides or control substance, and induced into EAE. Data is replicated
from table 2 of [Beeston et al. 2010].

| Score | PR (%) | RD1 (%) [ RD2 (%) | RD 1 + 2 (%) |

5 11.1 42.9 36.4 38.9
4 11.1 42.9 36.4 38.9
3 22.2 14.3 18.2 16.7
2 33.3 0 0 0
1 22.2 0 9.1 5.6
0 0 0 0 0

(b) The proportion of mice that reach maximum EAE severity scores. PR, physiological
recovery, perforin +/+ control. RD 1, regulation disabled, perforin —/— control. RD 2,
perforin —/— vaccination. RD 1 4 2, combined groups of RD 1 and RD 2; these groups may
be combined since perforin —/— mice are unable to regulate encephalitogenic CD4Thl cells,
regardless of whether they received control or vaccination substances.

Table 6.1: In vivo data showing the maximum scores reached by different experimental groups
of mice.

wild-type mice, where regulatory action is intact; and mice experiencing exaggerated
autoimmune symptoms since the ability of CD8Treg cells to regulate the autoimmune
response has been permanently disabled. Beeston et al.’s data is reproduced in ta-
ble 6.1a, and the proportions of mice experiencing particular maximum EAE severities
following immunisation are reported in table 6.1b.

These proportions are used to calibrate threshold values relating the rate of neu-
ronal apoptosis to in silico EAE severity scores. Threshold values are derived from
physiological recovery data and disabled regulation data independently, and are then
combined. The physiological recovery data adopted is the ‘PR’ column in table 6.1b.
The regulation disabled data adopted is the ‘RD 1 4 2’ column in the same table, which
is derived from combining the perforin —/— vaccination and control groups; since per-
forin —/— mice are unable to regulate the autoimmune response the vaccination is of
no consequence, and the control and vaccination groups may be combined to provide
more data samples.

Representative simulation behaviours reflecting physiological recovery and regula-
tion disabled experimental conditions are obtained in the form of 1000 simulation execu-
tions for each. Physiological recovery behaviour is obtained using the standard baseline
simulation parameters. Conditions of disabled regulation are achieved through setting
the simulation parameter CD8Treg_cd8TregToCD4ThelperSpecificity DropOff to 0.0,
which completely prevents CD8Tregs from inducing apoptosis in CD4Th1 cells. The
maximum number of neurons apoptosed in any hour is extracted for each simulation
execution. Expressed as a cumulative distribution function, this data indicates the
proportion of simulations that reach at most a particular rate of neuronal apoptosis.
The solid blue and red lines on figures 6.3a and 6.3b represent the cumulative distribu-
tion functions for 1000 simulation executions under conditions of physiological recovery
and disabled regulation respectively. Under physiological recovery, simulation neuronal
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apoptosis rates always approach zero around day 35, with peak rates occurring around
day 15. However, in the case of disabled regulation neuronal apoptosis rates do not
return to zero, and high peak values may occur much later following immunisation. As
such, cumulative distribution plots are based neuronal apoptosis rates observed within
the first 40 days of simulation time for physiological recovery, and the first 60 days for
regulation disabled. Figures 6.4a and 6.4b show the number of neurons killed per hour
in example simulation executions under each experimental condition.

The proportion of in vivo mice that experience particular maximum severities of
autoimmunity are used to define the thresholds relating rates of neuronal apoptosis to
each severity score. This is demonstrated in figure 6.3. For example, column ‘PR’ in
table 6.1b indicates that 11% of mice reach a maximum score of 5. Figure 6.3a indicates
that only 11% of simulation runs reach a maximum rate of neuronal apoptosis of 111
neurons or more per hour. As such, 111 neurons per hour is mapped to level 5.

As may be seen in figures 6.3a and 6.3b, the threshold values obtained for physio-
logical recovery do not exactly reflect those obtained under disabled regulation. The
final threshold value adopted for each severity score is the median average of the values
obtained under each data set. This is demonstrated in figures 6.3c and 6.3d.

Figure 6.4 depicts the assignment of EAE severity severity scores to two examples
simulation executions, derived under conditions of physiological recovery and disabled
regulation. EAE severity scores are assigned to mice in vivo every one or two days.
In vivo, the severity of autoimmunity does not change sufficiently within 24 hours to
warrant a more frequent sampling. In order to align in silico autoimmunity grading
with wet-lab practice, the rate of neuronal apoptosis is sampled once every 24 hours,
and severity scores assigned based on these samples. The sample rate of neuronal
apoptosis when deriving cumulative distribution functions from which threshold values
are extracted is also once every 24 hours. Hence, although both examples exceed the
level 5 threshold, neither are assigned this score since the breach does not fall on one of
the daily sample points. Note that where such a breach does occur, level 5 is assigned
for the remainder of observation time, regardless of the neuronal apoptosis data from
that point onwards; level 5 represents death.

6.2.1.2 Smoothing neuronal apoptosis data

Figures 6.4a and 6.4b depict the number of neurons apoptosed each hour for exam-
ple simulation executions. There is considerable variation in the number of neurons
apoptosed from one hour to the next, and one day to the next. As a result, in sil-
ico EAFE severities scores change score frequently, and with large magnitudes. This is
not the case with the progression of EAE as observed in vivo, figure 6.2, where scores
remain stable for several days at a time. Creating an accurate reflection of in wvivo
EAE progression in ARTIMMUS requires that the trend of neurons apoptosed per
hour be extracted from this data, with the high frequency components removed. This
is achieved through smoothing the data using a sliding window filter. Sliding window
filters take as a parameter a window size. They operate by adjusting each value in the
data set to the median of all values in the window, with the window being centered
on the value being adjusted. The effect of applying the sliding window filter with a
variety of smoothing window sizes is depicted for an example simulation execution in
figure 6.5

115



6.

EXPLORATIVE EXPERIMENTATION

o o o
B (2] 0
R W =

Cumulative distribution function

o
[

0
60 80 100 120 140 160

Neurons apoptosed (cells)
(a) Defining thresholds relating neurons
apoptosed in an hour to EAE severity scores
for physiological recovery data. The solid
blue line represents the cumulative distribu-
tion function.

o o o
S [=2] o]
o s N~

Cumulative distribution function

o
()

80 100 120 140 160
Neurons apoptosed (cells)

(b) Defining thresholds relating neurons
apoptosed in an hour to EAE severity scores
for regulation disabled data. The solid red
line represents the cumulative distribution
function.

Neurons apoptosed / hour
Score || Physiological recovery | Regulation disabled | Final
5 111 106 108.5
4 104 96 100
3 98 89 93.5
2 87 89 88
1 65 75 70

(¢) Threshold values for physiological recovery, regulation disabled, and the final values
adopted based on their median.
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(d) Final thresholds, based on the median values for thresholds defined using data phys-
iological recovery and regulation disabled, figures 6.3a and 6.3b respectively.

Figure 6.3: Demonstration of how threshold values for relating the number of neurons apop-
tosed in an hour of simulation time to EAE severity scores is achieved. Figure 6.3a shows how
thresholds are selected based on the proportion of simulation runs that should attain particular
maximum EAE scores for physiological recovery data. Figure 6.3b shows thresholds for regu-
lation disabled data. The median for each of these thresholds form the final thresholds used in
grading in silico EAE severities.
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Figure 6.4: The assignment of in silico severity scores by thresholding on the rate of neuronal
apoptosis, for conditions of physiological recovery and disabled regulation. EAE severities are
assigned by sampling rates of neuronal apoptosis every 24 hours, hence level 5 is not assigned,
despite the corresponding threshold being exceeded in several hours.
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The sliding window filter is applied to neuronal apoptosis time series data both
when deriving threshold values through the activities described above, and also to
simulation data before applying thresholds to grade in silico autoimmune severities.

In addition to removing the high frequency variation in the neuronal apoptosis
data, smoothing in this manner alters the cumulative distribution functions for the
maximum number of neurons apoptosed per hour. As such, the thresholds relating
rates of neuronal apoptosis to EAE severity scores are altered. Further, the alterations
to cumulative distribution functions obtained under conditions of physiological recovery
and disabled regulation differ, since the rate of neuronal apoptosis under physiologi-
cal recovery returns to zero, whereas under disabled regulation it does not. As such,
some choices in smoothing window size better align the thresholds obtained under these
two data sets than others. The choice of window size influences the final thresholds
adopted in grading simulation executions, and different smoothing functions affect the
final proportions of simulation runs that reach maximum severity scores. These fi-
nal proportions for in silico EAE progressions may be compared to the initial in vivo
specifications. The choice in smoothing function is, hence, non-trivial. These obser-
vations together form the following three criteria used to establish the optimal choice
in smoothing function, the exact measures for each are explained in more detail in the
sections that follows:

1. The frequency and magnitude of changes in in silico EAE scores over time must
reflect that of in vivo data, both for conditions of physiological recovery and
disabled regulation.

2. The threshold values relating rates of neuronal apoptosis to each EAE severity,
obtained under conditions of physiological recovery and disabled regulation, must
lie in close proximity to one another.

3. The proportion of in silico simulation executions reaching maximum EAE scores
must resemble the in vivo specification, both for conditions of physiological re-
covery and disabled regulation.

The degree to which different choices of smoothing function window size satisfy each
of these criteria are expressed in terms of sum of squared differences measures, each of
which is described in detail in the sections that follow. The final choice in smoothing
function is based on these measures, and is detailed in section 6.2.1.6. A variety of
smoothing window sizes are investigated, ranging from 1 hour (no smoothing) to 481
(smoothing based on 10 days either side of every data item).

6.2.1.3 Measuring frequency and magnitude of changes in in silico EAE
progression

Figure 6.7 demonstrates that when no smoothing is applied to neuronal apoptosis
data when deriving and applying threshold values indicating autoimmune severities,
the resultant EAE progressions contain high frequency fluctuations. In wvivo mice do
not typically lapse into and out of EAE symptoms every day, and do not typically
experience day-to-day changes spanning several severity scores. The alignment between
frequency and magnitude of severity score changes for in silico and in vivo data is
measured using the Fourier transform of the respective data sets [Bracewell 1999].
The Fourier transform is a mathematical operation that decomposes a signal, in
this case EAE severity scores, into its constituent frequencies. It expresses a signal
in terms of sine waves, indicating the magnitude and phase of each. The magnitude
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Figure 6.5: Variation in the number of neurons apoptosed per hour of simulation time, and
the effect of different sizes of smoothing window when smoothing data. Data is of an example
simulation execution under condition of physiological recovery.

of each component sine wave, with phase information removed, is termed the power.
Application of the Fourier transform to in vivo EAE progression data sets gives an
indication of how frequently in vivo severity scores change, and how big these changes
are. Similar application of the Fourier transform to in silico EAE progressions permits
comparison with in vivo data.

The Fourier transform has been applied to the two in vivo EAE progression data
sets outlined in [Kumar et al. 1996], discussed above and depicted in figure 6.2. These
datasets are referred to as ‘Kumar Fig3A’ and ‘Kumar Fig3C’. The Fourier transform
has also been applied to an additional data set obtained from the Kumar lab, termed the
‘B10.PL’ dataset, depicted in figure 6.6. In this experiment mice have been immunized
in a manner that does not entail complete recovery by 30 days. It is included here
as an additional example of the frequency with which in vivo EAE scores change.
These Fourier transform data allow comparison between in vivo and in silico EAE
progressions, and are shown alongside similarly derived simulation data on the figures
that follow. The Fourier transforms of in wvivo data shown on such figures are the
medians, taken across the individual mice comprising the experimental group. In all
cases, the Fourier analysis is applied to the first 30 days of in vivo and in silico data.
This is to permit a fair comparison between in silico and in vivo data. The ‘Kumar
Fig3A’ and ‘Kumar Fig3C’ data sets represent experiments analogous to the conditions
of physiological recovery and disabled regulation? respectively.

The high frequencies and magnitudes with which in silico EAE progressions change
score when no smoothing is applied to the neuronal apoptosis data is depicted for two
examples in figure 6.7. The transforms of the simulation data are shown in the context
of those for the three in wvivo data sets. The Fourier transform of the example in
figure 6.7a reveals larger high frequency powers and smaller low frequency powers than
the in vivo data sets. Figure 6.7b also reveals unrealistically large high frequency

2Whilst the procedure employed to disable regulatory action in this dataset is not permanent, its
effects are believed to extend beyond 30 days.
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Figure 6.6: EAE progression of 7 mice of the ‘B10.PL’ strain, having been immunized for EAE.
Data obtained from the Kumar lab.

powers.

Figure 6.8 depicts EAE progressions and corresponding Fourier transforms of the
same two simulation executions, but using a different mapping of neuronal apoptosis
rates to EAE severities. Here the mapping is derived and applied using a smoothing
window size of 157 hours. As such, simulation and in vivo Fourier transforms are more
closely aligned.

The above examples demonstrate that the sliding widow sizes influence the fre-
quency and magnitude of changes in silico EAE scores. A variety of smoothing window
sizes have been examined, and their ability to align in silico EAE progressions with in
vivo data measured through the following procedure.

1. Given a smoothing window size, the threshold values relating neuronal apoptosis
rates to severity scores are calculated.

2. These thresholds are used to calculate EAE progressions for each of 1000 simula-
tion runs. The Fourier transform of each EAE progression is taken, and median
values for each power across all 1000 runs are calculated. This is performed
independently for conditions of physiological recovery and disabled regulation.

3. Averaged in silico Fourier transforms are contrasted with their in vivo counter-
parts by calculating sum of squared difference measures. In silico physiological
recovery data is contrasted with the Kumar Fig3A data set, whilst disabled reg-
ulation data is contrasted with the Kumar Fig3C data set.

a) For each frequency component in turn, the powers of the in silico and in
vivo transforms are identified. Both are then divided by whichever is larger,
hence transforming absolute numbers into normalised numbers.

b) The difference between these normalised figures is then calculated, and
squared.
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¢) The measure of difference between the in silico and in vivo data set is ob-
tained by summing these squared normalised differences across all frequency
components. The normalisation ensures that the difference between each fre-
quency component is treated equally, rather than being biased towards those
that have larger absolute power values.

The sum of squared normalised difference measures obtained for various smoothing
window sizes are shown on figure 6.9.

6.2.1.4 Measuring alignment of thresholds derived under physiological
recovery and disabled regulation

As noted previously, the size of window used when smoothing neuronal apoptosis data
influences the cumulative distribution functions that describe the proportion of sim-
ulation executions that reach particular maximum numbers of neurons apoptosed in
an hour. As such, the thresholds derived from identifying the proportion of simulation
runs required to reach a particular level of EAE severity change with window size. The
cumulative distribution functions derived under conditions of physiological recovery
and disabled regulation do not change in the same manner, and as such the alignment
of threshold values derived under each of these conditions changes with the choice of
smoothing window size.

The alignment between the threshold values obtained under each condition is mea-
sured using a sum of squared normalised differences measure, which informs the even-
tual choice in smoothing window size. Given a particular smoothing window size, the
physiological recovery and regulation disabled data sets are smoothed, and the thresh-
old values relating the number of neurons apoptosed in an hour to EAE severity scores
for each data set are derived, as described above in section 6.2.1.1. For each severity
score in turn, the two threshold values for that severity are divided by whichever is
larger, hence expressing one threshold as a proportion of the other®. The difference
between these normalised threshold values is calculated and then squared. The sum of
these squares for all 5 severity levels forms the eventual score for how well threshold
values are aligned given a particular smoothing window size.

Figure 6.10 shows how different smoothing window sizes align threshold values, as
defined through the sum of squared normalised difference measures described above.

3 As with the previous sum of squared difference measure, differences here are normalised to ensure
that each component of the sum of squares measure is treated equally, rather than biasing towards
larger severity scores which will inherently be associated with larger figures for neuronal apoptosis
rates.
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Figure 6.7: Example EAE progressions for simulations under conditions of physiological recov-
ery and disabled regulation. The mapping of neuronal apoptosis rates to EAE severity was
derived using no smoothing of neuronal apoptosis data. The resultant EAE progressions are
unrealistic with respect to the frequency with which EAE scores change, as demonstrated by
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(a) Example EAE progression in simulation of physiological recovery, and
corresponding Fourier transform.
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(b) Example EAE progression in simulation with regulation disabled, and
corresponding Fourier Transform

the high powers of low period components in the Fourier transforms.
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(a) Example EAE progression in simulation of physiological recovery, and
corresponding Fourier transform.
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(b) Example EAE progression in simulation with regulation disabled, and
corresponding Fourier Transform

Figure 6.8: Example EAFE progressions for simulations under conditions of physiological recov-
ery and disabled regulation. The mapping of neuronal apoptosis rates to EAE severity was
derived using a smoothing window size of 157 hours. The resultant EAE progressions closely
resemble the frequency analysis characteristics of in vivo EAE.
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Figure 6.9: The sum of squared normalised difference measures indicating how well various
smoothing window sizes align frequency and magnitude of changes in in silico EAE scores over
time with those observed in vivo.
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Figure 6.10: The sum of squared normalised differences measure indicating the alignment of
threshold values relating neurons apoptosed per hour to EAE severity scores derived under
conditions of physiological recovery and disabled regulation for various smoothing window sizes.
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6.2.1.5 Measuring alignment of proportions of simulation and in vivo
data reaching maximum severity scores

The final thresholds adopted in relating rates of neuronal apoptosis to EAE severity
scores are derived from thresholds calculated under conditions of physiological recov-
ery and disabled regulation, as described above. Median values are taken, since the
values obtained under each condition do not align exactly. Hence, in adopting median
threshold values, the proportions of in silico executions that reach particular maximum
severity scores under each circumstance no longer exactly match their in vivo counter-
parts. The discrepancy between actual in silico and in vivo proportions depends on
where the discrepancies in threshold values lies on the cumulative distribution func-
tions used to derive them. This may be seen in figure 6.3, by observing how threshold
values move between graphs (a) and (b), and (d). The size of the discrepancies between
proportions of in silico and in vivo executions reaching maximum severity scores must
be considered when selecting a smoothing window size. Discrepancies are measured
for both physiological recovery and disabled regulation conditions, using the following
procedure:

1. Given a smoothing window size, the final thresholds used to grade simulation
EAE severities are calculated.

2. The same smoothing window size is used to smooth the neuronal apoptosis time
series data from 1000 simulation executions.

3. Each simulation execution is graded using the final thresholds, and the maximum
score attained in each is extracted. Hence, the proportion of simulation executions
reaching each maximum severity is calculated.

4. For each EAE severity score (0 to 5) the difference between the proportion of the
population experiencing that maximum score in vivo and n silico is calculated
and squared. The squared differences for all severities are then summed to derive
the final measure.

The procedure is performed twice, using both physiological recovery and disable
regulation simulation data. Figure 6.11 depicts these discrepancies between in silico
and in vivo proportions for each condition, for various smoothing window sizes. Fig-
ure 6.12 shows the sum of squared differences measures for various smoothing window
sizes.

6.2.1.6 Determining an appropriate size of smoothing window

The most appropriate smoothing window size to be adopted in mapping neuronal apop-
tosis rates to EAFE severity scores is determined through the five sum of squared differ-
ences metrics described in the above sections. These metrics describe how well various
smoothing window sizes deliver EAE progressions that change with similar frequency
and magnitudes as observed in vivo, figure 6.9; align the threshold values obtained un-
der conditions of physiological recovery and disabled regulation, figure 6.10; and deliver
similar proportions of in silico and in vivo individuals reaching particular maximum
severity scores, figure 6.12.

In establishing the most appropriate smoothing window size, data derived through
each of these five metrics have been normalised in turn, dividing the sum of squared
difference value for each smoothing window size by the maximum value for any smooth-
ing window size. The normalised data from each of these five measures is plotted on
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Figure 6.11: The proportion of EAE progressions reaching particular maximum severity scores,
for various smoothing window sizes. Values for in silico data are depicted as solid lines, whereas
value for in vivo data are dotted lines. Data derived under conditions of physiological recovery
and disabled regulation are shown on separate graphs. Note that where the proportions for
multiple in vivo severity scores are equal, see table 6.1b, lines have been separated slightly for
clarity.
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Figure 6.12: The sum of squared difference measures indicating the separation between the
proportion of in silico and in vivo individuals reaching particular maximum EAE severity
scores, obtained under various smoothing window sizes. Data obtained under conditions of
physiological recovery and disabled regulation are shown.

figure 6.13a. The normalised data for each metric are summed for each smoothing
window size, as depicted on figure 6.13b, and the smallest sum of sum of squared dif-
ferences value is associated with a smoothing window size of 157 hours. EAE severity
scores assigned to in silico data for the remainder of this thesis are done so through
application of threshold values derived using this smoothing window size, and applied
to simulation neuronal time series data having been smoothed in a similar manner.
The threshold values and their derivation are shown in figure 6.14.
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(b) The sum of the five metrics shown in figure 6.13a. The smallest value
is associated with a smoothing window size of 157 hours.

Figure 6.13: Determining that a smoothing window size of 157 hours best satisfies the five
criteria for the most appropriate mapping of neuronal apoptosis rates to in silico EAE severity
scores.
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Neurons apoptosed / hour || Proportions (in vivo | in silico)

Score PR ‘ RD ‘ Final PR(%) ‘ RD(%)

5 79.29 | 77.98 78.64 11.1 | 14.5 38.9]33.8
4 76.79 | 72.95 74.96 11.1] 20.0 38.9129.5
3 73.82 | 69.48 71.65 22.2| 25.0 16.7 | 22.1
2 69.17 | 69.48 69.32 33.3|17.0 0.0]9.7
1 49.99 | 63.32 56.66 22.2 | 22.8 5.6 4.9
0 0.0 0.2 0.0 | 0.0

(c) Threshold values for physiological recovery (PR), regulation disabled (RD), and the
final values adopted based on their median. The proportions of mice reaching particular
maximum EAE severity scores, and the proportions of simulations reaching similar scores

using final threshold values are also shown.
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(d) Final thresholds, based on the median values for thresholds defined using data phys-
iological recovery and regulation disabled, figures 6.14a and 6.14b respectively.

Figure 6.14: The derivation of threshold values for relating rates of neuronal apoptosis to in
silico EAE severity scores, and the proportions of simulation reaching particular maximum
EAE severity scores, for the final smoothing window size of 157 hours.
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6.3 Compensating for aleatory uncertainty

Sensitivity and robustness analyses are performed on a system in order to elucidate
the relationships between its inputs and its outputs. Stochastic systems, however,
introduce noise (termed aleatory uncertainty) [Helton 2008]) into these analyses. Two
simulation executions, with different seeds, can produce vastly different results given
the same input parameters. The results obtained from in silico experimentation are
influenced by both the nature of the system, and the aleatory uncertainty that arises
within it. Employing averaged results from many executions of a stochastic system
can reduce the influence of aleatory uncertainty on analysis results, making them more
representative of a simulation’s dynamics, and the experimentation performed upon it.

Hence, there exists a tradeoff in which a balance must be struck. Stochastic-agent
based simulations, such as ARTIMMUS, can be computationally expensive to exe-
cute. The number of simulation executions that are sampled must represent a balance
between minimising the effect of aleatory uncertainty in simulation results, and the
computational expense that can be afforded. The following novel procedure is em-
ployed to elucidate the relationship between these two conflicting criteria, and hence
inform the choice of the number of simulation executions employed in conducting in
stlico experimentation. It is termed the consistency analysis procedure.

The procedure is based around the Vargha-Delaney A test, a non-parameteric ef-
fect magnitude test that indicates the scientific significance of the difference between
two populations of samples [Vargha & Delaney 2000]. It compares two populations of
samples, A and B, and returns a value between 0.0 and 1.0 that indicates the prob-
ability that a randomly chosen sample from population A is larger than a randomly
chosen sample from population B. In this manner it may be used to assess the dif-
ference between two populations of samples. A value of 0.5 indicates no difference,
where values above 0.71 or below 0.29 indicates a “large” difference in the distributions
[Vargha & Delaney 2000]. Table 6.2 details how A test scores relate to various magni-
tudes of difference between two populations. The matlab code used to generate A test
scores is provided in appendix section C.1.

Difference Large Medium Small None Small Medium Large
A test score || <0.29 <0.36 <0.44 050 >0.56 >0.64 >0.71

Table 6.2: The magnitude of effect size indicated by A test scores [Vargha & Delaney 2000].

The procedure operates by assessing the scientific significance of stochasticity on
distributions of simulation response values, and how this may be reduced by increasing
the sample size of simulation executions used in gaining representative indications of
simulation behaviour. The A test is used to compare response distributions obtained
using the exact same parameters, and hence any difference observed is attributed purely
to stochasticity in the simulation. The procedure is as follows.

For each distribution sample size n to be investigated, twenty sets of n simulation
executions are obtained, using the baseline simulation parameter values. Since no pa-
rameter values are changed, the distributions from which response samples (simulation
executions) are being drawn remains static. The resulting twenty sets of samples will
more closely resemble one another as n increases. With respect to the ARTIMMUS
simulation, eleven distributions are obtained for each of the twenty sets of experimen-
tation, based on the eleven responses described above in section 6.2. The distributions
arising from the first of the twenty sets of simulation runs is compared to corresponding
distributions from the remaining nineteen sets using the A test. A score of 0.5 is always
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6.3. Compensating for aleatory uncertainty

indicated for the first set of experimentation, since it this data is being compared to
itself. Plotting each of the eleven A test scores against the twenty sets of experimen-
tation indicates the magnitude of effect that aleatory uncertainty has on simulation
results for different sample sizes.

Figure 6.15 demonstrates how sample sizes of 5, 50 and 500 influence the effect of
aleatory uncertainty on A test scores. Increasing the number of samples used when
generating response distributions decreases the differences in those distributions that
arise because of aleatory uncertainty. The maximum A test scores across these 19 mea-
sures can be plotted against the sample size n, as in figure 6.16. Results show that at
least 500 samples are required to consistently reduce the effect of aleatory uncertainty
to a less-than-small effect magnitude size across all responses. Unless otherwise stated,
the remaining experimentation reported in this thesis employs a sample size of 500 sim-
ulation runs when deriving representative results. This figure represents an acceptable
computational expense, and satisfactorily reduces the effect of aleatory uncertainty on
analysis results.
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Figure 6.15: The effect of aleatory uncertainty on the results of A test analysis for eleven
responses, for various sample sizes. The first set of simulation executions is compared with
each of the remaining nineteen in obtaining A test scores.

A test score

132

©
o

o
~

0.8r

0.2r

—&— CD4Th1 Max
-@--CD4Th1 Max Time
—©— CD4Th2 Max

--©-- CD4Th2 Max Time
—&— CD4Treg Max
---&--- CD4Treg Max Time
—%— CD8Treg Max
-~v--- CD8Treg Max Time
—*— CD4Th1 at40d
~-&-- Max EAE

-~ EAE at40d

A test score

A test score

Parameter value (dummy-parameter)
(a) Sample size of 5.

0.8r

°
<)
d

N
»

0.2r

Parameter value (dummy-parameter)
(b) Sample size of 50.

20

0.81

<
o
d

N
»

0.2r

Parameter value (dummy-parameter)

(c) Sample size of 500.

20




6.3. Compensating for aleatory uncertainty

—H&— CD4Th1 Max
~-th-- CD4Th1 Max Time
large effect —E5— CD4Th2 Max
-~~~ CD4Th2 Max Time H
—A— CD4Treg Max
--£-- CD4Treg Max Time
CD8Treg Max
CD8Treg Max Time|
medium effect —%— CD4Th1 @ 40d
<} Max EAE
~P-- EAE @ 40d

o
o
&l

A test score

o
[

small effect

05
0 100 200 300 400 500 600 700 800 900 1000

sample size

(a) Maximum A test scores obtained across twenty sets of experimentation.

Sample Size
Response 5 10 50 100 200 350 500 1000
CD4/Th1 Mazx 0.80 0.70 0.66 0.58 0.57 0.55* 0.53* 0.52*
CD4Thi Max Time | 0.96 0.68 0.60 0.60 0.53* 0.55* 0.54* 0.53*
CD4Th2 Mazx 0.88 0.81 0.62 059 0.56* 057 0.53* 0.53*
CD4Th2 Max Time | 1.00 0.67 0.57 0.57 0.55* 0.55* 0.53* 0.53*
CD/4Treg Maz 0.76 0.65 0.55* 0.55* 0.56* 0.54* 0.54* 0.52*
CD/Treq Max Time | 0.92 0.69 0.59 0.62 0.55* 0.56* 0.54* 0.52*
CD8Treq Max 0.92 0.88 0.60 0.56* 0.55* 0.54* 0.53* 0.52*
CD8Treg Max Time | 0.92 0.65 0.61 0.60 0.53* 0.55* 0.54* 0.52*
CD4Th1 @ 40d 0.70 0.60 0.55* 0.57 0.53* 0.53* 0.52* 0.51*
Max EAE 0.70 0.77 0.61 0.56* 0.54* 0.54* 0.53* 0.52*
EAE @ 40d 0.70 0.60 0.56* 0.55* 0.53* 0.52* 0.53* 0.51*

(b) Maximum A test scores, rounded to two significant figures. Scores indicating an effect
magnitude of less than small are indicated with *.

Figure 6.16: Maximum A test scores across twenty sets of experimentation, using the same
parameter values in all cases, for various responses and sample sizes used in generating distri-
butions.
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6. EXPLORATIVE EXPERIMENTATION

6.4 Determining influence of parameters

This section describes the application of a global sensitivity analysis technique to the
ARTIMMUS simulation. The sensitivity analysis reveals the sensitivity of simulation
responses to perturbation of its parameters. The pathways and activities that comprise
the simulation are annotated by parameter values that provide the specifics of these
mechanics. These include, for example, the periods of time that cells spend in particu-
lar states, the rates of cytokine secretion and cellular sensitivities, and the probabilities
that particular events lead to particular actions. By identifying the relative contribu-
tions of these parameters to simulation behaviour, sensitivity analysis affords insight
into the relative influences and interactions of the mechanics of the simulation. It high-
lights simulation components that are critical to system operation, and redundancies
in the system.

The global sensitivity analysis employed here leads an exploration of ARTIMMUS
components, gaining insight into how the system operates. The experimental procedure
employed is described in section 6.4.1. The results of this analysis are detailed in
section 6.4.2.

6.4.1 Experimental procedure

The sensitivity analysis employed here is global in that all parameters analysed are
perturbed simultaneously. This provides a more thorough exploration of simulation
space than one at a time alternatives where each parameter is perturbed independently
of others. Global techniques show compound effects where a parameter’s influence
depends on the exact values held by others. The sensitivity analysis employed here
is based on latin hypercube design [McKay et al. 1979], which represents an efficient
sampling of parameter space using a minimal number of samples.

A latin hypercube design is used to obtain 500 samples of parameter space around
the baseline. As illustration, figure 6.17 depicts an example latin hypercube design
which obtains ten samples across two parameters. The region indicated between upper
and lower limits for each parameter to be included in the design is divided into n
regions, where n is the number of samples to be obtained by the design. In the example
of figure 6.17, and the design used in analyzing the EAE simulation, the regions are
uniformly distributed, though this need not be the case if ensuring a high number of
samples in a particular area of a parameter’s domain is desired. The latin hypercube
procedure ensures that each of the n regions for every parameter is sampled exactly
once.

The range over which parameters are perturbed is similar for each parameter, and
is defined as a proportion of the parameters’ baseline values. The domain over which
each parameter is perturbed was chosen to be between 10% above and 10% below that
parameter’s baseline value. When creating a latin hypercube design, each parameter
perturbation is calculated as a real valued number lying in this domain. However,
the type of the parameter being perturbed dictates that further manipulation may be
required. A full list of ARTIMMUS simulation parameters, their types and default
values may be found in appendix section B.1.

The EAE simulation parameters analysed here are of three types: real valued, prob-
abilistic, and natural number valued. For real valued parameters, the values returned
by the latin hypercube design may be directly adopted.

Probabilistic parameters may hold any real value between 0.0 and 1.0. If the base-
line value of this parameter lies such that 10% above or below breaches one of these
thresholds, then the perturbation range is shifted such that the size of the range is
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parameter 1

>

parameter 2 o

Figure 6.17: An example latin hypercube design, obtaining ten samples across two parameters.

maintained, but falls between 0.0 and 1.0. For example, CD8Treg_cd8TregToCD4T-
helperSpecificity DropOff, which dictates the probability of a CD8Treg cell apoptosing
an effector Qa-1 expressing CD4Thl cell upon binding, is ordinarily set to 1.0. The
perturbation range over which the latin hypercube design will assign values hence falls
between 0.9 and 1.1. Owing to the probabilistic domain of this variable, the perturba-
tion range would be adjusted to fall within the boundaries of 0.8 to 1.0.

Simulation parameters that take as values only natural numbers, such as Simula-
tion_numCNS, which dictates the number of neurons in the CNS compartment, must be
rounded to the nearest natural number before the simulation may be executed. Hence,
the perturbation range for these parameters will be approximately 10% above and be-
low the baseline value, but may not fall exactly on those bounds. For parameters which
may take only even values, values are rounded to the nearest even natural number.

The latin hypercube design employed here creates 500 samples of simulation pa-
rameter space. Due to the stochastic nature of the simulation, acquiring representative
simulation responses for each sample requires obtaining averaged simulation results.
500 simulation executions are attempted at each sample point in the latin hypercube
design, in accordance with the analysis of section 6.3 above. However, it is possible
that the latin hypercube design selects points in parameter space at which simulation
execution is computationally intractable. There exists finite space within the compart-
ments of the simulation, were the latin hypercube design to select parameters such that
T cells proliferate (divide) quickly for extended periods of time, going on to exist as
effector cells for extended periods of time, it is possible that simulation execution will
stall as there are more cells than space to contain them. In such extreme cases where it
is not possible to obtain a full set of 500 simulation executions for a particular sample
point in parameter space, that sample is excluded from the analysis.

For all the remaining sample points, response distributions are calculated from the
500 simulation executions, based on the responses outlined in section 6.2 above. For
the present analysis, averaged results are obtained from each response distribution.
This is the median value for all T cell related responses, but mean values are used
for the two EAE based responses. The T cell responses may adopt a very large range
of values, however the two EAE based responses can assume only values of 0 to 5.
Although the underlying distributions are known to be non-normal, employing mean
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averaged results permits a greater number of response values to be assumed, and hence
facilitates a higher fidelity analysis of the influence that a particular parameter has
on EAE severity scores. Using mean averaged results is also consistent with wet-lab
practice.

The analysis proceeds by considering each parameter in turn. The 500 points in
parameter space are ordered in accordance to their value for the particular parameter
of interest. The correlations between averaged response values and the value for the
parameter of interest are calculated. Partial rank correlation coefficients are employed
here.

Partial rank correlation coefficients (PRCC) give a measure of rank correlation
between two variables, the simulation parameter and response, with the linear effects
of other simulation parameters on the response removed [Marino et al. 2008]. As such,
the effect of an imperfect latin hypercube design, where there exists correlation between
two or more parameter values, are somewhat mitigated.

The p values that describe the likelihood of observing a particular correlation purely
through chance are also recorded. It should be noted that the results of the present
analysis indicate influences of parameter values only for that volume of parameter space
around the baseline, within which the simulation’s parameters are perturbed. Whilst
some continuity of these influences may be assumed, it is possible that there exist
other areas of parameter space where the significance of simulation parameters differ
considerably.

6.4.2 Results

The sensitivities of the simulation with respect to each response and parameter are
recorded in tables C.1 to C.11 in appendix section C.2. These tables report the PRCC,
associated p values, and ranks of influence of simulation parameters with respect to
each of the eleven responses. Table 6.3 summarises the ranks of each parameter with
respect to each response. An indication of global importance of each parameter is
achieved through summing all the individual ranks to create a total.
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Table 6.3: The total influence of each parameter on simulation responses, measured as a sum of ranks for each response in turn. Responses are indicated as
follows: 1M, CD4Thi1 Maz; IMT, CD4Th! Mazx Time; 2M, CD4Th2 Maz; 2MT, CD4Th2 Max Time; 4M, CD4Treqg Maz; AMT, CDjTreg Max Time; 8M,
CD8Treg Maz; 8MT, CD8Treq Maz Time; Thd0, CD/Th1 at 40 Days; ME, Max EAE; E40, FAE at 40 Days. Ranks marked with either (+) or (—) represent
P values < 0.01, and indicate whether the correlation of parameter value with response was positive or negative.

[ Rank Parameter Name [ 1M 1IMT 2M 2MT 4M 4MT 8M 8MT Th40 ME E40 [ Total |

1 CNSCell_apoptosisTNFaThreshold 2(—) 3(—) 3(—-) 2(-) 3(—) 2(—) 3(—) 2(-) 2(-) 1(—) 2(-) 25

CNSMacrophage_tnfaSecretedPerHour WhenStimulated 3(+) 2(+) 2(+) 1(+) 4(4) 3(+) 4(+) 3(+) 1(+) 2(+) 1(+) 26
3 Molecule_molecularHalflife 6(+) 4(+) 4(+) 3(+) 7(+) 4(+) 5(+) 4(+) 4(+) 3(+) 3(+) 47
4 CDATHelper_diff08 14 6(=) (=) 7)) s 17 6 17(5) 61 8(+) 3 82
5 CNS_height 14(—) 9(—) 8(—) 4(—) 15(—) 7(—) 12(—) 7(—) 7(—) 4(-) 4(—) 91
7 TCell_proliferationMean 7(-) 1(+) 9(—) 6(+) 1(—) 1(+) 2(—) 1(+) 5(+) 23 54 110
7 APC_timeOfDeathMean 5(+) 7(=)  5(+) 14 204)  6(=) 1) 6(—) 48 9(+)  7(+) | 110
8 CNS_width 17(=)  12(=) 10(=) 5(=) 17(=) 9(=) 15(—=) 10(-) 17 5(—)  5(=) | 122
9 Simulation_immunizationLinearDCO0 4(+) 8(—) 6(+) 12(+) 6(+) 16(—) 7(+) 12(—) 37 10(+) 10 128
10 Simulation_.numCNSMacrophage 18(+) 16(+) 16(+) 11(+) 23(+) 15(+) 17(+) 15(+) 21 6(+) 6(+) 164
11 TCell_.AICDMean 8(+)  13(+)  T(+)  10(+) 10(+) 14(+)  9(+)  16(+) 63 7(4) 9 166
12 Simulation_immunizationLinearFreq 9(—) 20 13(—) 22 14(—)  11(+) 14(=) 11(+) 50 11 23 198
13 TCell-becomeEffectorMean 13(—) 5(—) 12(—) 13(-) 9(+) 5(—) 35 5(—) 35 56 20 208
14 Simulation_immunizationLinearGradient 10(4+) 10(+) 17(+) 9(+) 11(+) 22 10(+) 40 24 31 42 226
15 TCell_cellsPerGridspace 12(+) 19 14(+) 18 12(+) 20 11(+) 21 16 42 46 231
16 TCellspecificityUpperLimit 26 27 55 38 27 13(=) 20(+) 13(=) 11(=) 43 23 296
17 Simulation_.numDCCNS 33 28 30 21 24 24 26 24 19 64 31 324
18 APC_probabilityPhagocytosisToPeptide 15(+) 30 11(+) 8(+) 8(+) 68 8(+) 60 57 49 12 326
19 Circulation_timeToCrossOrgan 24 39 24 69 20(—) 10(4) 21(-) 8(+) 46 19 48 328
20 CLN_timeToCrossOrgan 60 35 32 36 25 28 23 22 26 25 18 330
21 Th2Polarization_proliferationMean 16(—)  14(+) 19 53 18(—) 53 16(—) 42 44 35 33 343
22 Simulation . numCNS 37 31 44 24 59 29 52 29 22 15 11 353
23 TCell_timeLocalActivationInducedEffectorFunctionFor 11(4) 24 15(+) 40 16(+4) 21 18(+) 19 72 55 63 354
24 CNSMacrophage_typelRequiredFor Activation 30 21 28 16 21(—) 64 22(—) 62 63 13 15 355
25 TCell_apoptosisNaiveMean 26 16(+) 44 54 59 8(+) 51 9(+) 66 18 13 364
26 CD4THelper_diff00 59 64 26 17 28 40 28 34 39 21 14 370
27 TCell_becomeEffectorStdDev 34 11(4) 46 52 19(=)  12(+) 67  14(+) 68 23 43 389
28 DendriticCell_phagocytosisProbabilityImmature 28 57 21 33 22(+) 46 19(+4) 43 41 51 30 391
29 CNSMacrophage_phagocytosisProbabilityImmature 56 41 39 64 31 30 31 27 20 26 28 393
30 TCell_specificityLowerLimit 21 17(—) 22 55 35 18(—) 24 18(—) 70 58 64 402
31 TCell_ AICDStdDev 28 46 39 15 38 58 39 68 25 28 24 408
32 APC_immatureDurationMean 19(—) 61 36 46 13(—) 37 13(—) 35 58 68 32 418
33 TCell_apoptosisPartialMaturity Mean 32 50 40 30 48 44 36 37 18 20 65 420
34 ThlPolarization_.mhcUnExpressionDelayMean 20 23 63 42 33 52 59 60 3(—) 14 55 424
35 CD8Treg-typelSecretedPerHourWhenActivated 31 38 34 19 34 43 42 53 29 62 49 434
36 DendriticCell_typelRequiredForActivation 22 63 27 23 72 61 45 56 41 16 16 442
37 CDA4Treg-typelSecretedPerHourWhenActivated 35 52 52 33 29 42 32 49 72 25 26 447
38 TCell_apoptosisNaiveStdDev 46 47 33 39 70 41 54 44 13 49 21 457
39 DendriticCell_cytokineType2PolarizationRatio 29 62 18(—) 59 A7 27 42 32 32 61 58 467
40 Spleen_width 68 55 57 49 53 26 38 23 23 42 35 469
41 Simulation_.numCD4Th 43 23 49 56 49 34 51 33 65 39 36 478

Continued on Next Page. ..
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Table 6.3 — Continued

[ Rank Parameter Name H 1M 1MT 2M 2MT 4M 4MT 8M SMT Th40 ME E40 [ Total ]
42 CNSMacrophage_basalMBPExpressionProbability 53 33 41 43 41 57 33 55 49 39 38 482
43 Th2Polarization_type2SecretedPerHourWhenA-ctivated 49 66 20 46 71 36 64 30 31 44 27 484
44 DendriticCell_typelSecretedPerHourImmunized 63 46 60 20 39 50 71 70 14 33 19 485
45 Simulation_ numCD8Treg 66 43 60 42 43 51 27 52 9(—) 40 53 486
46 ThilPolarization_typelSecretedPerHourWhenA-ctivated 43 49 31 60 69 31 47 38 10(+) 37 72 487
47 SLO_width 41 25 70 25 56 32 56 28 61 45 53 492
49 DendriticCell_phagocytosisProbabilityMature 70 56 67 29 26 69 25 65 34 17 35 493
49 TCell_timeLocalActivationDelay 45 65 69 50 65 23 37 25 55 30 29 493
50 APC_immatureDurationStdDev 40 18(+) 25 27 37 67 30 66 67 71 50 498
51 Th2Polarization_proliferationStdDev 57 60 54 31 54 25 69 31 39 35 47 502
52 SLO_height A7 29 62 48 45 63 42 61 42 32 40 511
53 APC_timeOfDeathStdDev 36 58 45 29 42 60 46 64 52 70 17 519
54 ThlPolarization.mhcUnExpressionDelayStdDev 23 54 50 26 46 65 43 51 28 66 68 520
55 CNS_timeToCrossOrgan 39 67 71 66 37 45 29 45 54 28 41 522
56 DendriticCellMigrates_lengthOfTimeMovingFollowingMigration 72 54 23 61 66 35 72 27 30 29 62 531
57 Simulation_.numCD4Treg 65 49 56 34 32 39 57 40 64 53 53 542
58 TCell_apoptosisPartialMaturityStdDev 52 26 37 38 51 71 49 72 37 46 67 546
59 CLN_width 69 36 65 66 40 39 44 41 27 60 60 547
60 TCell_proliferationStdDev 51 42 72 69 30 49 34 47 34 65 60 553
61 Molecule_decayThreshold 67 40 35 70 62 19 64 20 61 72 44 554
62 Spleen_timeToCrossOrgan 58 34 51 72 44 33 62 36 56 47 69 562
63 SLO_timeToCrossOrgan 61 69 42 35 50 55 66 46 69 37 39 569
64 Circulation_width 64 32 68 58 61 55 53 58 8(+) 52 62 571
65 CNSMacrophage_phagocytosisProbabilityMature 38 68 60 62 67 72 68 71 46 12 26 590
66 Simulation.numDC 62 71 53 48 52 70 59 69 15 51 45 595
67 CD8Treg_cd8TregToCD4ThelperSpecificityDropOff 44 44 29 51 59 62 60 57 53 69 71 599
68 Circulation_height 54 37 47 72 55 48 49 50 52 67 70 601
69 CLN_height 48 52 66 67 65 59 62 63 12(+) 58 57 609
70 Spleen_height 51 72 48 64 65 47 70 48 43 59 56 623
71 Simulation.numDCSpleen 71 70 62 57 60 56 55 54 47 63 38 633
72 Simulation_immunizationLinearInitial 55 59 65 44 68 66 66 68 59 55 66 671
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6.4. Determining influence of parameters

6.4.2.1 Neuronal apoptosis

The driving stimulus of both autoimmune and regulatory activity within the simulation
is the apoptosis of neurons. Apoptotic neurons are phagocytosed by CNS-resident
dendritic cells (DCs), which migrate to the cervical lymph node (CLN) to further
prime populations of encephalitogenic CD4Th1 cells. The physiological turn over of
CD4Th1 cells leads to their phagocytosis and consequently to the priming of CD4 and
CD8Treg cells.

Consistent with this driver of simulation behaviour, the results of the global sen-
sitivity analysis indicate that the most influential parameters in the simulation are
those directly related to the death of neurons in the CNS, see table 6.3. The first and
second most influential parameters in the simulation are CNSCell_apoptosisTNFaThre-
shold and CNSMacrophage_tnfaSecretedPerHour WhenStimulated, which respectively
dictate the threshold concentration of TNF-a which induces apoptosis in neurons and
the quantity of TNF-« secreted per hour by activated macrophages in the CNS. Mole-
cule_molecularHalflife controls the rate of cytokine decay in the simulation. When set
to high values, this parameter dictates that TNF-a will exist for longer, and diffuse
further, hence increasing neuronal apoptosis. When these parameters are adjusted to
minimise damage to neurons, both autoimmune and hence regulatory activity decrease
in intensity and duration; peaks of T cell populations are reduced and occur sooner. Re-
sults concerning Simulation_numCNSMacrophage, which specifies the number of CNS
macrophages in the CNS compartment, concur with this interpretation. Exhibiting
a significant influence on all simulation responses, additional CNS macrophages lead
to additional TNF-« secretion during autoimmune activity, which leads to additional
neuronal apoptosis.

CNS_height and CNS_width are found to be more influential than any of the other
parameters dictating compartment dimensions, which are relatively inconsequential
to simulation behaviour. These two parameters dictate how densely populated the
CNS compartment is with CD4Th cells, CNS macrophages and neurons. A more
densely populated compartment will promote greater neuronal apoptosis, which pro-
motes greater autoimmune and hence regulatory activity.

The TCell_proliferationMean parameter dictates the mean length of time required
for a proliferating T cell to spawn a daughter cell. It is the most influential parameter
in dictating the maximum population size of CD4Treg cells, second most influential
with respect maximum number of CD8Treg cells, and the most influential regarding
the times at which population sizes are reached for CD4Treg, CD8Treg and CD4Th1
cells. When this parameter is increased independently of T'Cell_becomeEffectorMean,
which dictates the duration of a T cell’s proliferative activity before differentiating into
an effector cell, the maximum population sizes for these T cells is reduced. When set to
higher values, this parameter dictates that fewer effector CD4Th1 cells enter the CNS
at earlier stages, hence taking longer to cause neuronal apoptosis that results in a strong
stimulus for continued autoimmune activity. Likewise, fewer effector CD4Thl cells in
the system at early stages of disease progression results in less CD4Thl1 phagocytosis
by DCs that would eventually prime regulatory T cell populations. Increasing the
length of time required for proliferation has the effect of prolonging autoimmune and
regulatory phases of disease.

The parameters discussed thus far have a direct influence on the rate of neuronal
apoptosis in the CNS compartment. ThlPolarization_typelSecretedPerHour WhenA ct-
ivated and CNSMacrophage_typel RequiredForActivation represent ‘second order’ pa-
rameters in this respect, dictating the quantity of type 1 cytokine secreted in the CNS
compartment, and the concentration of this cytokine required to induce activation and
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TNF-« secretion in CNS macrophages. CNSMacrophage_typelRequiredForActivation
is found to be significant (p value < 0.01) only to the CD4Treg max and CD8Treg maz
responses, whereas ThlPolarization_typelSecreted PerHour WhenActivated is found to
significantly influence only the CD4Th1 at 40 days response. These results are some-
what surprising, and suggest a great redundancy in the ability of the CD4Th1 popula-
tion to activate CNS macrophages, likely owing to the very large number of these cells
that infiltrate the CNS compartment.

Simulation_numCNS controls the number of neurons in the CNS compartment, and
hence has a direct relevance to the number of neurons that can be apoptosed through
autoimmune activity. It is surprising that this parameter has no significant correlation
with any response, and invites the following interpretation. Dendritic cells in the sim-
ulation are not motile until they mature, at which point their phagocytic capacity is
reduced from 100% to 30%, and they migrate to the CLN following a relatively straight
path. Activated CNS macrophages also become motile upon activation, and share a
30% phagocytic capacity. However their movement is random in all directions. Cou-
pled with the fact that CNS macrophages reside within the CNS compartment for the
entire duration of their mature lifecycle, and that there are 75 macrophages versus 40
dendpritic cells within the CNS, it is highly likely that macrophages phagocytose signif-
icantly more apoptotic neurons than dendritic cells do. Whereas additional peptide-
presenting DCs can prime vast numbers of T cells, the additional MBP-presenting
activated CNS macrophages likely do not contribute significantly to the immune re-
sponse, other than to provide marginally quicker local activation to CD4Th infiltrates.
Hence, a 10% perturbation of Simulation_.numCNS does not necessarily translate to
significant deviations in simulation behaviour.

Related to this parameter, Simulation_ numDCCNS, which dictates the number of
dendritic cells in the CNS, is not found to have any significant influence over any of the
responses. Under default parameter values, the maximum number of peptide-presenting
immunogenic DCs in the CLN compartment (at peak immune activity) is around 30,
despite there being around 92 CNS-originating DCs present in the compartment at any
point in time. The majority of DCs in the CLN do not present peptides. At +10% of
Simulation_ numDCCNS’s default value, this ratio translates into 27 and 33 peptide-
presenting DCs in the CLN at peak immune activity. Not all DCs present both CD4Th-
derived and MBP peptides together, hence the change in number of peptide presenting
DCs from the default value of 30 is shared between Treg and CD4Th populations.
The lack of significant influence by Simulation_.numDCCNS over simulation responses
suggests that these differences in peptide presentation by the DC population do not
translate to significant differences in T cell population dynamics or neuronal apoptosis.

6.4.2.2 Immunisation mechanism

The simulation’s immunisation mechanism, whereby EAE is induced in the simula-
tion, is parameterised through four parameters: Simulation_immunizationLinearlInit-
ial, Simulation_immunizationLinearDCO0, Simulation_immunizationLinearGradient and
Simulation_immunizationLinearFreq. Upon immunisation, an initial number of immu-
nized MBP-presenting DCs are placed within the SLO compartment at time zero. This
number is specified by Simulation_immunizationLinearlnitial. Thereafter, immunized
MBP-presenting DCs are added to the SLO compartment periodically, as defined by
Simulation_immunizationLinearFreq. The number inserted reduces linearly over time,
described by the parameters Simulation_immunizationLinearDC0 and Simulation_imm-
unizationLinearGradient (as described in section 5.2.4).
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Simulation_immunizationLinearDC0, Simulation_immunizationLinearGradient and
Simulation_immunizationLinearFreq are found to exhibit statistically significant influ-
ence over simulation responses. Increasing either Simulation_immunizationLinearDCO0
or Simulation_immunizationLinearGradient (which is, by default, set to a negative
value) results in more immunising DCs being inserted into the SLO. This can be con-
sidered to reflect increasing the doses of MBP, CFA and PTx used to immunize mice
in vivo. The result is that the maximum number of CD4Thl cells reached increases,
as does the maximum number of CD4Th2 cells. This in turn provides additional stim-
ulation to the regulatory immune response, with maximum number of CD4Treg and
CD8Treg cells increasing. Simulation_immunizationLinearDC0 has the effect of in-
creasing the onset of immunity for CD4Thl, CD4Treg and CD8Treg cells. This is not
the case for Simulation_immunizationLinearGradient which delays the peak of immune
activity, and has no significant influence over this response for CD4Treg and CD8Treg
cells. This difference may be explained if the same proportional increase in Simulation_-
immunizationLinearGradient results in more immunisation DCs being introduced later
during the simulation than the same increase in Simulation_immunizationLinearDCO.

Simulation_immunizationLinearFreq has a pattern of response almost exactly op-
posite to that of Simulation_immunizationLinearDC0 and Simulation_immunization-
LinearGradient. Increasing this parameter has the effect of reducing the number of
immunisation DCs administered to the simulation, but maintaining the length of time
over which this may occur. Reduced stimulation for CD4Th priming results in reduced
stimulation for CD4Treg and CD8Treg populations, resulting in reduced maximum
population size, and reduced intensity of response onset.

It is of note that Simulation_immunizationLinearlnitial is the least influential pa-
rameter in the simulation.

6.4.2.3 Regulatory capacity

A surprising result is the apparent lack of influence exhibited by the parameters an-
notating regulatory action on simulation responses. CD8Treg_cd8TregToCD4Thelper-
SpecificityDropOff is ranked as the sixth least significant parameter in the simulation.
This parameter dictates the probability that a binding of an effector CD8Treg to an
effector CD4Th1 will result in the induction of apoptosis in the CD4Th1 cell. As such
this parameter can dictate how effective the regulatory network is in the system. A
related parameter is ThiPolarization_.mhcUnExpressionDelayMean, which dictates the
mean length of time that Qa-1 is expressed by CD4Thl cells following their differ-
entiation into effector cells. CD4Thl cells are only susceptible to regulatory action
whilst expressing Qa-1. No statistical significance is found for CD8Treg_cd8TregTo-
CD4ThelperSpecificity DropOff with respect to any response, and ThlPolarization_-
mhcUnExpressionDelayMean is significant to only one; it is the third most influential
parameter in relation to the CD4Th1 at 40d response. These results motivate fur-
ther investigation into the robust nature of the regulatory network, conducted in the
following chapter.

6.4.2.4 Type 1 / type 2 balance

The balance between type 1 and type 2 immune response is largely dictated through
cytokine profiles, both in the CNS where DCs are activated and adopt a polarisation,
and in the area surrounding immunogenic DCs which directly influence the polarisation
that primed CD4Th cells adopt. Type 1 cytokine secretion by CD4Treg and CD8Treg
cells exhibits no significant influence on any response. Given that these cells do not
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enter the CNS compartment, and that they are not likely to be in the vicinity of CLN-
resident DCs that prime CD4Th cells by the time that they are locally activated for
cytokine secretion, these results are to be expected.

However, cytokine secretion by CD4Thl and CD4Th2 cells, which do enter the
CNS, are also found to be largely insignificant to simulation behaviour. Th1Polariza-
tion_typelSecretedPerHour WhenA ctivated, which dictates the rate of type 1 cytokine
secretion by CD4Thl1 cells is significant with respect to only the CD4/Th1 at 40 days
response. Th2Polarization_type2SecretedPerHour WhenActivated, the rate of type 2
cytokine secretion by CD4Th2 cells does not exhibit a statistically signifiant influence
on any response. DendriticCell_cytokineType2PolarizationRatio, which dictates the
ratio of type 2 cytokine to type 1 cytokine required for a DC to adopt a type 2 polar-
isation, exhibits statistically significant influence on the CD4Th2 max response only.
With respect to this response the parameter is ranked as the 18th most significant
parameter.

These results collectively suggest that simulation behaviour does not hinge on a
delicate balance of cytokine profiles, rather that cytokines secretion rates and half lives
dictate that in any scenario where cytokine balance affects the polarisation adopted by
a cell, one type of cytokine exists in significantly greater quantity than the other.

This conclusion is further supported by results for parameters CNSMacrophage_-
typel RequiredForActivation and DendriticCell_typel RequiredForActivation, which re-
spectively dictate the concentration of type 1 cytokine required to activate CNS macro-
phages and induce the upregulation of co-stimulatory molecules in DCs. CNSMacro-
phage_typel RequiredForActivation is shown significant with respect to only two re-
sponses, in which it is ranked 21st and 22nd. DendriticCell_typelRequiredForAct-
ivation is not significant with respect to any responses. These results indicate that
during an immune response, APCs come into close proximity with sufficiently many
type 1 secreting cells such that they perceive type 1 cytokines in significantly higher
concentrations than the range dictated by £10% of their default activation thresholds.

6.4.2.5 Peptide derivation and presentation by APCs, and T cell priming

Various parameters pertaining to peptide phagocytosis and presentation, and priming
of T cells are now considered. Peptides are derived from apoptotic cells, as phagocy-
tosed by DCs and CNS macrophages. These cells are more phagocytic when immature
than mature. Parameters specifying the probability that contact between an APC and
an apoptotic cell will result in the phagocytosis of the latter by the former are Dendritic-
Cell_phagocytosisProbabilitylmmature, DendriticCell_phagocytosisProbabilityMature,
CNSMacrophage_phagocytosisProbabilityImmature and CNSMacrophage_phagocyto-
sisProbabilityMature. Only DendriticCell_phagocytosisProbabilityImmature exhibits a
statistically significant influence on simulation responses, and does so on only CD/ Treg
max, where it is raked as the 22nd most influential parameter, and CD8Treqg max,
where it is ranked 19th. These results indicate a robustness in the stimulation’s oper-
ation; an apoptotic cell comes into contact with sufficient phagocytic APCs such that
perturbing the phagocytic capacity of APCs by 10% does not significantly alter the
simulation’s behaviour. Furthermore, for a phagocytosis event to influence simulation
behaviour, the phagocytosing APC must derive and present peptides for the priming of
T cell populations. However, the probability of a phagocytosis event leading to peptide
derivation is only 2%. As discussed next, the parameter dictating this probability is
considerably more influential on simulation behaviour.

The probability that a phagocytosis event will lead to the derivation of peptides
that are presented on MHC is identical for both DCs and CNS macrophages, and is
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specified through APC_probabilityPhagocytosisToPeptide. This parameter is found
to be significant with respect the maximum number of CD4Thl, CD4Th2, CD4Treg
and CD8Treg cells attained through simulation execution, and the time at which the
CD4Th2 population peaks. As discussed in the following chapter, around a third of
mature APCs present peptides. Coupled with the fact that the default value for APC_-
probabilityPhagocytosisToPeptide is only 2%, this suggests that a very high proportion
of APCs phagocytose at least one cell. Adjusting this parameter by 10% is hence
highly influential on simulation behaviour; a single immunogenic APC can produce a
large number of T cells. It is proposed that it is the considerable redundancy in the
regulatory network which prevents this parameter also significantly influencing EAE-
severity related parameters, and the number of CD4Th1 cells at 40 days.

APC_immatureDurationMean specifies the duration of time that an APC remains
in an immature state for. It is found to be relatively insignificant, influencing CD/Th1
mazx, CD4Treq max and CD8Treg max responses, but ranked below the top ten in all
cases. Increasing this parameter is found to decrease the maximum number of T cells
attained during simulation execution. The overall lifespan of an APC is dictated by
the length of time that it remains immature, APC_immatureDurationMean, and the
length of time that it remains in a mature state before entering apoptosis, APC_time-
OfDeathMean. Excluding DCs arising from the simulation’s immunisation mechanism,
the number of APCs, both DCs and CNS macrophages, in the simulation at any point
in time is static; an APC entering apoptosis is immediately replaced by another im-
mature APC. Hence, increasing APC_immatureDurationMean will generally decrease
the total number of APCs presenting peptides at any point in time, and hence reduce
the peak number of T cells generated during immune responses. This result suggests
that increasing the number of mature APCs in the simulation at any point in time has
a greater potential to prime larger T cell populations than increasing the time these
APCs spend in a highly phagocytic state, and hence the probability that they will
derive peptides through which T cell priming may be accomplished.

A parameter that exhibits significant influence over many of the simulation’s re-
sponses is APC_timeOfDeathMean. It dictates the mean period of time that APCs
remain in a mature state before entering apoptosis. As such, this parameter determines
how long proliferative T cells can derive stimulation required to produce daughter cells
for. Since daughter cells typically prime on the same APCs as their parent cells, there
is an exponential relationship between an APC’s mature lifespan and the size of the T
cell population that it induces.

TCell_specificityLowerLimit and TCell_specificityUpperLimit dictate the bound-
aries of the range from which T cell specificities may be selected. T cells with low speci-
ficity are less likely to derive effective TCR, signaling from contact with MHC:peptide
complexes for which they are specific. It is interesting to note that TCell specifi-
cityUpperLimit is more influential, being higher ranked in nearly all responses, than
TCell_specificity LowerLimit.

6.4.2.6 T cell dynamics

CD4THelper_dift08 and CD4THelper_diff00 specify the probability of a CD4Th cell
adopting a type 1 polarisation, as opposed to type 2, when the proportion of type
1 cytokine comprising the local cytokine milieu is above or below 80% respectively.
The former parameter is shown to be highly influential in the simulation, exhibiting
statistically significant effects in all but one response, FAFE at 40 days. In contrast,
CD4THelper_diff00 exhibits no statistically significant influence over any response. Fig-
ure 6.18 shows the system-wide T cell dynamics when CD4THelper_diff00 is set to its
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baseline value of 5%, and 100%, wherein DCs that would ordinarily strongly favour
CDA4Th differentiation into CD4Th2 cells now exclusively induce CD4Thl cells. There
is very little difference in the CD4Th1 dynamics that result from this large parametric
change, suggesting that the recovery from autoimmunity in the simulation is signifi-
cantly driven by regulatory action, wherein the CD4Thl population is apoptosed by
CD8Tregs. In contrast type 2 deviation, where additional CD4Th2 cells in the CNS
compartment induce type 2 polarising DCs in place of type 1 polarising, is a result of
the recovery process, rather than a driver of it.
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Figure 6.18: Comparison of T cell dynamics when CD4THelper_diff00 is set to its default value
of 5%, and 100%.

TCell. AICDMean exerts significant influence over nearly all of the simulation’s re-
sponses. It specifies the mean lifespan of effector T cells, prior to their entering apop-
tosis. Increasing this parameter increases the maximum population sizes of all T cells,
and the times at which they occur. Manipulating effector T cell lifespan will influence
the maximum number of CD4Thl cells that reside within the CNS during autoimmu-
nity. As such, additional type 1 cytokine is secreted, which in turn increases stimulation
for CNS macrophage activation and the secretion of neuron-harming TNF-a. In this
manner, this parameter exerts significant influence over the maxr FAFE response also.

6.5 Robustness analysis of parameters

The ARTIMMUS simulation’s parameter values are derived through a variety of meth-
ods. Some are based on domain-specific knowledge, others are arbitrarily chosen, and
some are tuned in order to deliver simulation behaviour that reflects that observed in
vivo. This section describes the derivation and application of a robustness analysis
that ascertains the range of values that each parameter may adopt before a significant
change in simulation behaviour occurs.

The analysis indicates where simulation behaviours critically depend on certain
parameters holding values in a very small range of their possible domains. Parameter
values may be known with some certainty, if they have been derived directly from
domain-specific knowledge, or have undergone calibration to ensure that simulation
behaviour reflects that observed in vivo. If, however, simulation behaviour is found to
critically depend on parameters that have been assigned arbitrary values, as may be
the case where domain knowledge cannot specify an appropriate value, then simulation-
based results may differ if another arbitrarily determined value were to be assigned.
This does not necessarily undermine activities to explore a system through simulation,
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since it cannot be ruled out that other simulation parameters cannot be re-calibrated
to re-align simulation behaviour with that observed in vivo. It is, however, important
to communicate these simulation criticalities when presenting the results as it may
influence their significance in the real-world domain.

The following section details the experimental procedure of the robustness analysis.
Thereafter it is employed in ascertaining ARTIMMUS’s robustness with respect to
parameters that were assigned arbitrary values, and the implications of these results
are considered.

6.5.1 Experimental procedure

The robustness analysis technique devised here is a one-at-a-time technique, in that
each parameter is perturbed independently of the others, which remain at their baseline
values. The technique employs two indications of when a significant change in simula-
tion behaviour has occurred, discussed below. Each parameter is perturbed away from
its baseline value, and the boundary at which a significant deviation in simulation be-
haviour, measured through the responses identified in section 6.2, is recorded. In this
manner, the fragility of the simulation with respect to parameter perturbation may be
ascertained; for each parameter, the range of values either side of the default value that
do not cause a significant change in simulation behaviour are identified. A complete
robustness analysis of the TCel AICDMean parameter is depicted in figure 6.19 to
illustrate the experimental procedure described in this section.

To facilitate comparison of simulation fragility with respect to various parameters,
a robustness index measure has been devised. The boundaries on either side of the
baseline value at which a significant deviation in simulation behaviour occurs are iden-
tified. Only the nearest boundaries to the baseline value are considered, and there are
at most two such boundaries, termed the upper and lower boundaries. The distance
between each of these boundaries and the baseline parameter value is expressed as a
percentage of the parameter’s baseline value, comprising the upper and lower indices.
If no significant deviation in simulation behaviour is observed then the boundary and
corresponding percentage index is assigned the value not-a-number (NaN). Where a
significant deviation in simulation behaviour does occur, but the baseline parameter
value is 0, the corresponding percentage index is assigned the value infinity (Inf). Val-
ues for upper and lower boundaries that are not NaN are accompanied by either (4)
or (—), which respectively indicate a significant increase or decrease in response value.
For clarity, NaN scores are indicated by ‘.” in the tables of this thesis.

The range of values over which a parameter is perturbed is determined by its type,
and what is considered reasonable. Some parameters represent probabilities, or pro-
portions. Such parameters may take values in the range of 0.0 to 1.0. The full range
of values is typically explored, with the notable exception of T'Cell_specificityUpper-
Limit and TCell_specificityLowerLimit, where the latter may not exceed the value held
by the former, and vice versa. Many pairs of simulation parameters, which are real
numbers, represent normal distributions from which the periods of time that individual
cells remain in particular states are drawn. Such distributions are defined through a
parameter that describes the mean, and another that describes the standard deviation
of the distribution. The parameters describing the standard deviations are perturbed
to values ranging from 0 to the value held by the mean*. The parameters describing
the mean are perturbed to values considered reasonable, or until a significant devia-
tion in simulation behaviour is observed. The robustness analysis employs two means

4Recall from section 5.2.8 that for parameters describing standard deviations, these normal distri-
butions actually describe two times the standard deviation, covering 95% of the distribution.
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of determining when a change in simulation response behaviour may be considered
significant.

The first makes use of the Vargha-Delaney A test [Vargha & Delaney 2000], intro-
duced above in section 6.3, to indicate when a perturbation has resulted in a scien-
tifically significant change in simulation behaviour. The use of a non-parametric test
avoids the assumption that the underlying distributions from which samples are drawn
are normally distributed. An effect magnitude test is employed to determine scien-
tific significance in place of statistical significance since a sufficiently large sample size
always reveals statistically significance, unless the variable of interest has no effect.

The A test is used to indicate significant deviations in simulation behaviour for 11
responses, outlined in section 6.2.1. These are: the nine responses derived from T cell
population dynamics, the maximum EAE score experienced during simulation execu-
tion, and the EAE score at 40 days. For each parameter perturbation 500 simulation
executions are conducted, and the 11 responses are calculated for each individual exe-
cution. For each response in turn, the 500 samples derived from a particular parameter
perturbation are compared using the A test to another 500 samples derived from sim-
ulation executions using baseline parameter values. A test scores above 0.71 or below
0.29 indicate a “large” difference between two distributions [Vargha & Delaney 2000].
These values are assumed to indicate when scientifically significant changes in simula-
tion behaviour have resulted from parameter perturbation.

The other means of identifying significant changes in simulation behaviour is built
around assigning EAE severity scores to simulation executions, and considers both
the maximum EAE severity experienced and the EAE severity remaining at 40 days.
Whilst using the A test to indicate significant deviations in simulation behaviour is sta-
tistically grounded, it offers no indication of the biological significance of the change.
The number of T cells in the simulation is a vast reduction of the number in an exper-
imental animal, and there is no direct way of relating changes in terms of simulation
cell number to the physical effects that are observed in vivo. Interpretation of in vivo
experimentation is underpinned by the assignment of EAE severity scores to individual
mice, from which group averages are compiled. The simulation’s EAE severity scoring
mechanism, detailed in section 6.2.1 above, permits a similar approach to interpreting
simulation derived results. The domain expert has indicated that a change of +1.0
in a group’s mean EAE score may be considered significant. Averages are compiled
from 500 simulation runs, in accordance to the results of the consistency analysis in
section 6.3.

Though the distribution of EAE scores is non-normal, as scores below 0 or above 5
are not possible, mean averages are used in preference to medians in order to align the
present analysis with in vivo practice, and to facilitate greater fidelity when contrasting
group scores.

6.5.2 Results

This section details the application of the robustness analysis to ARTIMMUS sim-
ulation parameters, with a focus on those that are arbitrarily assigned their baseline
values.

At the time of writing the author knows of no reason to question the values that
the simulation’s parameters have been assigned. However, were reasons to question
simulation parameter values to arise in the future, this analysis can indicate where
implications on simulation results exist. Although the focus of this section is on arbi-
trarily determined parameter values, a summary of robustness indices for all simulation
parameters with respect to all simulation responses is presented in table 6.4, and ap-
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[ Response H RI [ LI Ul [ LB default UB ]
CD4ThlMax 8.806 8.806 11.16 54.72(—) 60 66.69(+)
CD4ThlMaxTime . . . . 60 .
CD4Th2Max 8.544 | 8.544 10.33 | 54.87(—) 60 66.2(+)
CDA4Th2MaxTime 24.62 | 24.62 32.68 | 45.23(—) 60 79.61(+)
CD4TregMax 20.99 | 20.99 24.83 | 47.4(-) 60 74.9(+)
CD4TregMaxTime . . . . 60 .
CD8TregMax 25.80 | 25.89 27.41 | 44.47(—) 60 76.45(+)
CD8TregMaxTime . . . . 60 .
CD4Thlat40d 99.74 . 99.74 . 60 119.8(+)
MaxEAE (A test) 9.797 | 9.797 13.17 | 54.12(—) 60 67.9(+)
EAEatd0d (A test) || 17.71 . 17.71 ) 60 70.62(+)
MaxEAE 10.61 | 10.61  12.25 | 53.63(—) 60 67.35(+)
EAEat40d 10.26 . 10.26 . 60 66.15(+)

(¢) Summary of robustness indices, lower and upper boundaries and indices for all re-
sponses. RI, robustness index; LI, lower index; UI, upper index; LB, lower boundary;
UB, upper boundary. For clarity, NaN is indicated by ‘.’

Figure 6.19: Robustness analysis of the TCell AICDMean parameter.

pendix section C.3 provides a full robustness analysis, including robustness boundaries
and indices, with respect to each response.

It may be seen from table 6.4 that some simulation responses are highly fragile with
respect to parametric perturbation, with several examples of perturbations of less than
2% being sufficient to result in significant deviation in simulation behaviours. There
are many parameters for which perturbations cause significant deviation in behaviours
for all simulation responses.

The findings of this section reveal that, in comparison, the simulation is relatively
robust with respect to perturbation of its arbitrarily assigned parameters. Most affect
significant deviations in simulation behaviour for at most half the responses, but require
perturbations of around 40% or more to do so. Noteworthy exceptions are CNS_height,
CNS_width, and CNSMacrophage_tnfaSecretedPerHour WhenStimulated. Small per-
turbations of less than 10% result in significant behavioural deviations in nearly all
responses. These results point to the criticality of the rate of neuronal apoptosis in the
system, to which all three parameters directly contribute.
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Table 6.4: Summary of parameter robustness indexes, ordered by total rank. Responses are indicated as follows: 1M, CD4Thi! Max; 1MT, CD/Th1 Mazx
Time; 2M, CD4Th2 Maz; 2MT, CD/Th2 Max Time; 4M, CD/Treq Max; AMT, CD4Treg Max Time; 8M, CD8Treq Max; 8MT, CD8Treg Max Time; Th40,
CD4Thl at 40 Days; MEA, Max EAE; E40A, FAE at 40 Days. Significant deviation is indicated through the A test. ME and E40 represent Max FAE
and FAFE at 40 Days, with significant deviations in response behaviour defined as a change of at least 1.0 in the mean EAE score. Not-a-number values,
representing no significant deviation in behaviour, are marked with a period for clarity. Response columns show the smallest of the two robustness indexes
for each parameter-response combination. The ‘total’ is the sum of ranks for each parameter across all responses, with small response indexes being ranked
highest.

[ Rank Parameter Name [ 1M 1MT 2M 2MT 4M 4AMT 8SM SMT Th40 MEA  E40A ME E40 [ Total |

1 CNSMacrophage_tnfaSecreted PerHour WhenStimulated 5.64 11.97 2.99 5.74 4.84 9.01 6.67 9.22 16.26 1.55 1.86 1.41 0.89 28

CNSCell_apoptosisTNFaThreshold 5.26 13.78 3.27 5.20 5.27 11.88 6.63 13.03 14.70 1.45 2.04 1.36 0.97 30
3 CNS_height 6.53 14.79 4.02 6.72 5.82 10.99 7.40 12.67 17.45 3.66 3.83 3.31 1.82 56
4 Molecule_molecularHalflife 7.44 16.73 4.17 7.76 6.79 12.80 8.73 13.93 25.29 2.22 2.58 2.02 1.23 64
5 Simulation_-numCNSMacrophage 12.12 23.71 6.79 13.13 13.18 18.65 13.97 19.00 42.02 3.41 3.60 3.08 1.71 106
6 APC_timeOfDeathMean 7.30 26.84 7.62 35.80 4.27 42.36 5.79 47.02 26.88 11.79 24.68 11.87 11.76 115
7 Simulation_immunizationLinearDC0 6.67 16.71 9.02 43.58 8.72 22.22 12.88 21.38 43.09 13.94 24.95 15.90 14.13 124
8 CNS_width 9.27 23.01 4.66 7.02 7.20 16.40 8.12 17.10 . 3.90 3.93 3.25 1.87 150
9 Simulation_immunizationLinearGradient 16.92 22.76 15.16 44.10 12.95 36.71 16.24 39.82 54.15 33.83 50.24 34.83 37.75 184
10 Simulation-numCNS 43.41 56.83 27.59 38.11 34.59 45.09 36.73 46.67 . 6.92 11.51 7.55 5.41 253
11 Simulation_-numDCCNS 39.70 51.70 23.84 39.09 16.67 63.58 22.29 57.64 112.10 65.01 138.00 71.18 55.11 262
12 Th1Polarization_typelSecretedPerHourWhenActivated 38.04 62.49 38.01 44.88 35.32 53.98 39.64 56.07 477.10 26.07 141.30 27.92 48.21 263
13 TCell_proliferationMean 9.28 9.18 9.81 . 3.54 5.58 5.88 5.91 15.59 18.24 . 19.17 . 270
14 TCell_cellsPerGridspace 8.98 47.96 10.41 33.17 8.56 39.20 9.61 42.67 37.56 22.03 . 24.78 . 272
15 TCell_.becomeEffectorMean 18.22 24.94 20.64 47.50 9.53 14.98 17.27 14.94 29.03 28.88 . 29.29 . 286
16 Simulation_immunizationLinearFreq 10.31 . 16.13 36.11 26.81 33.46 35.57 37.20 . 23.16 33.20 20.72 16.67 290
17 TCell_ AICDMean 8.81 . 8.54 24.62 12.10 . 13.92 . 99.74 9.80 17.71 10.61 10.26 322
18 Simulation-numCD4Th 48.10 41.43 54.33 74.73 45.91 42.25 57.20 41.97 79.81 62.24 . 64.00 243.80 330
19 TCell-timeLocalActivationInducedEffectorFunctionFor 14.59 65.05 19.02 49.56 17.56 68.72 21.95 53.73 . 22.52 . 23.26 31.35 336
20 CNSMacrophage_typel RequiredForActivation 58.00 127.50 50.32 75.85 71.60 108.30 80.11 106.30 96.71 34.70 58.82 36.37 35.39 341
21 Clirculation_height 61.06 46.95 36.99 182.60 32.55 43.99 39.21 45.58 29.27 46.44 . 51.30 . 361
22 CD4THelper_diff08 5.66 47.23 2.69 92.33 8.84 90.82 10.18 92.70 . 16.58 . 16.93 . 365
23 APC_probabilityPhagocytosisToPeptide 32.53 65.77 16.92 25.85 9.78 60.98 12.01 74.93 49.54 . . . . 441
24 SLO_width 67.65 44.32 56.01 162.80 48.82 44.10 137.80 44.75 . 119.50 . 130.90 . 485
25 DendriticCell_typelSecreted PerHourImmunized 88.89 . 60.43 1834.00  84.73 91.87 86.42 91.50 . 93.41 889.50 93.30 604.80 487
26 Simulation-numCD8Treg 94.96 76.89 . . 37.63 73.86 24.09 73.60 53.27 . 99.01 . 97.46 498
27 DendriticCell_phagocytosisProbabilityImmature 76.65 91.47 53.31 70.32 54.63 92.77 61.30 92.95 . 92.48 . 93.67 . 517
28 TCell_timeLocalActivationDelay 64.22 75.41 58.56 325.50 88.58 57.11 81.86 59.87 . 93.46 . 96.19 . 518
29 Simulation_-numCD4Treg . 83.07 . . 30.89 47.23 55.04 48.05 91.56 . 98.98 . 97.94 530
30 TCell_apoptosisNaiveMean 38.20 53.26 49.23 . 50.61 54.93 . 63.73 . 65.05 . 68.47 . 555
31 CNSMacrophage_basalMBPExpressionProbability 76.59 95.18 78.32 96.19 82.58 . 85.40 . . 83.73 . 83.49 285.70 565
32 CNSMacrophage_phagocytosisProbabilityMature . . 78.38 90.65 83.66 . . . . 24.24 56.55 28.15 25.25 588
33 Circulation_timeToCrossOrgan 82.13 . 59.66 . 44.98 78.82 57.61 76.69 . 69.59 . 70.98 . 591
34 DendriticCell_cytokineType2PolarizationRatio 81.25 83.80 49.16 . 77.75 82.52 79.53 82.23 484.50 . . . . 606
35 Molecule_decayThreshold 752.70 . 235.20 . 664.70 3561.00 760.10 3721.00 87.05 1317.00 . 1283.00 . 628
36 CLN_width 198.40  57.31 51.53 . 48.45 39.93 59.73 . . . . . . 665

Continued on Next Page. ..

9

NOILVILNANIHAdXH JAILVHOTdXH



671

Table 6.4 — Continued

[ Rank Parameter Name [ 1M 1MT 2M 2MT 4M 4AMT 8SM SMT Th40 MEA E40A ME E40 [ Total |
37 Th2Polarization_proliferationMean 41.66 42.96 45.21 34.15 . 36.36 . . 674
38 Th2Polarization_type2Secreted PerHourWhenActivated . 87.03 94.89 369.10 495.30  409.80 545.80 97.59 684
39 APC_immatureDurationMean 54.25 53.55 32.42 . 50.52 . 57.96 690
40 Spleen_height . 160.00 157.90 131.60 163.10 57.75 140.70 719
41 TCell_specificity LowerLimit . 86.34 88.54 60.03 73.45 61.09 . . 731
42 Thi1Polarization_mhcUnExpressionDelayMean 93.54 69.20 . . . . 17.57 97.70 732
43 Spleen_width . 47.22 32.11 81.03 33.11 . . . 733
44 SLO_height 82.59 . 131.40 160.60 140.00 141.20 745
45 CD8Treg-cd8TregToCD4ThelperSpecificity DropOff 99.80 92.76 . . . 72.78 99.82 756
46 DendriticCell-typel RequiredForActivation 99.93 99.77 98.85 97.67 . 97.33 . 764
47 Simulation-numDCSpleen 50.17 50.76 82.67 799
48 CLN_height 45.65 114.80 45.61 . . 801
49 CNSMacrophage_phagocytosisProbabilityImmature 87.80 . . 46.66 52.72 809
50 TCell_proliferationStdDev 75.77 86.54 90.68 . . 820
51 TCell AICDStdDev . . 31.36 37.63 832
52 TCell_specificity UpperLimit . 40.80 42.35 . 842
53 CD4THelper_diff00 1345.00 . . 1060.00 863
54 Simulation_-numDC 342.10 467.00 . 885
55 Circulation-width . . 126.50 891
56 TCell_becomeEflfectorStdDev . 52.67 899
57 Simulation_immunizationLinearInitial 937.50 . 900
58 DendriticCell_phagocytosisProbabilityMature 89.19 903
72 APC_immatureDurationStdDev . 936
72 APC_timeOfDeathStdDev 936
72 CD4Treg_typelSecretedPerHour WhenActivated 936
72 CD8Treg-typelSecreted PerHour WhenA ctivated 936
72 CLN_timeToCrossOrgan 936
72 CNS_timeToCrossOrgan 936
72 DendriticCellMigrates_lengthOfTimeMovingFollowing... 936
72 SLO_timeToCrossOrgan 936
72 Spleen_timeToCrossOrgan 936
72 TCell_apoptosisNaiveStd Dev 936
72 TCell_apoptosisPartialMaturityMean 936
72 TCell_apoptosisPartialMaturityStdDev 936
72 ThiPolarization-mhcUnExpressionDelayStdDev 936
72 Th2Polarization_proliferationStdDev 936
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g Table 6.5: Robustness indexes for parameters pertaining to compartmental dimensions. Responses are indicated as follows: 1M, CD4Th1 Max; IMT, CD4Th1
Mazx Time; 2M, CD4Th2 Mazx; 2MT, CD4Th2 Max Time; 4M, CD/Treg Max; 4MT, CD4Treq Maz Time; 8M, CD8Treqg Mazx; 8MT, CD8Treqg Max Time;
Th40, CD4Th1 at 40 Days; MEA, Max EAE; EA0A, EAFE at 40 Days. Significant deviation is indicated through the A test. ME and E40 represent Max FAE
and EAFE at 40 Days, with significant deviations in response behaviour defined as a change of at least 1.0 in the mean EAE score.

[ Parameter Name [[ 1M 1MT 2M 2MT 4M AMT 8M 8SMT Th40 MEA  E40A ME E40 |
CLN_height . . . 44.60 59.28 122.30 59.79 45.61
CLN_width 198.40 57.31 51.53 . 44.12 . 53.26 48.73 . . . . .
CNS_height 6.53 14.79 4.02 6.72 5.81 12.57 7.44 11.92 17.45 3.66 3.83 3.31 1.82
CNS_width 9.27 23.01 4.66 7.02 7.25 17.88 8.35 20.97 . 3.90 3.93 3.25 1.87
Clirculation-width . . . . . . . . 126.50 . . . .
Circulation_height 61.06 46.95 36.99 182.60 34.30 43.86 39.66 45.19 29.27 46.44 . 51.30
SLO_width 67.65 44.32 56.01 162.80 47.34 45.93 141.30 45.71 . 119.50 . 130.90
SLO_height 82.59 . . 131.00 . 160.60 140.00 . 141.20
Spleen_width . 50.39 35.94 73.76 34.69 .
Spleen_height 160.00 160.50 57.50 165.10 58.37 140.70

Table 6.6: Robustness indexes for parameters specifying initial cell numbers. Responses indicated as in table 6.5.

[ Parameter Name [ 1M 1MT 2M 2MT 4M AMT 8M 8MT Th40 MEA E40A ME E40 |
Simulation_numCD4Th 48.10 41.43 54.33 74.73 47.15 43.88 58.67 43.05 79.81 62.24 . 64.00 243.80
Simulation_.numCD4Treg . 83.07 . . 30.90 48.09 56.81 47.05 91.56 . 98.98 . 97.94
Simulation-numCD8Treg 94.96 76.89 39.77 75.10 23.54 78.07 53.27 . 99.01 . 97.46
Simulation_-numDC 335.60 456.60 .

Simulation-numDCSpleen 51.47 51.16 82.67

Table 6.7: Robustness indexes for parameters pertaining to T cell-APC interactions. Responses indicated as in table 6.5

[ Parameter Name [ 1M IMT 2M 2MT 4M 4MT 8M 8MT Th40 MEA E40A ME E40 |
DendriticCell_phagocytosisProbabilityImmature 76.65 91.47 53.31 70.32 53.52 93.54 60.78 93.36 . 92.48 . 93.67
DendriticCell_phagocytosisProbabilityMature . 86.09 . . .
CNSMacrophage_phagocytosisProbabilityImmature . . 87.70 46.66 . 52.72 .
CNSMacrophage_phagocytosisProbabilityMature . 78.38 90.65 83.48 . . . 24.24 56.55 28.15  25.25
TCell_specificity LowerLimit 86.34 93.33 60.70 74.95 62.75
TCell_specificity UpperLimit 42.14 43.10

9

NOILVILNANIHAdXH JAILVHOTdXH



161

Table 6.8: Robustness indexes for cytokine secretion and decay. Responses indicated as in table 6.5.

Parameter Name [ 1M 1MT 2M 2MT AM AMT 8M 8MT Th40 MEA E40A ME E40
CNSMacrophage_tnfaSecreted PerHour WhenStimulated 5.64 11.97 2.99 5.74 4.79 9.29 6.71 9.68 16.26 1.55 1.86 1.41 0.89
DendriticCell_typelSecreted PerHourImmunized 88.89 . 60.43 1834.00 85.23 . 87.52 . . 93.41 889.50 93.30 604.80
Th1Polarization-typelSecreted PerHour WhenActivated 38.04 62.49 38.01 44.88 35.75 57.56 40.50 55.19 477.10 26.07 141.30 27.92 48.21
Th2Polarization_type2Secreted PerHour WhenActivated 87.03 94.89 384.30  587.30  455.00  540.30 97.59
CD4Treg-typelSecretedPerHour WhenActivated . . . . . . .

CD8Treg_typelSecreted PerHour WhenActivated . . . . . . .
Molecule_decayThreshold 752.70 235.20 673.80 808.60 87.05 1317.00 1283.00

Table 6.9: Robustness indexes for parameters specifying standard deviations of timing distributions. Responses indicated as in table 6.5.

[ Parameter Name

[ 1M

1MT

2M

2MT

4M

4MT

8M

SMT  Th40

MEA

E40A

ME

E40 |

APC_immatureDurationStdDev
APC_timeOfDeathStdDev

TCell_ AICDStdDev
TCell_apoptosisNaiveStdDev
TCell_apoptosisPartialMaturityStdDev
TCell_becomeEffectorStdDev
TCell_proliferationStd Dev
Th2Polarization_proliferationStd Dev

67.85
62.05

88.80

94.55

31.36

37.63
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6. EXPLORATIVE EXPERIMENTATION

6.5.2.1 Compartmental dimensions

Table 6.5 shows the robustness indices for parameters specifying compartmental dimen-
sions. Altering the heights and widths of compartments, independently of any other
parameter, adjusts the density of cells in the simulation.

In the case of the CNS compartment this has a marked effect on many of the
simulation’s responses. The importance of the rate of neuronal apoptosis on simulation
behaviour has been established above in section 6.4.2.1: apoptotic neurons incite self-
perpetuating autoimmunity which in turn stimulates the expansion of regulatory T
cells. Altering CNS_height and CNS_width adjusts the density of cells in the CNS
compartment. When these parameters are decreased, the same quantity of TNF-q,
secreted by the same number of CNS macrophages, reaches more neurons. There
exists less physical space over which to dissipate, increasing its concentration. As such
the rate at which neurons enter apoptosis increases. The simulation is highly sensitive
to perturbation of these two parameters, with perturbations of less than 5% resulting
in significant behavioural changes in numerous responses.

The other compartmental dimension parameters generally require perturbations of
at least a third of the default value in order to attain significant behavioural changes,
and in many cases no significant change is affected.

A common trend in compartments where T cell priming takes place, the CLN, SLO
and spleen, is for perturbation of a compartment’s width to have a greater effect on
a simulation response than the same perturbation of its height. This is believed to
be a simulation artifact, resulting from the manner in which cells move within the
compartment. Cells migrate through a compartment from top to bottom. Hence, a
migratory T cell will always explore the full height of a compartment. The same is not
true for a compartment’s width, where the probability of a T cell moving left, right or
remaining stationary are the same. On average, a T cell will traverse down through
a compartment in a straight line, exploring relatively little of the width. Reducing
a compartment’s width means that DCs are packed horizontally closer together, and
this increases the probability that T cells will encounter DCs expressing MHC:peptide
complexes for which they are specific.

The same phenomenon can explain why the simulation is significantly less robust to-
wards perturbation of Circulation_height than Circulation_width. Decreasing the width
of the circulatory compartment, where significant CD4Th1 apoptosing by CD8Treg cells
occurs, increases the probability that cells will interact with one another. This results
in increased CD4Th1 regulation of CD8Treg cells, which in turn increases the degree of
stimulation for Treg priming at that point in time. Hence, the peaks of Treg population
sizes are increased.

In summary, these results indicate that altering the density of cells in the CNS is
critical to the behaviour of the simulation, but less so for other compartments.

6.5.2.2 Seeding of simulation with cells

Table 6.6 summarises simulation robustness with respect to those parameters that
dictate the initial number of cells in the simulation, and that were arbitrarily assigned
baseline values. The initial number of T cells in the simulation, dictated by Simulation_-
numCD4Th, Simulation_.numCD4Treg and Simulation_.numCD8Treg, was arbitrarily
chosen, though the ratio between Treg cells and CD4Thl cells was informed by the
domain expert. Robustness analysis finds that perturbations of around 40% or more
are typically required to affect significant changes in behaviour.
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6.5. Robustness analysis of parameters

Simulation_.numDC and Simulation_numDCSpleen were also assigned arbitrary val-
ues, though the ratio between them was informed by the domain expert. The former
is unable to affect significant changes in simulation behaviour unless perturbed by sev-
eral times the default value. Coupled with the lack of significant influence portrayed
by this parameter, table 6.3, these results do not cause concern. The latter requires
perturbation of 50%, and this affects only three responses, pertaining to the maximum
number of effector CD4Treg and CD8Tregs attained, and the number of CD4Th1 cells
remaining at 40 days.

These parameters influence the initial density of cells in the simulation. In the
case of T cells, reducing the density prolongs the typical length of time required for im-
mune responses to instigate, since the probabilities of T cells encountering immunogenic
APCs are reduced. It is noted that the simulation does not encompass any notion of
chemokine® secretion by immunogenic APCs, which has the effect of attracting T cells
to immunogenic APCs. At present immune response instigation relies on random move-
ment of T cells through secondary lymphoid compartments where APCs reside. Were
the density of MBP-specific CD4Th cells, CD4Treg or CD8Treg cells in the simulation
to be found inconsistent with in vivo findings and cause concern, implementation of
this chemokine attractant mechanism may compensate for high numbers of T cells.
The same applies were the number of DCs in the spleen found to be artificially high.

In summary, at present, the robustness of the simulation with respect to these
parameters does not cause concern.

6.5.2.3 T cell-APC interaction

The parameters TCell_specificityUpperLimit, TCell_specificityLowerLimit, Dendritic-
Cell_phagocytosisProbabilityImmature, DendriticCell_phagocytosisProbabilityMature,
CNSMacrophage_phagocytosisProbabilityImmature and CNSMacrophage_phagocyto-
sisProbabilityMature have somewhat arbitrarily defined parameter values. Table 6.7
summarises the robustness indices of these parameters.

The simulation is relatively robust with respect perturbation of the APC phagocy-
tosis parameters, in most cases no significant deviation in behaviour occurs, and where
it does, perturbations of over 50% are typically required. These robustness indices are
not considered problematic. It is noteworthy that CNSMacrophage_phagocytosisProb-
abilityMature is able to increase the mean level of EAE experienced at 40 days by
1.0 when increased by 25% of its default value. The lack of any such deviation in be-
haviour for CNSMacrophage_phagocytosisProbabilityImmature indicates that phago-
cytosis, and hence peptide derivation, by mature CNS macrophages is important for
maintaining neuronal apoptosis. Figure 6.20 shows the effector T cell dynamics and
the mean progression of EAE over time for CNSMacrophage_phagocytosisProbability-
Mature values of 20% and 40%. It may be observed that whilst the difference in T
cell population dynamics appears minor, the EAE severities differ substantially. Ma-
ture APCs are highly motile, and are more likely to contact apoptotic neurons, which
are stationary. Whilst increasing this parameter by 20% may reduce the phagocyto-
sis of apoptotic CD4Th1 cells and neurons by dendritic cells, the lack of substantial
difference in T cell priming patterns suggests that this effect is minor. Rather than
explain the increased EAE severity through the increased priming of CD4Th1 cells, it
is likely that increased phagocytic activity in mature CNS macrophages is resulting in
increased MHC-II:MBP expression by these cells, and hence recent CD4Thl infiltrates
in the CNS are able to derive local activation more quickly. Earlier local activation of

®Chemokines are molecules, similar to cytokines, that influence cellular movements.
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6. EXPLORATIVE EXPERIMENTATION

CD4Th1 cells will result in, at a population level, increased type 1 cytokine secretion,
which prompts more widespread TNF-« secretion by CNS macrophages, and hence
increased neuronal apoptosis.

Phagocytic activity of mature CNS macrophages is hence shown to impact neuronal
apoptosis in the CNS. However, should future experimentation indicate that this pa-
rameter is incorrectly set, the implications for ARTIMMUS are not overly severe. This
parameter’s range of effects does not extend to T cell population dynamics, rather, it
is limited to the rate of neuronal apoptosis. As such, the in silico EAE severity scoring
mechanism would likely require re-calibration.
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(a) Effector T cell dynamics, 20%. (b) Effector T cell dynamics, 40%.
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Figure 6.20: Changes in the phagocytic potential of mature CNS macrophages has a marked
effect on the mean progression of EAE, although relatively little effect is seen in actual T cell
dynamics. This is believed to be due to the time taken for effector CD4Thl cells to derive
local activation in the CNS: increased CNS macrophage phagocytic activity leads to increased
expression of MHC-II:MBP.

The simulation also displays robustness with respect to perturbation of T cell speci-
ficity related parameters. T'Cell_specificity UpperLimit perturbation is found to be sig-
nificant with respect to only two responses, when perturbed by over 40%. TCell_spec-
ificityLowerLimit affects significant changes only when perturbed by over 60% of its
default value.

6.5.2.4 Cytokine secretion and decay

Table 6.8 summarises simulation robustness with respect to perturbation of parameters
specifying cellular cytokine secretion and cytokine decay. Perturbation of CD4Treg -
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typelSecretedPerHour WhenActivated and CD8Treg_typelSecretedPerHour WhenAct-
ivated, which were assigned arbitrary values significantly less than Th1Polarization_-
typelSecretedPerHour WhenActivated, is shown to be inconsequential to simulation
behaviour. Th2Polarization_type2SecretedPerHour WhenActivated is shown to signifi-
cantly alter behaviour when perturbed by at least 85%.

Perturbation of both ThilPolarization_typelSecretedPerHour WhenActivated and
CNSMacrophage_tnfaSecreted PerHour WhenStimulated incites significant deviation in
simulation behaviour for all responses. In the former case a perturbation of at least 25%
is required, in the latter 1% is sufficient to increase the level of EAE severity experi-
enced at 40 days by 1.0. As established in section 6.4.2.1, CNSMacrophage_tnfaSecret-
edPerHour WhenStimulated is directly related to the rate of neuronal apoptosis, which
in turn drives both autoimmune and hence regulatory responses. ThlPolarization_-
typelSecretedPerHour WhenActivated may be considered a ‘second order’ parameter
in influencing the rate of neuronal apoptosis, type 1 cytokine being required for the
activation of CNS macrophages. These results are significant, and point to the impor-
tance of balancing parameters that lead to neuronal apoptosis such that the behaviours
observed in vivo are accurately replicated in the simulation. Together, parameters de-
scribing the secretion rates of cytokines, cell sensitivities to cytokines, and Molecule_-
molecularHalflife dictate the physical reach of cytokine effects. Should it be found that
the two arbitrarily determined cytokine secretion parameters discussed here contribute
to an unrealistic diffusion of cytokine effect in the simulation, then many other param-
eters will need recalibration to ensure that this discrepancy is corrected. These include
the other parameters directly involved in neuronal apoptosis: CNSCell_apoptosisTNFa-
Threshold, APC_probabilityPhagocytosisToPeptide, Simulation_numCNS, and Simula-
tion_.numCNSMacrophage.

Molecule_decayThreshold represents the minimum concentration of cytokine that
may exist in a grid space before it is considered to be zero; without this feature the
simulation’s decay mechanism would allow cytokine concentrations to approach but
never reach zero. This parameter was assigned an arbitrary value intended to be many
orders of magnitude smaller than the smallest quantity of cytokine secreted by any cell.
Parameter perturbation is found to significantly alter simulation behaviour for several
responses, however a perturbation of at least 85% is required, and in most cases the
required perturbation is several hundred percent. It may be concluded that simulation
behaviour is not critically defined by the exact value held by this parameter.

6.5.2.5 Standard deviation related parameters.

The duration of time that cells spend in particular states are typically drawn from a
normal distribution, specified by a mean and standard deviation. The mean values
are based on domain-specific knowledge, or are tuned in order to align simulation
behaviour with that observed in vivo. Parameters specifying standard deviations, listed
in table 6.9 have been arbitrarily assigned values that are far from zero but less than
those held by the corresponding mean parameter.

Table 6.9 summarises robustness indices for arbitrarily assigned standard deviation
parameters. This analysis indicates that perturbation of these parameters is largely in-
consequential to simulation behaviour. TCell_. AICDStdDev is found to exert influence
on the maz FAFE response when perturbed by around 30% or more. Figure 6.21 depicts
the mean severity of EAE experienced under TCell AICDStdDev parameter values of
0 and 60 hours, and confirms this parameter’s marked effect on the maximum severity
of EAE reached. The result may be explained through the requirement for a CD4Th1
cell to reach the CNS and become locally activated before contributing to autoimmune
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6. EXPLORATIVE EXPERIMENTATION

activity. To illustrate with a hypothetical scenario, were T'Cel_ AICDStdDev to be set
to zero, and the average time required for a CD4Th1 to migrate into the CNS compart-
ment and become activated be 40 hours, then the average time that each CD4Th1 cell
would perform effector function for would be 20 hours. Increasing TCell AICDStdDev
to 60 hours, many cells would remain in effector state for significantly longer than 60
hours, and many would enter apoptosis prior to reaching the CNS.

For any one CD4Thl cell, increasing values for TCell AICDStdDev that further
reduce its effector life-span below the 40 hours required to reach the CNS does not
further decrease its contribution to autoimmunity; it makes no contribution. However,
the other extreme is that a cell experiencing a similarly extended lifespan would provide
additional contribution to autoimmune activity. Since some proportion of a CD4Thl
cell’s effector lifespan is spent migrating to the CNS and awaiting local activation,
increases in autoimmune contribution resulting from increases in T'Cell AICDStdDev
outweigh the reduced contribution of cells that apoptose before being locally activated
in the CNS.

Should the default value of 56 hours for T'Cell_ AICDStdDev be deemed inappropri-
ate, the in silico EAE severity scoring mechanism would require re-calibration to reflect
the fact that the rate of neuronal apoptosis is reasonably dependent on this parameter.
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+/- std dev +/- std dev

EAE Score
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2
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0 10 20 30 40 0 10 20 30 40
Time (days) Time (days)
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Figure 6.21: The mean severity of EAE experienced under parameter values of 0 and 60 hours
for TCell_ AICDStdDev.

6.6 Qualifying the significance of simulation results

The previous section has examined simulation robustness with respect to perturbation
of parameters that were assigned arbitrary values, since no guidance exists on appro-
priate values that they might otherwise adopt. Finding that simulation behaviours
critically depend on these parameters holding values from a very small range of their
possible domain has implications on the interpretation of simulation results; were these
parameters assigned other arbitrary values, simulation behaviours may differ signifi-
cantly. Reporting these criticalities is important when communicating in silico results,
other researchers may have reason to doubt the values adopted in simulation. The
robustness analysis is an initial step towards qualifying the significance of simulation-
derived results in the real domain, and the confidence that may be placed in them. The
present section expands on this theory, explaining how the robustness and sensitivity
analyses may be combined with domain-specific knowledge concerning biologically plau-
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sible ranges of parameter values to further this goal. Three methods of application are
explored below.

Firstly, the boundaries of biologically plausible parameter ranges can be contrasted
with robustness boundaries, derived through the robustness analysis, to ascertain
whether a particular simulation behaviour may be explained by potentially inaccu-
rate parameter values, or whether it is genuinely representative of the mechanics upon
which the simulation is built. This is illustrated in figure 6.22. If it is found that
simulation behaviours significantly deviate when simulation parameters are perturbed
to other biologically-plausible values within their domain, then less confidence should
be placed in those results being representative of the original domain. Should this
occur, the significance of the discrepancy, and hence the degree of confidence assumed
in the results, may be ascertained through assessing that parameter’s influence over
simulation behaviour using a global sensitivity analysis. If the parameter is found to
have little influence over the simulation’s behaviour, then the robustness boundaries
lying within the biologically-plausible boundaries is not as significant as would be the
case for a very influential parameter.

Secondly, the robustness analysis technique need not take the simulation’s calibrated
baseline parameter values as the point from which parameters are perturbed. It may
instead be set to a point in parameter space that reflects a prediction of the system. In
this case the application of the robustness analysis technique would constitute breaking
the prediction, after which the conditions required to break the prediction can be con-
trasted with domain-specific knowledge. For example, in silico experimentation might
investigate the nature of a regulatory pathway by perturbing a parameter specifying
the efficacy of its operation. This might reveal a switching in simulation behaviour only
when the efficacy is reduced to a certain point; that the regulatory pathway continues
to operate correctly until efficacy is reduced to a particular level. Assuming this level
as the baseline value for that parameter, and then performing a robustness analysis
would estimate® the area of parameter space under which this prediction holds. This
may then be contrasted with domain-specific knowledge to qualify the certainty of the
prediction: the degree to which it is an artifact of assuming not-entirely biologically
plausible parameter values, or a genuine representation of the original domain.

Lastly, an alternative approach to qualifying when simulation results may be as-
sumed genuinely representative of the original domain is as follows. It relies on ascer-
taining the extremes of simulation behaviour that occur when using any combination
of parameter values from within their biologically-plausible ranges. These extremes
represent the range of simulation behaviours that can be attributed to biological un-
certainty (uncertainty concerning exact figures in the real domain). By contrasting the
results of in silico experimentation with these extremes, one can determine whether
results are genuinely representative of the real-world domain, or may simply be ex-
plained by the inability to fully specify parameter values. As illustrated in figure 6.23,
this strategy could be implemented using latin hypercube sampling, where the range
of values from which samples in parameter space are extracted are set to biologically
plausible analogues. Representative simulation behaviours may then be obtained at
each of these points in parameter space, and the extremities of simulation behaviour
extracted therefrom. If there exist compounding effects between several parameters,
for example if simulation behaviours change substantially when two parameters hold
values within their biologically plausible ranges but not near the extremities, then these

S Application of the above robustness analysis in this context would not constitute exactly identi-
fying the area of parameter space, since it is a one at a time analysis; compound effects of moving two
parameters away from their baseline values would not be revealed.
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6. EXPLORATIVE EXPERIMENTATION

may be highlighted through use of latin hypercube sampling.

The approaches to qualifying the significance of in silico results in terms of the
real-world domain proposed here are theoretical only. Their application and further
exploration is considered outside the scope of this thesis.

biologically plausible
range of values

parameter p1

I | simulation is stable for all
. : biologically plausible
| : : | values. Increased
: : confidence in results.

~

range of values yielding statistically
consistent simulation behaviours

: simulation not stable for
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| | : values. Caution must be

. taken in results.

Figure 6.22: The robustness indices arising from robustness analysis can be contrasted with
biologically-plausible ranges of parameter values. This can indicate the degree to which sim-
ulation results are explained by uncertainty in the domain, and hence how much confidence
one may place in their being representative of the real-world domain rather than underspecified
parameter values.
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Figure 6.23: The range of simulation behaviours which may be assumed representative of
the domain, rather than the results of uncertainty concerning exact biological figures, may
be calculated by constructing a latin hypercube around the ranges of biologically plausible
values. Simulation behaviour at each point in parameter space is ascertained, and the range
of simulation behaviours arising from biological uncertainty extracted. Results of in silico
experimentation falling outside this range may be assumed more representative of the real-
world domain, rather than the result of underspecified parameter values.

6.7 Conclusion

This chapter has explored the importance of cells, pathways and parameters in AR-
TIMMUS through statistical techniques. Further, it has investigated how statistical
techniques may be employed to aid interpretation of in silico results in terms of the
original domain. As such, the chapter has addressed research objectives 4 and 5: to
perform novel in silico experimentation using ARTIMMUS, and to develop and apply
statistical techniques for interpreting in silico results in the context of EAE.

Section 6.2 establishes metrics of simulation behaviour necessary for the applica-
tion of sensitivity and uncertainty analyses. Nine of the metrics relate directly to
system-level T cell dynamics, the remaining two concern a means to grade simulation
executions using the same six point scale employed in the wet-lab. The mapping of this
six point grading system onto simulation executions better integrates simulation and
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real-world results. A novel consistency analysis technique that establishes the relation-
ship between the accuracy of averaged simulation results and the number of simulation
executions sampled in deriving them is presented in section 6.3. This technique allows
researchers to balance computational requirements with the precision required in their
analyses. Section 6.4 reports the application of a global sensitivity analysis, based
on latin hypercube sampling, in assessing the influences of ARTIMMUS’s components
and pathways on its overall behaviour. The most influential parameters in the sim-
ulation are those that pertain directly to neuronal apoptosis; this phenomenon drives
the autoimmune response, which in turn provides stimulation for the regulatory im-
mune response. A novel robustness sensitivity analysis is presented in section 6.5. It
establishes the range of parameter values over which simulation behaviour is statis-
tically consistent. The analysis is used to assess the extent to which ARTIMMUS’s
behaviour critically depends on the parameters assigned arbitrary values during cali-
bration. Should simulation behaviours critically depend on these parameters holding
very specific values, then caution must be exercised in drawing conclusions from the
results, had different arbitrary values been assigned the simulation’s behaviour might
differ substantially. Section 6.6 expands upon this theory by considering a variety of
ways in which sensitivity and robustness analyses can be applied and considered in the
context of domain-specific knowledge to qualify the significance of in silico results in
the target domain.

The application of the global sensitivity analysis reveals aspects of the simulation
that are influential on its overall behaviour. Such an analysis could not be performed
in the wet-lab, and as such it constitutes novel in silico experimentation. Several
insightful predictions have arisen from this analysis, summarised here:

e The relatively inconsequential effect of perturbing parameters pertaining to the
regulatory pathway, the ability of CD8Treg cells to apoptose CD4Thl cells and
the duration for which such cells express Qa-1 for, leads to the prediction that
there is considerable redundancy in the regulatory pathway’s ability to ameliorate
autoimmune behaviour. This is investigated further in the following chapter.

e Results of the analysis indicate that there is not a delicate balance between type
1 and type 2 cytokine in the grid spaces where they influence cellular behaviours.
Rather, the relatively inconsequential effect of perturbing cytokine secretion and
sensitivities leads to the prediction that in any grid space where cytokines lead to
polarisation related decisions, one cytokine substantially outnumbers the other
in concentration.

e The type 2 deviation of the autoimmune response, observed during recovery, is
more a result of regulatory action than a driver of it. The parameters dictating
the probabilities of CD4Th cells adopting particular polarisations were found to
be of little consequence when perturbed. This was further investigated by alter-
ing parameters such that the conditions that ordinarily prompt strong preference
for CD4Th2 polarisations instead exclusively lead to adoption of type 1 polar-
isations revealed very little change in the ability of the system to recover from
autoimmunity.

The following chapter conducts further in silico experimentation into EAE.
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Chapter 7

Projective Experimentation

The previous chapter has explored the role of various statistical techniques in inter-
preting in silico results. The application of global sensitivity analysis has lead to novel
insight into EAE. This chapter reports further novel in silico experimentation into
EAE, performed on ARTIMMUS.

Firstly, section 7.1 motivates this chapter. There are three stands of experimenta-
tion reported here. The first, section 7.2, examines the cellular dynamics underpinning
autoimmunity and recovery both in the presence and absence of regulatory activity,
the two conditions used in calibrating ARTIMMUS. Secondly, section 7.3 examines
various aspects of regulation that lead to recovery. Lastly, section 7.4 reports the use
of ARTIMMUS in gaining insight into the role of the spleen in EAE. Lastly, section 7.5
concludes this chapter.

7.1 Goal and motivation

This chapter directly addresses research objective 4: perform novel in silico experimen-
tation using the agent-based simulation of EAE. In addition to providing contribution
to the field of EAE, performing in silico experimentation provides context in which to
consider the extent to which the modelling and statistical techniques explored in this
thesis provide confidence in simulation results being representative of the real-world
domain.

There are three themes of experimentation reported in this chapter. Section 7.2
investigates the behaviour of ARTIMMUS under conditions of physiological recovery
and prolonged autoimmunity, achieved through disabling the ability of CD8Treg cells
to regulate CD4Thl cells. These two complementary conditions reflect those used
in the calibration of the simulation. This experimentation examines the dynamics of
particular cell populations, and the EAE progressions experienced under each condition.

The second theme of experimentation, presented in section 7.3, examines the reg-
ulatory pathway by which effector CD8Treg cells are able to induce apoptosis in Qa-1
expressing CD4Th1 cells in greater detail. This regulatory pathway has a critical role
in recovery from EAE, and the in silico experiments conducted here cannot be per-
formed in the real-world domain. Three sets of experimentation are presented. The
first examines the effect of reducing the efficacy of the regulatory pathway, reducing
the probability that a successful binding between an effector CD8Treg cell and a Qa-1
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expressing CD4Th1 cell will lead to the former inducing apoptosis in the latter. The
second considers the effect of altering the mean duration of time for which effector
CDA4Th1 cells express Qa-1, Qa-1 expression being a requisite for regulation. The
last experiment considers the possibility that section 7.2’s finding that the majority of
CDA4Th1 cells are induced into apoptosis in the circulatory system is an artifact of an
underspecified simulation parameter, rather than being genuinely representative of the
underlying simulation mechanics.

The last theme of experimentation, presented in section 7.4, employs ARTIMMUS
to gain insight into in vivo experimentation which demonstrated that splenectomy (re-
moval of the spleen) in rats subsequently induced into EAE is associated with increased
autoimmune severity. A splenectomy experiment is engineered into the simulation, and
the manner in which this reduces regulatory capacity of Treg populations is examined.

7.2 Elucidation of baseline behaviour

The present section details the use of the ARTIMMUS simulation in gaining insight into
the nature of EAE. Two experimental scenarios are considered, that of physiological
CD8Treg mediated recovery, and prolonged autoimmunity through the abrogation of
the regulatory pathway. These two scenarios were the targets of calibration activities
reported in chapter 5; the simulation and its parameters were amended in a manner
that aligned simulation behaviour with that observed in vivo under these two scenarios.
Both these scenarios are considered here as the simulation’s behaviour in the presence
and absence of regulation affords greater insight into its overall dynamics.

Section 7.2.1 details the experimental methodology used to acquire the data that
is then presented and analysed in section 7.2.2. The following aspects of simulation
behaviour are examined: the dynamics of each T cell population over time, with con-
sideration of their states of activation; the locations of T cell priming, and the numbers
of each T cell sub-type that are primed in each; the states of APC activation in each of
the simulation’s compartments; the polarizations of DCs in the CLN compartment; the
locations in which CD8Treg mediated apoptosis of effector CD4Th1 cells takes place;
the rates of neuronal apoptosis over time, and the resultant dynamics of EAE severity;
and lastly the relapsing and remitting nature of EAE in simulations with regulatory
function disabled is analysed. These results are summarised in section 7.2.3.

7.2.1 Experimental procedure

The condition of physiological recovery is achieved in the simulation through using base-
line parameter values, detailed in section B.1. This experimental scenario represents
the default behaviour of the simulation.

The prolonged autoimmunity scenario is achieved through setting the CD8Treg -
cd8Treg’ToCD4ThelperSpecificityDropOff parameter to 0.0. This parameter dictates
the probability that a successful binding between a CD8Treg and a Qa-1 expressing
effector CD4Th1 cell will lead to the apoptosis of the latter as induced by the former.
By setting this parameter to 0, CD8Treg cells are generated, but are unable to regulate
the CD4Th1 population.

In acquiring representative simulation behaviours, 500 simulation executions have
been obtained for each of these two experimental scenarios. Representative behaviour
over time is then compiled by calculating, for any phenomenon of interest, the median
value across 500 simulation runs for that phenomenon at each point in time.
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7.2.2 Results

Figure 7.1 depicts effector T cell population dynamics under conditions of physiological
recovery and prolonged autoimmunity. These graphs are provided for reference in the
sections that follow.
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Figure 7.1: Effector T cell population dynamics.

7.2.2.1 States of T cell activation

This section examines the states of activation of the CD4Th, CD4Treg and CD8Treg
populations over time. Figure 7.2 depicts the CD4Th population, figure 7.3 the
CD4Treg population, and figure 7.4 the CD8Treg population.

In all T cell populations, proliferating cells outnumber those in any other state.
The increase in naive T cells that lags behind the increase in proliferating cells suggests
that naive T cells resulting from proliferation cannot always gain immediate antigenic
stimulus from the same DC that their parents are primed by. The delay between naive
and proliferating T cell increases indicates that this occurs during the heavy T cell
priming stage of the immune response. This suggests that during the immune response
dendritic cells (DCs) become spatially saturated. Each DC is surrounded by eight grid
spaces that T cells may occupy. This allows up to 56 T cells to physically interact
with each DC. T cells spend on average 60 hours in a proliferative state, in which they
produce a daughter naive T cell every ~20 hours. The mean lifespan of a mature DC
is 110 hours. Discounting time spent migrating (for DCs originating from the CNS),
and assuming that a single T cell begins priming on the DC immediately following
its maturation, this allows for 5 complete generations of T cells to be primed on the
average APC. A single T cell will, after 5 generations of proliferation, differentiation
and subsequent migration, produce ~28 proliferating T cells that are bound to the DC.
However, these hypothetical conditions better approximate the system at the start of
an immune response. When a priming DC enters apoptosis the proliferating cells
with which it was bound will resume migratory behaviour, and if they have not already
differentiated into effector cells they may bind with another immunogenic DC to resume
proliferative behaviour. As the immune response progresses, the number of proliferating
T cells in the system increases, and the likelihood that DCs become spatially saturated
increases, since many more than one naive or proliferating T cell may bind with it.

A common trend across all the T cell populations is the lack of partially activated
T cells. This suggests, and is supported by figures 7.8, 7.9, 7.11 and 7.10 which are
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discussed below, that there are very few tolerogenic APCs present through the course
of the immune response.

7.2.2.2 Locations of T cell priming

Figures 7.5, 7.6 and 7.7 show cumulative counts of the number of CD4Th, CD4Treg
and CD8Treg cells primed in each compartment, under conditions of both physiological
recovery and prolonged autoimmunity.

With regulatory function intact, the number of CD4Th cells that are primed in the
SLO as a result of immunization almost equals the number primed in the CLN com-
partment. CD4Th priming in the CLN is the result of autoimmune activity in the CNS,
wherein dendritic cells (DCs) obtain MBP which is then presented on MHC-II:MBP
complexes through the phagocytosis of apoptotic neurons before migrating into the
CLN compartment. Priming in the CLN begins around day 9 following immunization,
and SLO-based priming of the CD4Th population ceases around day 17. Hence, the
priming of the CD4Th population shifts from the SLO to the CLN during this time.
The rate of priming in the SLO is greater than in the CLN, this is likely because
the number of immunogenic DCs in the SLO resulting from immunization is generally
higher than the number of MBP-presenting immunogenic DCs in the CLN at any point
in time. This is supported by figures 7.8 and 7.9, which depict the number of imma-
ture, tolerogenic and immunogenic APCs in the SLO and CLN compartments, and is
discussed below. Under prolonged autoimmune conditions, shown in figure 7.5b, the
priming of CD4Th cells continues in the CLN until day 200, at which time observation
ends.

Priming of the CD4Treg population, figure 7.6, takes place in the SLO, the CLN
and the spleen. In comparison with the CLN and the spleen, very little priming takes
place in the SLO. The number of CD4Tregs primed in the spleen is just over double the
number in the CLN. There are multiple factors that contribute to these compartmental
priming profiles, considered below.

Priming in the SLO is likely the result of apoptotic CD4Th cells being phagocytosed
by the 10 resident DCs that permanently exist there; the DCs placed there as a result
of immunization have reduced to very few in number (figure 7.8, discussed below) by
the time that the little priming of the CD4Treg population that takes place in the SLO
occurs. This can explain why relatively little CD4Treg priming occurs in the SLO.

Apoptotic T cells cannot migrate from the circulatory compartment into any of the
CLN, SLO, or CNS compartments. Any apoptotic CD4Th cells that reach the circula-
tory system must be phagocytosed in the spleen. CD4Th cells may enter apoptosis from
naive, partially activated, or effector states of activation, given sufficient lack of TCR
stimulation. Figures 7.6 and 7.7 show that the majority of CD4Treg and CD8Treg cells
are primed in the spleen. These data suggest that the majority of apoptotic CD4Th
cells fail to be phagocytosed in the CLN or the SLO, or by DCs in the CNS, and are
eventually phagocytosed in the spleen. Note that these data do not indicate how many
CDA4Th cells are phagocytosed by CNS macrophages in the CNS, which would not
result in priming of Treg populations.

Between days 15 and 35 the CD8Treg population apoptoses ~3000 CD4Th1 cells
(figure 7.13, discussed below). With the regulatory pathway intact, the maximum
number of CD4Th1 cells in the system reaches a peak of around 1000 at day 15, and then
reduces to around 200 in the following 5 days (figure 7.1). This is several times less than
exists at 20 days with regulatory function disabled, and suggests that a considerable
proportion of CD4Thl cells are apoptosed by the CD8Treg population before reaching
the CNS. Figure 7.13, discussed below, confirms the majority of this regulatory activity
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Figure 7.2: CD4Th population states of activation.
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Figure 7.3: CD4Treg population states of activation.

1600
~—Naive
1400 Partial
— Proliferating
1200 —Thi
1000 —Th
" — Apoptotic
T 800
o
600
400
200
0
0 10 20 30 40 50
Time (days)
(a) Physiological regulation.
1400
~—Naive
1200 Partial
— Proliferating
1000 — Effector
" 800
S
600
400
200
0
0 10 20 30 40 50
Time (days)
(a) Physiological regulation.
700 T -
—Naive
600 Partial
— Proliferating
500 — Effector
» 400
8
300
200
100
I~
0
0 10 20 30 40 50

Time (days)
(a) Physiological regulation.

700, T
—Naive
600 Partial
— Proliferating
500 — Effector
" 400!
S
300
200
‘/""\’\W\.W
100
0
0 50 100 150 200

Time (days)
(b) Regulation disabled.

Figure 7.4: CD8Treg population states of activation.
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takes place in the circulatory system. Hence, these CD8Treg-apoptosed Thl cells can
only be phagocytosed in the spleen. The restriction that these apoptotic cells be
phagocytosed in the spleen explains why abrogating regulatory function increases the
proportion of total Treg priming that occurs in the CLN.

The compartmental priming profile of CD8Tregs, figure 7.7, is qualitatively very
similar to that of CD4Tregs. The notable exception is that whilst the number of
CD4Tregs being primed in the CLN is between 40% and 50% of those being primed
in the spleen, here the ratios are 20% with regulation intact, and 35% with regula-
tory activity disabled. This phenomenon may be due to the requirement for a DC to
be licensed for Qa-1 expression by an effector CD4Treg before it may begin priming
CD8Tregs, and the fact that CLN based DCs must first migrate out of the CNS com-
partment and then settle in the CLN compartment before any priming can take place.
A DC exists in a mature state for around 110 hours before entering apoptosis; in the
case of CNS-originating DCs some of this time is spent migrating between compart-
ments. This is not the case for splenic DCs, which may begin priming immediately.
There exists an exponential relationship between the time that a T cell population
spends priming on a DC, and the number of T cells that are eventually produced. The
coupling of the delay in CLN DCs migrating between compartments with the time
taken for them to become licensed for Qa-1 may account for the reduced proportion of
CD8Treg cells that arise from priming in the CLN when compared to the spleen.

7.2.2.3 States of APC activation

This section considers the states of activation and different contexts in which APCs
present peptides in the various compartments of the simulation. Figure 7.8 shows the
SLO, figure 7.9 the CLN, figure 7.10 the spleen, and figure 7.11 the CNS. In each case
four APC states are considered: the total number of APCs in the compartment, the
number of immature APCs, the number of tolerogenic APCs, and lastly the number
of immunogenic APCs. Note that for an APC to be considered either tolerogenic or
immunogenic it must be presenting peptides. Mature APCs that do not present any
peptides are not considered.

The SLO compartment ordinarily contains 10 resident DCs that are replaced by
immature DCs when they expire. Figure 7.8 shows how immunization increases the
total number of DCs to over 50. These ‘immunization’ DCs represent DCs that migrate
to the lymph nodes from the periphery following immunization with MBP, CFA and
PTx. The plateau of immunogenic DCs around 18 in number between days 10 and 13 is
the result of a temporary steady state being reached between the rate at which DCs are
placed in the SLO and the rate at which they expire. This is an artifact of the immu-
nization mechanism: immunogenic DCs are placed in the SLO every 6 hours, and the
number that are added slowly decreases over time, according to the parameters Sim-
ulation_immunizationLinearDC0 and Simulation_immunizationLinearGradient. These
two parameters describe a linear decay in the level of DCs that are added over time,
the actual number that appear every 6 hours is a rounding of this level to the nearest
natural number. For the first 5 days following immunization 2 DCs are added every 6
hours, thereafter this number reduces to 1 DC until around 12 days, after which the
influx of immunogenic DCs ceases.

The CNS compartment contains around 40 immature DCs and exactly 75 CNS
macrophages at any point in time. The initial fluctuations and gradual increase in
total APC number are due to the system finding a steady state between the number of
mature CNS-originating DCs in the CLN and the number of immature DCs in the CNS.
These cells exist as a closed system; a mature CNS-originating DC entering apoptosis

166



7.2. Elucidation of baseline behaviour

10"
5X
SLO
—CLN
41— Spleen
3
K]
o
o
2
1
0
0 50 100 150 200

Time (days)

(b) Regulation disabled.

Figure 7.5: Cumulative count CD4Th cells primed in each compartment.
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Figure 7.6: Cumulative count of CD4Treg cells primed in each compartment.
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Figure 7.7: Cumulative count of CD8Treg cells primed in each compartment.
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in the CLN is replaced by an immature DC in the CNS. Upon simulation initiation, the
numbers of DCs that should be placed in the CNS and in the CLN are estimated based
on the assumption that all CNS-originating DCs in the CLN are mature and all those
DCs in the CNS are immature. In reality this is not the case, some CNS-resident APCs
are mature and in the process of migrating towards the CLN. Hence, the initial number
of CNS-resident DCs is underestimated, and the number in the CLN overestimated.
This results in a minor correction as simulation execution progresses.

At peak autoimmune behaviour, around 50 of the 120 APCs in the CNS are im-
munogenic. These cells are capable of providing local activation for effector CD4Th
infiltrates. Discounting the ~40 immature DCs, this figure suggests that around 65%
of CNS macrophages are immunogenic and presenting MBP!. A small quantity of CNS
APCs adopt a tolerogenic phenotype during heavy immune activity. Since no tolero-
genic DCs appear in the CLN (figure 7.9), these cells may be migratory DCs that per-
ceive sufficient type 1 cytokine so as to adopt an immunogenic phenotype en route to
the CLN, or they may be CNS macrophages. In either case the tolerogenic phenotype
will not influence the CD4Th infiltrates; these effector cells seek only MHC-II:MBP
stimulation, the lack of co-stimulatory molecules expressed on tolerogenic APCs only
influences T cells at time of priming.

As with the SLO, the CLN compartment contains 10 resident DCs, each of which
is replaced by an immature DC when it perishes. As depicted in figure 7.9, there
are around 90 additional DCs that originate from the CNS, migrating to the CLN
upon maturation. At peak autoimmunity around 30 DCs exist in an immunogenic
state. Notably, at no point during simulation execution, under conditions of either
physiological regulation or prolonged autoimmunity, do any cells in the CLN exist in a
tolerogenic state. This suggests that, even in peak or prolonged autoimmune conditions,
only 30% of migratory DCs are able to prime and immunize T cell populations.

Figure 7.10 shows the states of splenic DCs over time. There are 100 DCs residing in
the spleen at all times. During peak immune activity around 25 DCs are immunogenic.
Preceding the establishment of immunogenic DCs is a short period during which at
most 10 DCs exist in a tolerogenic state. This is likely due to the lack of type 1
cytokine being secreted in the spleen. The earliest T cells to become primed into
effectors are CD4Th cells, and these will not generally secrete type 1 cytokine until
they are locally activated in the CNS, though the stochastic nature of the simulation
dictates that some may derive local activation in the compartments in which they are
primed, should they reside there for sufficient time. CD4Treg and CD8Treg effector
cells also secrete type 1 cytokine, and it is likely that these cells are the major inducers
of immunogenic presentation contexts in splenic DCs.

It is of note that there exists no period of tolerogenic APC activation at the end of
either the autoimmune (days 20 to 30) or regulatory (days 40 to 50) immune responses,
in any of the compartments. Tolerogenic APCs induce anergy in priming T cells, and
it is theoretically possible that this aids in curtailing the immune response. However,
the present data suggests that this is not the case in ARTIMMUS.

7.2.2.4 Polarizations of DCs in the CLN

Figure 7.12 depicts the number of type 1 and type 2 polarized immunogenic DCs in
the CLN over time, for conditions of physiological recovery and prolonged autoimmu-

LFor an APC to be considered either immunogenic or tolerogenic it must express either Fr3, CDR1 /2
or MBP peptides. Since CD4Treg and CD8Treg cells do not infiltrate the CNS, the ability of CNS
macrophages to express Fr3 or CDR1/2 is not represented in the simulation. Hence for them to be
considered immunogenic or tolerogenic, they must be expressing MBP.
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Figure 7.8: States of APC activation in the SLO.
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Figure 7.9: States of APC activation in the CLN.

nity. The vast majority of immunogenic DCs in the CLN originate from the CNS
compartment, hence these graphs indicate how the cytokine milieu resulting from im-
mune action in the CNS influences DC priming behaviour. The first immunogenic DCs
to migrate out of the CNS do so at around 7 days post-immunization. The majority of
these cells are type 1 polarized, reaching a peak of around 19 cells at day 17.

With regulatory activity intact, the number of type 1 polarized DCs reduces to 0
by day 28. Interestingly, there is a marked type 2 polarized DC presence throughout
this period, reaching a peak, and becoming the majority polarization type in the CLN,
at around day 22. The presence of type 2 polarized DCs extends beyond the duration
of type 1 DCs, and eventually returns to 0 by day 37. This majority of type 2 DCs
from 22 to 37 days explains the type 2 deviation in the CD4Th immune response seen
to peak at day 30 on figure 7.1a.

Under conditions of prolonged autoimmunity, the number of type 1 polarized DCs
continually outnumbers type 2 polarized DCs. Of note, the maximum number of type
2 polarized DCs decreases from 16 to 11 under prolonged autoimmunity. The presence
of type 2 polarized DCs remains throughout the 200 days of observation, consistently
representing a third of the total immunized DC population in the CLN.
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Figure 7.11: States of APC activation in the CNS.

7.2.2.5 Locations of CD8Treg mediated CD4Thl apoptosis

Figure 7.13 depicts a cumulative count of the number of CD4Thl cells induced into
apoptosis by CD8Tregs in each of the simulation’s compartments, in simulations un-
dergoing physiological recovery. The CNS is not included, since CD8Tregs cannot gain
entry to this compartment. It may be observed that although CD8Treg mediated apop-
tosis of CD4Th1 cells takes place in the CLN, SLO, spleen and circulatory system, the
vast majority of apoptosis induction takes place in the circulatory system.

7.2.2.6 Neuronal apoptosis and EAE severity

It was established in the previous chapter (section 6.4.2.1) that neuronal apoptosis
is the driving stimulus of autoimmune behaviour, and hence the regulatory immune
response that counteracts it. The present section examines neuronal apoptosis and the
resultant severities of EAE in the simulation under conditions of physiological recovery
and disabled regulation.

Figure 7.14 depicts the number of neurons apoptosed per hour of simulated time.
The results presented here are median values taken across 500 simulation executions.
Despite this large sample size, the variation in number of cells apoptosed from one
hour to the next is striking. The smoothed rates of neuronal apoptosis, from which
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Figure 7.12: Dendritic cell polarizations in the CLN.
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Figure 7.13: Compartments in which CD4Thl apoptosis induction by CD8Treg cells takes
place.

EAE severities are calculated, are indicated on the diagrams. Under conditions of
physiological recovery the smoothed number of neurons apoptosed per hour reaches a
peak ~70 around day 15. With regulatory action disabled, this peak is raised slightly,
and may be the result of the slightly increased maximum number of effector CD4Th1l
cells reached over time, shown in figure 7.1. Whereas regulatory action reduces the rate
of neuronal apoptosis to 0 by day 40, disabled regulation sees a relatively steady level
of around 60 to 50 neurons being apoptosed every hour. Cross reference of figures 7.1b
and 7.14b reveals that around 1000 effector CD4Thl cells cause neuronal apoptosis
at a rate of 70 neurons per hour, and around 400 effector CD4Th1 cells reduces this
number to only 50 neurons per hour. This suggests a nonlinear relationship between
the number of effector CD4Th1 cells in the system and the rate of neuronal apoptosis,
with a diminishing increase in neuronal apoptosis resulting from linear increase in
CD4Th1 cell number. This can be explained through the spatial occupancy of the
CD4Th populations in the CNS. Figure 7.15 shows a screenshot of the ARTIMMUS
CNS compartment at day 18 following immunization, the time of peak autoimmunity.
It is representative of typical simulation behaviour. It can be seen that CD4Thl and
CD4Th2 cells reside at significantly higher densities at the top of the compartment
than at the bottom. It is likely that additional CD4Th1 cells present in the top of the
CNS, where many others already reside, will not contribute to significant additional
neuronal apoptosis.
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The mean progression of EAE severity, for both physiological recovery and pro-
longed autoimmunity, is depicted in figure 7.16. The distributions of EAE severities
over time amongst 500 simulation executions are depicted in figure 7.17.

Physiological recovery sees a mean peak in EAE severity of around 2.5. 86% of
simulation executions experience full recovery, whilst the remaining 14% perish; this is
to be expected, given the manner in which the EAE severity scoring mechanism was
calibrated in the previous chapter. It is notable that nearly all simulation executions
experience at least level 1 EAE at peak of autoimmunity. Around half reach a maximum
EAE severity of 2.

With the regulatory pathway disabled, the severities of EAE are generally increased.
The peak mean EAE severity is raised to nearly 3.5. Over 35% of simulations perish,
and over 50% of executions experience at least level 3 EAE severity at peak autoim-
munity. At 200 days post-immunization just over 50% of simulations experience no
clinical symptoms. Around 10% remain on level 1.

Figures 7.18 and 7.19 together show the progression of EAE and effector T cell
population dynamics for five example simulation executions with regulatory activity
disabled. The executions are indicative of the variations that exist between individual
simulation executions. In the first example of figure 7.18, the T cell dynamics reduce
considerably around 150 days, however, once a simulation’s neuronal apoptosis rate
passes level 5 EAE severity the simulation is deemed to have perished. The second
example demonstrates that the most severe episode of autoimmunity may occur long
after initial immunization. In this case immunization induces level 2 autoimmunity
within the first 30 days, but level 4 is reached at around 130 days. In absence of
regulatory capacity, the autoimmune response does not tend to cease, though it may
reduce considerably. This is depicted in the third example of figure 7.18, where all T
cell subtype between days 100 and 200 lie below 200 in number, sufficiently low for
no clinical symptoms to emerge after day 80. Yet the immune responses do not cease
completely. The first example of figure 7.19 demonstrates how there may exist long
remissions from autoimmune episodes, over 50 days in length. However, since the T
cell responses do not cease, further autoimmunity will frequently present later. The
last example of figure 7.19 shows a simulation where autoimmune symptoms present
for a large portion of the 200 days of observation, but never strong enough to induce
death.
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Figure 7.14: Neurons apoptosed per hour.
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Figure 7.15: Screenshot of ARTIMMUS, showing the CNS compartment at day 18 post-
immunization. Red cells are Thl cells; white, Th2; blue, apoptotic Th cells; gray, neurons;
purple, DCs; pink, CNS macrophages.
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Figure 7.16: Mean progression of EAE.

7.2.2.7 Analysis of relapsing autoimmunity

The previous section established that simulations undergoing Treg-mediated physio-
logical recovery from autoimmunity experience complete recovery. In contrast, with
regulatory action disabled, simulations experience prolonged autoimmune symptoms
over the 200 days of observation. The present section examines the nature of this
prolonged autoimmunity in greater detail.

Figure 7.20 presents an analysis of the relapsing nature of EAE experienced when
regulatory function is disabled, and contrasts this with the progression of EAE with
regulation intact.

The mortality rate of mice undergoing physiological recovery is 14%, and abroga-
tion of the regulatory pathway increases this to 36%. In simulations lacking regulatory
function the vast majority of death from EAE occurs in the first onset of autoimmune
symptoms, as seen by the convergence of the duration of single incidence of EAE to-
wards the mortality rate of 36.4% on figure 7.20c. For simulations that do not perish
during their first episode of autoimmune symptoms, very few do not experience re-
lapsing autoimmunity. 5 to 6 relapses of autoimmunity are common, with over 10%
of simulation runs experiencing each of these numbers. 6.6% of simulations experience
over 10 relapses in the 200 day observation period. The initial episode of autoimmunity
is extended considerably when regulatory function is disabled. In presence of regula-
tory action EAE symptoms last no longer than 13 days, unless the simulation has
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Figure 7.17: Mean distributions of EAE progression. Figures 7.17a and 7.17b show the pro-
portion of simulation runs experiencing each level of EAE. Figures 7.17c and 7.17d show a
cumulative representation of this data, the proportion of simulation runs experiencing at least
the specified EAE severity.

perished. The most common durations are between 9 and 11 days in length. Disabling
the regulatory pathway increases the median duration from 10 days to 20, excluding
simulations that perish. Relapses following this initial episode are shorter, the median
reducing to around 7 days or less.

In simulations with regulatory function disabled, the median duration of remissions
is around 10 days. This does not change noticeably with subsequent remissions, with
the exception that the 6th remission and greater tend to be shorter.

7.2.3 Summary

This section has detailed the use and analysis of the ARTIMMUS simulation in gaining
insight into the nature of EAE. Two experimental conditions have been examined,
that of physiological CD8Treg mediated recovery from autoimmunity, and prolonged
autoimmunity achieved through disabling the ability of CD8Treg cells to apoptose Qa-1
expressing effector CD4Th1 cells. These two conditions were used in the calibration
of ARTIMMUS, as detailed in chapter 5. The examination of both these scenarios
provides deeper insight into the cellular dynamics and interactions underpinning EAE
and its recovery. The results are summarised as follows.

e Section 7.2.2.1 examined the dynamics of the four T cell populations, in terms of
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Figure 7.18: Progression of EAE and the effector T cell population dynamics for 3 example
simulation executions, shown one per row, with regulatory activity disabled.

175



7. PROJECTIVE EXPERIMENTATION

5 1200
——CD4Tht

1000 ——CD4Th2
4 —CD4Treg
—CD8Treg

800]

600]

EAE severity
Cells

400 \
1 ™\ A
H A 200 VM N

0 50 100 150 200 0 50 100 150 200
Time (days) Time (days)

(a) EAE severity. (b) Effector T cell dynamics.

5 T T T 1200

——CD4Tht
——CD4Th2
—CD4Treg
——CD8Treg

1000

800]

600

EAE severity
Cells

400

! ‘ ‘ ’ ‘ 200
0
150 2

0 50 100 00 0 50 100 150 200
Time (days) Time (days)

(c) EAE severity. (d) Effector T cell dynamics.

Figure 7.19: Progression of EAE and the effector T cell population dynamics for 2 further
example simulation executions with regulatory activity disabled.

their states of activation. The data suggested that APCs may become spatially
saturated, reaching the upper limit on the number of T cells that are able to gain
physical access to each dendritic cell (DC).

e The spleen was revealed as a major source of CD4Treg and CD8Treg priming in
section 7.2.2.2, which analysed the compartments in which T cell priming takes
place.

e Section 7.2.2.3 examines the states of APC activation in the simulation’s com-
partments. It establishes that, in peak immune activity, 65% of CNS macroph-
ages, 30% of CNS-originating DCs in the CLN, and 25% of DCs in the spleen
are immunogenic, being both mature and capable of priming T cell populations.
Further, it was revealed that there exists no period of significant tolerogenic APC
activity in any of the simulation’s compartments at the end of the autoimmune
and regulatory immune responses, suggesting that induction of anergy in T cell
populations, as mediated through tolerogenic APCs, is not an integral component
in terminating the immune responses.

e Section 7.2.2.4 establishes that type 2 polarized DCs exist in the CLN throughout
the autoimmune response, and in presence of regulatory activity become the
majority DC type towards the end of T cell priming activity in this compartment.
In the absence of regulatory activity, there is a consistent presence of type 2
polarized DCs, but at consistently lower levels than type 1 polarized DCs.
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e The locations in which CD8Treg mediated apoptosis of the CD4Thl cell popu-
lation takes place was examined in section 7.2.2.5. It was found that the vast
majority of this regulation takes place in the circulatory compartment.

e Section 7.2.2.6 investigates the rate of neuronal apoptosis and the resultant EAE
severities experienced by simulations. The nonlinear relationship between the
number of effector CD4Th1 cells in the CNS compartment and the rate of neu-
ronal apoptosis was revealed; there is a diminishing increase in neuronal apopto-
sis with linearly increasing numbers of CD4Th1 infiltrates. Under conditions of
physiological recovery, half of all simulations experience at most level 2 autoim-
munity. In absence of regulatory capacity, over 50% of simulations reach at least
level 3 autoimmunity at peak autoimmune activity. The abrogation of regulatory
capacity raised the mortality rate of EAE from 14% to 36%.

e Lastly, section 7.2.2.7 examines the relapsing nature of EAE in absence of regula-
tion. It is revealed that the vast majority of death resulting from autoimmunity
occurs in the first episode of autoimmune symptoms. Those simulations that do
not perish during this first episode almost exclusively go on to experience re-
missions and then relapses in autoimmune symptoms. Relapses are significantly
shorter in duration than the initial episode of autoimmunity following immuniza-
tion. Abrogation of the regulatory pathway significantly increases the duration
of the first episode of EAE symptoms, from a median of 10 days to 20.
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| EAE episodes | Phys. rec. (%) | Dis. reg. (%) |
Mortality rate 14.2 36.4
0 EAE episodes 0.2 0.0
1 EAE episode 99.6 36.8
2 EAE episodes 0.2 2.2
3 EAE episodes 0.0 6.2
4 EAE episodes 0.0 7.4
5 EAE episodes 0.0 10.6
6 EAE episodes 0.0 10.2
7 EAE episodes 0.0 8.4
8 EAE episodes 0.0 6.6
9 EAE episodes 0.0 5.0
>10 EAE episodes 0.0 6.6

(a) The mortality rate and total number of autoimmune episodes experienced by phys-
iological recovery (Phys. rec.) and disabled regulation (Dis. reg.) groups.
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(d) Cumulative distribution plot of the duration of remission from EAE for regulation
disabled group. Note that remissions are numbered following the first incidence of EAE;
the period between immunization and the initial onset of autoimmune symptoms is not
shown. Further, by definition, a remission must end in another episode of EAE. This is
to exclude those that are terminated by the end of observation, which skew the data.

Figure 7.20: Analyses of number of EAE episodes and remissions, and their durations for
physiological recovery and regulation disabled groups.
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7.3 Investigation of CD8Treg mediated regulation

The induction of apoptosis in effector CD4Thl cells by CD8Tregs is the central mech-
anism in mediating recovery of EAE [Beeston et al. 2010, Kumar et al. 1996]. As
demonstrated in the previous investigation, it’s abrogation results in substantially in-
creased autoimmune severity. This section details experimentation carried out into
the nature of this regulatory pathway, examining the robustness of the pathway to
perturbation, and thereby identifying the points at which switching behaviours take
place. Since this regulatory pathway is critical to expediting recovery from EAE, under-
standing its points of failure is an important component in appreciating how prolonged
autoimmunity might manifest, and identifying potential medical interventions. The in
silico experiments conducted here are impossible to perform in the real-world domain.

Two aspects of the regulatory mechanism are investigated here: the efficacy of
CD8Treg cells in inducing apoptosis in target effector CD4Thl cells, and the mean
duration of time that effector CD4Th1 cells express Qa-1 for.

By default, a successful binding between an effector CD8Treg and a Qa-1 expressing
CD4Th1 cell will always result in the CD8Treg apoptosing the CD4Th1 cell, reflecting
the fact that the simulation’s CD8Treg_cd8TregToCD4ThelperSpecificity DropOff pa-
rameter is set to 1.0 (100%). This parameter value assumes that CD8Treg cells may
bind with equal avidity to a Qa-1 expressing CD4Thl1 cell as they would a Qa-1:CDR1/2
expressing DC. There exists no domain specific knowledge to underpin this assumption,
and as such the effects of alternative values are investigated in section 7.3.2.1. These
investigations may be interpreted in terms of the real-world domain, projecting how
interference with the regulatory pathway’s efficacy influences the recovery from EAE.

CD4Th1 cells express Qa-1 for around 8 hours following their differentiation into
effector cells. Only during this time are they susceptible to regulation by the CD8Treg
population. Section 7.3.2.2 analyses how reducing or extending this period of time
effects the simulation’s behaviour.

Additionally, a further investigation into the locations in which CD4Th1 cells are
apoptosed by the CD8Treg population is conducted. Section 7.2.2.5, above, deduced
that the majority of such regulation takes place in the circulatory system. It is however
possible that this figure is highly influenced by the length of time that T cells remain
in the circulatory system. By default this value is 5 hours, a significant portion of the
time that CD4Thl cells express Qa-1 for following differentiation into effector cells.
As detailed in chapter 5, this figure is arbitrarily defined. Domain specific knowledge
dictates that T cells spend around 30 min in the circulatory system before migrating
to anther compartment, however since only a small subset of all possible locations a T
cell may migrate to are represented in the simulation, it was felt that assigning only 30
minutes to this parameter would result in T cells migrating into compartments directly
related to EAE at an abnormally high rate. Section 7.3.2.3 examines the locations in
which CD8Treg mediated CD4Thl apoptosis takes place whilst varying the duration
of time required for T cells to migrate through the circulatory system. Thereby, this
experimentation explores the extent to which the finding that this regulation occurs
primarily in the circulatory system relies on an arbitrarily assigned parameter value.

7.3.1 Experimental procedure

Experimentation into the efficacy of the regulatory pathway, the probability that a
successful binding between a CD8Treg and a Qa-1 expressing CD4Th1 cell will lead
to the apoptosis of the CD4Th1 cells, is conducted through perturbation of the CDS§-
Treg_cd8Treg ToCD4ThelperSpecificity DropOff simulation parameter. By default this
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parameter is set to 1.0, representing a probability of 100%. It is assigned a series of
values between 0.0 and 1.0, with 500 simulation executions being conducted at each
value. For each set of 500 executions, the distribution of the number of CD4Th1 cells
residing in the system at 40 days, the mean maximum EAE score attained throughout
simulation executions, and the mean level of EAE remaining at 40 days are extracted.
These metrics are contrasted with similar metrics obtained using the default param-
eter value. In doing so, the point at which the efficacy of the regulatory pathway is
sufficiently reduced so as to constitute a significant change in simulation behaviour is
identified. For the number of CD4Thl cells residing in the system at 40 days, this is
ascertaining through use of the A test [Vargha & Delaney 2000], assuming ‘large’ dif-
ferences of >0.71 and <0.29 to be scientifically significant. For the two EAE severity
metrics, changes of 1.0 in mean score are assumed to be significant, as indicated by
the domain expert.

Experimentation into the mean duration of Qa-1 expression by effector CD4Thl
cells is achieved through perturbation of the ThlPolarization_mhcUnExpressionDelay-
Mean simulation parameter. By default this parameter is assigned a value of 8 hours,
and this is perturbed to a series of values ranging from 0 to 24 hours. As with the above
experimentation into the efficacy of the regulatory pathway, the points at which per-
turbation constitutes significant changes in simulation behaviour are calculated using
metrics of: the number of CD4Thl cells residing in the system at 40 days, the maxi-
mum mean EAE score attained at any point during simulation, and the level of EAE
remaining at 40 days. Determination of significant changes in simulation behaviour
is as above. Metrics are extracted from 500 simulation executions at each parameter
value.

The last set of experimentation concerns the locations in which CD8Treg mediated
apoptosis of Qa-1 expressing CD4Th1 cells takes place, and how these locations depend
on the length of time that T cells require to migrate through the circulatory system.
This migratory time is adjusted through perturbation of the simulation’s Circulation_-
timeToCrossOrgan parameter. By default this parameter is set to 5 hours, and through
this experimentation it is reassigned values ranging from the default value to 30 minutes.
The dimensions of the circulatory compartment have been altered to facilitate this
experimentation. Ordinarily, the compartment is 40 grid spaces high, and 62 wide. T
cells are able to move a single grid space in any direction once every 7% minutes. Hence,
at 40 grid spaces high, the minimum time required for a T cell to migrate through the
circulatory system is 5 hours. The dimensions of the circulatory system have been
adjusted to 4 grid spaces in height, and 620 in width. These revised dimensions allow
T cells to migrate through the circulatory system in at least 30 min, and maintain
an area identical to that of the default circulatory system dimensions. Once more the
points at which significant changes in simulation behaviours occur are deduced. This is
performed for five aspects of simulation behaviour: the total number of CD4Thl1 cells
induced into apoptosis by the CD8Treg population at 50 days, and the total number of
CD4Th1 cells induced into apoptosis in each of the circulatory, CLN, SLO, and spleen
compartments at 50 days. 500 simulation executions are performed for each parameter
value, and 500 values for each of these metrics are extracted accordingly. These are
contrasted to similar metrics derived using the default parameter value using the A
test. Once more, ‘large’ differences, indicated as >0.71 and <0.29, are assumed to be
scientifically significant.
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7.3.2 Results

Results are presented here in three subsections, examining the efficacy of the regula-
tory pathway, the duration of Qa-1 expression by effector CD4Thl cells, and lastly
challenging the finding that the majority of CD4Thl cells are induced into apoptosis
by the CD8Treg population in the circulatory system.

7.3.2.1 Efficacy of the regulatory pathway

Results indicate that there is considerable redundancy in the ability of the CD8Treg
population to induce apoptosis in Qa-1 expressing CD4Thl cells. Figure 7.21 depicts
the effector T cell dynamics and mean progression of EAE using CD8Treg_cd8TregTo-
CD4ThelperSpecificity DropOff values of 100%, 5% and 0%. The regulatory pathway
is able to substantially reduce the number of CD4Thl cells in the system when set to
just 5% efficacy. Figure 7.22 shows the number of neurons apoptosed per hour, and
a cumulative count of CD4Thl cells apoptosed over time. It supports the observation
that 5% efficacy substantially reduces CD4Th1 population size by 40 days; with this
twenty-fold reduction in regulatory efficacy resulting in only one eighth less the total
number of CD4Th1 cells apoptosed at 40 days.

Figure 7.23a summarises the number of CD4Thl cells remaining at 40 days of
simulation execution, which serves as an indication of how effective the regulatory
pathway is in reducing autoimmune T cell activity. Box and whiskers are coloured
black to indicate the default parameter value (100%), and red or blue to indicate that
a scientifically significant change either has or has not occurred, as measured by the A
test. The efficacy of the regulatory pathway may be reduced to 30% without causing
a significant change in the number of CD4Thl cells remaining at 40 days.

Figure 7.23b shows how the mean maximum EAFE score and mean EAE score at
40 days are influenced by altering CD8Treg_cd8TregToCD4ThelperSpecificity Drop Off
between 0 and 100%. The domain expert has indicated that changes of + 1.0 in mean
EAE severity may be considered significant. Although no significant change in be-
haviour for the maximum EAE metric is observed under this parametric manipulation,
a significant increase in EAE experienced at 40 days occurs when CD8Treg_cd8Treg-
ToCD4ThelperSpecificity DropOff is reduced to 0%.

The CD8Treg_cd8TregToCD4ThelperSpecificityDropOff parameter is a simulation
abstraction of the interaction between CD8Treg and CD4Thl cells, and mediated
through a variety of surface molecules, including MHC:TCR, and adhesion molecules.
The present results suggest that the typical binding affinity between these cells may be
considerably less than the default level of 100%, and that as little as 2% is sufficient to
maintain effective regulation of the CD4Th1 population, measured in terms of change
in EAE severity at 40 days.
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Figure 7.21: Median effector T cell population dynamics and mean progression of EAE, derived
from CD8Treg_cd8TregToCD4ThelperSpecificityDropOff values of 100%, 5% and 0%.
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Figure 7.22: Neurons apoptosed per hour, and cumulative CD4Thl cells apoptosed over time,
derived using CD8Treg_cd8TregToCD4ThelperSpecificityDropOff values of 100%, 5% and 0%.
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responses for various parameter values of CD8Treg_cd8TregToCD4ThelperSpecificity Drop Off.
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7.3.2.2 Duration of Qa-1 expression by CD4Th1 cells

CD4Th1 cells are susceptible to being regulated only whilst expressing Qa-1 molecules,
which they do for a mean duration of 8 hours following their differentiation into effector
cells. The effect of manipulating this duration is investigated in silico. A CD4Th1 cell
differentiating into an effector cell selects a duration for which it will express Qa-1
from a normal distribution, the mean and 2x the standard deviation of which are
specified by the ThlPolarization_mhcUnExpressionDelayMean and Thl1Polarization_-
mhcUnExpressionDelayStdDev simulation parameters respectively.

Simulation behaviours using ThlPolarization_mhcUnExpressionDelayMean values
between 0 and 24 hours have been obtained. Figure 7.24 shows the effector T cell
dynamics and mean progression of EAE for parameter values of 8 (the default), 3, and
0 hours. Figure 7.25 shows the number of neurons apoptosed per hour, and a cumulative
count of the number CD4Th1 cells apoptosed over time, for the same parameter values.
The effect of this parametric adjustment on the number of CD4Th1 cells remaining at
40 days, the maximum mean EAE score attained during simulation execution and the
mean EAE severity score at 40 days is summarised in figure 7.26. It is observed that
increasing the duration of Qa-1 expression has no significant effect on the capacity of the
CD8Treg population to regulate the CD4Thl population. Figure 7.26a indicates that
reducing the mean duration of Qa-1 expression to 6 hours causes a significant increase,
as measured through the A test, in the number of effector CD4Thl cells remaining
in the simulation at 40 days. The graph suggests that this effect is emphasized at 4
hours of expression or less. Assuming a change of + 1.0 in mean EAE progression
to be indicative of significance deviation in simulation behaviour, as specified by the
domain expert, figure 7.26b shows that no significant change in the maximum EAE level
attained during simulation behaviour results from adjusting this parameter between 0
and 24 hours. A reduction from the default value of 8 hours to 0 hours does however
constitute a significant increase in the severity of EAE experienced at 40 days.
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Figure 7.24: Median effector T cell population dynamics and mean progression of EAE, derived
from ThlPolarization_.mhcUnExpressionDelayMean values of 8, 3 and 0 hours.
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Figure 7.25: Neurons apoptosed per hour, and cumulative CD4Thl cells apoptosed over time,
derived using ThlPolarization_mhcUnExpressionDelayMean values of 8, 3 and 0 hours.
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(a) Box and whisker plot of the number of CD4Th1 effector cells residing in
the system at 40 days following immunization, for various mean durations
of Qa-1 expression by such cells. Boxes coloured blue indicate no significant
change with respect to the default value of 8 hours, whereas red indicates
that a significant change has occurred.
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(b) The mean maximum EAE severity score reached at any point, and the
mean EAE severity score experienced at 40 days, for various durations of
Qa-1 expression by effector CD4Thl cells. Significant changes are assumed
as 1.0 from the mean severity score for the default duration of 8 hours.

Figure 7.26: Box and whisker plot of CD/Thl @ 40 days, and the mean max FAFE and mean
EAE at 40 days responses, obtained for various values of ThlPolarization_mhcUnExpression-
DelayMean.
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7.3. Investigation of CD8Treg mediated regulation

7.3.2.3 Challenging the location of CD4Thl regulation

Section 7.2.2.5 established that the majority of CD4Thl apoptosis induction the
CD8Treg population occurs in the circulatory system. In contrast, very little occurs in
the spleen or the CLN. As detailed in section B.1, the length of time that T cells spend
migrating through the circulatory system is set to 5 hours. Whereas migratory times for
the SLO, CLN and spleen are based on domain specific knowledge, the length of time
that T cells spend in the circulatory system is arbitrarily defined. [Kindt et al. 2007]
indicates that T cells spend 30 min in the circulatory system before migrating into an-
other compartment, however, since the EAE simulation represents only compartments
that are integral to EAE, adopting a figure of 30 min would substantially bias T cell
migrations towards compartments directly involved in EAE, hence the figure of 5 hours
was adopted.

Effector CD4Thl cells are only susceptible to regulation whilst they express Qa-
1, which they do for a mean period of 8 hours following differentiation into effector
cells. It is possible that the dominance of the circulatory system as a site for regu-
latory action is an artifact of the parameter value that dictates migratory times for
this compartment. Since the parameter value is not underpinned by domain specific
knowledge, the projection that this compartment is the main site of regulatory action
should be challenged before being accepted as representative of the underlying system.
The present section investigates how the locations of CD4Thl apoptosis induction by
CDS8Treg cells changes with differing times required for T cells to migrate through the
circulatory system. A range of values is investigated, from 30 min to the baseline value
of 5 hours. The effect on the total number of CD4Thl cells induced into apoptosis in
each compartment are reported in table 7.1.

It is observed that altering the migratory time of the circulatory system within
the range of 1 and 5 hours has no significant effect on the total number of CD4Thl
cells induced into apoptosis by the CD8Treg population, as measured by the A test.
Reducing the migratory time to 30 min causes a significant increase the total number
of CD4Th1 cells apoptosed throughout the system. Figure 7.27 illustrates how this
aspect of simulation behaviour for the extreme values of 30 min and 5 hours.

Figure 7.28 depicts cumulative counts of the number of Thl cells apoptosed by the
CD8Treg population in each of the simulations compartments, for different migratory
times through the circulatory system. Here the effect of altering migration times is
substantial; a value of 5 hours results in the circulatory system being the predominant
site of regulatory activity, however when reduced to 30 min regulation occurs almost
equally in each of the circulatory, CLN and spleen compartments. The significance
of this difference is reported in table 7.1: reducing migratory duration to 3 hours
significantly increases the total number of CD4Thl cells apoptosed in the spleen; a
reduction to 2% hours induces significant increases in the CLN and SLO compartments;
and lastly, a reduction to 1% hours significantly reduces the number of CD4Thl cells
apoptosed in the circulatory system. It is of note that the figures for the circulatory
system are the most robust to alteration of this parameter, and this most likely reflects
the considerable variation in this data amongst the 500 simulation executions from
which it is extracted.

The reduction in regulatory action occurring in the circulatory system and the
increase occurring in the spleen, resulting from reduced migratory times for the cir-
culatory compartment, may be expected: effector CD4Th1 cells will reach the spleen
and CNS compartments more rapidly and spend a greater proportion of the time for
which they express Qa-1 there. However, the increase in regulatory action occurring
in the CLN is surprising; effector T cells cannot migrate into this compartment from
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Time required to migrate through circulatory system (hours)
Response z 1 11 2 22 3 4 5
Cumulative || 0.71* 0.67 0.64 062 0.60 0.58 0.53 0.50

Circulatory || 0.00* 0.05* 0.18* 031 038 0.43 0.46 0.50

CLN 0.96* 091 0.84* 0.77* 0.72* 0.68 0.57 0.50
SLO 0.97* 092 0.86* 0.78* 0.74* 0.68 0.56 0.50
Spleen 1.00* 1.00* 1.00* 0.99* 0.96* 0.90* 0.69 0.50

Table 7.1: A test scores indicating the difference between total, and compartmental, regulatory-
induced Thl apoptosis for different migratory times spent by T cells in the circulatory system.
In each case distributions for the indicated times are compared with that of 5 hours. Scores
marked * are assumed significant, comprising a ‘large’ magnitude of effect.

the circulatory system. Regulation occurring there must result from the interaction
between recently-differentiated effector CD4Thl and CD8Treg cells. The reduced mi-
gratory time of the circulatory system results in increased effector CD4Thl infiltrates
in the CNS, as illustrated in figure 7.29. This in turn will increase the rate of neuronal
apoptosis, and the number of CD4Th cells entering apoptosis in the CNS, which in
turn increases the number of DCs migrating from the CNS to the CLN that present
Fr3, CDR1/2 and MBP peptides. These DCs will prime greater numbers of CD4Th,
CD4Treg and CD8Treg populations, as shown in figures 7.30, 7.31 and 7.32. The in-
creased numbers of T cells priming in the CLN may increase the incidences of effector
Qa-1 expressing CD4Th1 cells interacting, and being apoptosed by, effector CD8Treg
cells. Figures 7.30, 7.31 and 7.32 also show increased T cell priming in the SLO com-
partment, and hence the increase in CD4Th1 regulation occurring in this compartment
may be explained through similar means, increased incidences of effector Qa-1 express-
ing CD4Thl cells interacting with effector CD8Treg cells.

7.3.3 Summary

This section has reported in silico experimentation into the regulatory pathway by
which CD8Treg cells induce apoptosis in the Qa-1 expressing effector CD4Thl1 popula-
tion, conducted using the ARTIMMUS simulation. The experimentation has examined
the effect of altering the efficacy of the regulatory pathway at the cellular level: the
probability that a successful binding of a CD8Treg cell to Qa-1 expressing effector
CDA4Th1 cell will result in the apoptosis of the latter as induced by the former; and
the mean duration of Qa-1 expression by effector CD4Thl cells. The experimenta-
tion carried out makes use of both the A test and domain expert informed metrics to
discern when significant changes to simulation behaviour have occurred. Simulation
behaviours under study relate to the ability of the regulatory pathway to effectively
reduce autoimmune activity, as measured through the number of effector CD4Thl cells
residing in the system at 40 days, and both the maximum severity of EAE experienced
during simulation execution and that remaining at 40 days.

These experiments have exposed the considerable redundancy that exists within
this regulatory pathway. The efficacy of the pathway could be reduced from the default
value of 100% to 0% before a domain expert-indicated significant change in simulation
behaviour takes place. Increasing the duration of Qa-1 expression by effector CD4Thl
cells has no significant effect on recovery from autoimmunity. This duration could be
reduced from the default value of 8 hours to 0 before domain expert-indicated significant
increases in the mean level of EAE experienced at 40 days takes place.

It is noteworthy that in neither of these experiments was the maximum mean EAE
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Figure 7.27: Cumulative count of the number of effector Thl cells induced into apoptosis
by the CD8Treg population, for various times required to migrate through the circulatory
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Figure 7.28: Cumulative count of effector Thl cells induced into apoptosis by the CD8Treg
populations, by compartment, for various times required to migrate through the circulatory

compartment.
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Figure 7.29: The number of effector CD4Th1 and CD4Th2 cells in the CNS compartment over

time, for various times required to migrate through the circulatory compartment.
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Figure 7.30: Cumulative count of CD4Th cells primed by compartment, for various times
required for a T cell to migrate through the circulatory system.
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Figure 7.31: Cumulative count of CD4Treg cells primed by compartment, for various times
required for a T cell to migrate through the circulatory system.
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Figure 7.32: Cumulative count of CD8Treg cells primed by compartment, for various times
required for a T cell to migrate through the circulatory system.

score amongst 500 simulations significantly altered. It may be seen in figure 7.1b,
wherein the regulatory pathway has been completely disabled, that there is a substantial
reduction in effector CD4Thl cell number following peak autoimmune activity. These
results indicate that regulatory function does not engage rapidly enough to significantly
alter the maximum level of EAE symptoms experienced by simulations.

The last set of experimentation carried out in this section challenges the finding that
the majority of CD4Thl apoptosis induction by the CD8Treg population occurs in the
circulatory system, first reported in section 7.2.2.5. The duration of time required for
a T cell to migrate through the circulatory system is 5 hours, a substantial proportion
of the total time for which Qa-1 is expressed by effector Thl cells. This figure is
not underpinned by domain specific knowledge, and as such the projection’s validity is
challenged. It is found that, although the total number of effector CD4Th1 cells induced
into apoptosis by the CD8Treg population is largely independent of this parameter,
the proportion of CD4Thl cells that are apoptosed in the circulatory system is not.
Reduction of the time required for a T cell to migrate through the circulatory system
is found to reduce the number of CD4Thl cells regulated in the circulatory system,
and increase the number regulated in the CLN, spleen and SLO compartments. This
result stresses the importance of challenging design assumptions when interpreting
simulation-derived projections of real world behaviour. ARTIMMUS cannot be used
to project the proportion of CD8Treg induced CD4Thl apoptosis occurring in the real
system unless the time that T cells require to migrate through the circulatory system
is better specified, or the alternative compartments into which T cells may migrate is
better represented.

7.4 In silico splenectomy

The present section details the employment of ARTIMMUS in exploring the role of the
spleen in recovery from EAE. The important role of the spleen in the recovery from
EAE is highlighted by [Ben-Nun et al. 1980], who performed experimentation with
rats. Further in silico investigation provides insight into the processes underpinning its
role in EAE. A splenectomy experiment is engineered into ARTIMMUS, and through
contrasting these results with a control (non-splenectomised) group the changes to
EAE progression, T cell dynamics, regulatory capacity of Treg populations, and states
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of activation of APC populations are examined.

The influential, but complex role of the spleen in the recovery from EAE is high-
lighted by [Ben-Nun et al. 1980], who perform splenectomies on rats of varying ages,
between 1 and 15 months, and induce EAE within a month thereof. Three experiments
are performed, with an experimental and two control groups in each case. The exper-
imental groups are splenectomised at 1%, 3 or 12 months of age. Control groups are
not splenectomised, though the ‘sham’ group does undergo surgery. Both experimental
and control groups are then induced into EAE one month later, at 2%, 4 or 13 months
of age. The authors’ data is reproduced in table 7.2.

Rats induced into EAE at 2% months experience acute EAE, and all but the ~25%
that die experience recovery by day 17, regardless of whether or not they were splenec-
tomised a month before EAE induction. 2 out of 8 mice perish in the control group, in
contrast with 3 out of 8 in the splenectomy group.

The 4 month control group experiences a ~10% mortality rate, which is raised to
20% in the experimental group splenectomised one month earlier. All control mice that
did not perish experience full recovery by day 17. In contrast, all the splenectomised
mice experience chronic symptoms until observation ends at 32 days. The authors define
chronic symptoms as unremitting paralysis from its onset until the end of observation
at 32 days.

The mortality rate in the 13 month group is similar regardless of splenectomy,
being around 40%. A few control mice experience recovery around day 20, but all
then experience relapsing symptoms at day 24. The remaining control mice experience
chronic symptoms throughout experimental observation. Of the 60% of splenectomised
mice that did not die, all experience chronic symptoms.

Ben-Nun et al.’s experiments demonstrate the increasing severity of EAE with in-
creasing age at time of induction. In all cases, splenectomy results in increased EAE
severity. The authors note the role of regulatory action on encephalitogenic T cell
responses in the recovery from EAE. They suggest that the spleen is involved in this
suppression. However, though they go on to suggest that “the populations of cells me-
diating recovery are not always resident in or dependent on the spleen”, with reference
to how splenectomy does not always interfere with recovery.

Data from ARTIMMUS; section 7.2 above, indicates that significant priming of Treg
populations occurs in the spleen, being around 70% of all CD4Treg cells and 75% of all
CD8Treg cells, figures 7.6a and 7.6b respectively. The majority of the remaining Treg
populations are primed in the CLN compartment. Figure 7.5a shows that no CD4Th
cell priming occurs in the spleen. These simulation-derived results suggest that the role
of the spleen in EAE is as a major site for Treg priming. This is investigated further
through the engineering of a splenectomy experiment within ARTIMMUS.
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Acute EAE Chronic Recovery Grade
Age Day of Incidence Recovery EAE Relapse from relapse of
(months) Treatment onset  Total Mortality | Day Incidence | Incidence | Day Incidence Incidence pathology
23 None 11 8/8 2/8 17 6/6 0/6 — 0/6 - ++
Sham 12 8/8 2/8 16 6/6 0/6 — 0/6 — ++
Splenectomy 11 8/8 3/8 17 5/5 0/5 — 0/5 - ++
4 None 12 8/8 1/8 17 7/7 0/7 — 0/7 — +-+
Sham 12 10/10 1/10 17 9/9 0/9 — 0/9 — ++
Splenectomy 11 10/10 2/10 — 0/8 8/8 — — - +++
12 None 11 10/10 3/10 20 2/7 5/7 24 2/2 0/2 + 4+ ++
Sham 12 10/10  4/10 19 2/6 4/6 24 2/2 0/2 + 4+ ++
Splenectomy 11 10/10 4/10 — 0/6 6/6 — — - ++++

Table 7.2: Acute, chronic or relapsing EAE in rats as a function of age or splenectomy. Data replicated from [Ben-Nun et al. 1980], table 2. The indicated
age in months is time of immunization for EAE, treatment was performed 1 month prior to immunization. ‘Sham’ indicates surgery, but no splenectomy was
performed. Chronic EAE is defined as unremitting paralysis from onset until termination of the experiment at 32 days post immunization. Pathology is graded
on a scale of + to + + ++4, and is based on post-experimental examination of the animal’s central nervous system.
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7.4.1 Experimental methodology

In order to engineer a splenectomy experiment in the ARTIMMUS simulation, modifi-
cations have been made to the spleen compartment. The splenectomised spleen com-
partment contains no dendritic cells, and has no capacity for cells to reside within it;
with the exception of apoptotic CD4Th cells, all cells entering the compartment exit
it immediately. In the case of apoptotic CD4Th cells, these cells are removed from the
simulation. Ordinarily, a large number of CD4Th cells are phagocytosed in the spleen,
as evidenced by the number of DCs that present to Treg cells in this compartment.
Apoptotic CD4ATh cells cannot enter the CNS or the SLO, and unless migrating from
the CNS compartment, cannot enter CLN. Hence, the number of apoptotic CD4Th
cells residing in the circulatory system will continually increase, since they cannot be
phagocytosed. The lack of removal of these cells from the simulation will impact sim-
ulation performance, interfering with other cells that attempt to migrate through the
circulatory compartment. In order to prevent this simulation artifact, the splenec-
tomised spleen removes apoptotic CD4Th cells from the simulation when they attempt
to migrate through it.

In splenectomy experiments, the splenectomy spleen compartment replaces the stan-
dard compartment in ARTIMMUS, and is connected to the other simulation compart-
ments as before.

To facilitate analysis of the effect that splenectomy has on simulation behaviour, two
experimental groups of simulation executions have been compiled, termed the control
and splenectomy groups. Both groups comprise 500 simulation executions using unique
seeds. All simulation executions in each group are obtained using the same parameter
values, being the baseline values outlined in section B.1. The control group simulations
are derived from standard ARTIMMUS executions, whereas the splenectomy group
simulations are obtained by substituting ARTIMMUS’s spleen compartment with the
splenectomy variety described above.

Where comparisons between the control and splenectomy groups are made using the
A test [Vargha & Delaney 2000], scores comprising ‘medium’ and ‘large’ effect magni-
tudes are indicated. Medium effects are defined as being >0.64 or <0.36, large effects
are defined as >0.71 or <0.29. Both medium and large effects are assumed to be
statistically significant.

7.4.2 Results

Results are presented in the following manner. Section 7.4.2.1 considers the effect
that splenectomy has on the initial onset of EAE autoimmune symptoms, and qual-
itatively contrasts these results with those of [Ben-Nun et al. 1980]. Section 7.4.2.2
observes simulation behaviour for 200 days and reports on the relapsing nature of au-
toimmunity following splenectomy, in contrast to the mono-phasic disease of the control
group. Section 7.4.2.3 describes the effect of splenectomy on the simulation’s T cell
populations, noting the significant reduction in effector CD4Treg and CD8Treg popu-
lation sizes. Section 7.4.2.4 reports on how this reduction in effector Treg population
size leads to a delayed ability of splenectomised mice to completely eradicate effector
CDA4Th1 populations, which in turn leads to relapsing autoimmune symptoms. Lastly,
section 7.4.2.5 considers the effect that splenectomy has on the APC populations in
the CLN and the CNS.
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| Score [| Control (%) [ Splenectomy (%) |

5 14.2 19.4
4 22.0 26.4
3 24.2 26.4
2 15.8 13.6
1 23.6 14.2
0 0.2 0.0

Table 7.3: The proportions of simulations experiencing each possible maximum EAE severity
score, for control and splenectomy groups.

7.4.2.1 Splenectomy impact on initial EAE episode

Figure 7.34 depicts the mean progression of EAE among the 500 simulations in each
of the control and splenectomy groups. The mean maximum EAE level is marginally
increased from 2.5 in the control group to 2.75 in the splenectomy group. Splenectomy
increases the level of EAE at 40 days, once the severity of EAE has plateaued, from
under 0.7 to 1.0. Table 7.3 indicates the proportions of simulations that reach particular
maximum severity scores over time, for control and splenectomy groups. Splenectomy
generally increases the maximum severity of autoimmunity experienced by simulations,
with the proportions of simulations experiencing levels 0 to 2 decreasing, and levels 3
to 5 increasing.

Figure 7.35 shows the proportion of each experimental group that experiences each
severity of EAE over the first 50 days following immunization. The peak of autoimmune
symptoms occurs around day 15 in both the control and splenectomy groups. Contrast-
ing figures 7.35a and 7.35b reveals that splenectomy tends to slow recovery from EAE.
The control group experiences complete recovery by day 23 whilst the splenectomy
group takes until day 30, after which a very small proportion of simulations continue
to exhibit level 1 autoimmunity.

Figure 7.33a reports the magnitude of effect that splenectomy has on EAE progres-
sion at various points in time by using the A test [Vargha & Delaney 2000] to contrast
distributions of EAE scores between control and splenectomy groups.

The maxz FAE response is time-independent, it contrasts the distributions formed
by the maximum severity of EAE experienced by each simulation at any point in
time. As noted above, splenectomy is observed to increase the severity of EAE at peak
autoimmune behaviour, however the A test confirms that this increase is not significant.
The observation that splenectomy delays recovery from EAE is also confirmed by the
A test, and shown to be a significant effect between days 19 and 23.

It is interesting to note that despite the mortality rate increasing from 14% to 19%
under splenectomy, this difference is not considered significant by applying the A test
to EAE severity at day 40, table 7.33a.

Two further measures of significant changes in simulation behaviour have been
indicated by the domain expert; changes of + 1.0 in the maximum mean progression
of EAE, and the level of EAE at 40 days may be assumed to be significant. As may
be seen in figure 7.34, the splenectomy procedure again fails to constitute significant
differences in terms of these metrics.

Although the metric used by Ben-Nun et al. to grade EAE severity differs from that
of the Kumar lab and ARTIMMUS, there are several parallels between the results from
ARTIMMUS and those from Ben-Nun et al. Ben-Nun et al. found that splenectomised
rats tended to experience relapses of autoimmune symptoms, or experienced chronic
symptoms until the termination of their experiments at day 32. Recovery from EAFE
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’ Response ‘ A test score
Max FAE 0.57
EAFE at 16d 0.55
EAFE at 18d 0.62
EAE at 20d 0.67"
EAFE at 25d 0.55
EAE at 30d 0.53
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(a) A test scores of the difference between EAE severities experienced by the control
and splenectomy group at select points in time. Scores marked * are indicative of ‘large’
differences between response distributions, being <0.29 or >0.71. Those marked T are
indicative of ‘medium’ differences, <0.36 or >0.64.
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(b) Plot of A test scores between EAE severities in the control and splenectomy groups
over time. The ‘medium’ and ‘large’ effect magnitude scores are indicated.

Figure 7.33: Magnitude of effect measures of the difference in EAE severities amongst control
and splenectomy groups at various times following immunization.

symptoms in ARTIMMUS is also delayed following splenectomy, though almost all
simulations have experienced full remission by day 32. Ben-Nun et al. note that
the mortality rate of rats following splenectomy was, in all cases, increased following
splenectomy. This too is consistent with findings from ARTIMMUS, where splenectomy
increases the mortality rate from 14% in the control group to 19% in the splenectomy

group.

7.4.2.2 Splenectomy induces long term relapses in autoimmunity

Figure 7.36 shows the proportion of control and splenectomy simulations experiencing
each grade of EAE severity over 200 days. Figure 7.37 presents an analysis of the
relapses and remissions of into and out of autoimmune symptoms amongst control and
splenectomy groups. The proportion of simulations that experience various numbers of
relapses are presented. Cumulative distribution plots show the distribution of durations
for each relapse and remission amongst experimental populations.

Over 99.5% of simulations in the control group experience a single phase of EAE au-
toimmunity. 14% of these simulations perish, whilst the remaining simulations recover
by day 23 and (with the exception of one 1 of 500) experience no relapses over the 200
day observation period. In contrast, a small proportion of the splenectomy group con-
tinues to experience level 1 autoimmune symptoms throughout the 200 day observation
period. Figure 7.37c establishes that proportion is constituted through relapsing au-
toimmune symptoms amongst the population, as opposed to single simulations that fail
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to return to EAE severity 0; the longest single period of initial autoimmune symptoms,
in the 81% of simulations that do not perish, is around 20 days.

In contrast with the control group, only 81% of splenectomised simulations expe-
rience a single period of clinical symptoms. The remaining ~19% of splenectomised
simulations all experience relapsing EAE. 13% of simulations experience a single relapse
following the first episode of autoimmune symptoms, and ~5% experience a second.

Splenectomy increases the duration of clinical symptoms. In the control group
EAFE lasts as little as 5 days and at most 13, provided the simulation has not perished;
periods of 9 to 11 days are the most common. In contrast, the first bout of EAE in
splenectomised simulations is rarely less than 9 days, and may be as much as 16, with
a median of 12 days duration, excluding those that perish. 80% of all relapses are
less than 7 days in duration, and successive relapses tend to be shorter. Relapsing
symptoms do not reach level 5 severity; of the 19% of simulations that perish following
splenectomy all do so in their first episode of EAE.

Figure 7.37d depicts cumulative distribution plots of the proportion of splenectomy
simulations that experience particular durations of remission before autoimmune symp-
toms reoccur. This is shown for successive remissions. The data indicates that the first
remission is the longest, and that subsequent remissions tend to be shorter. The me-
dian duration of the first remission is over 70 days. Half of mice that experience a
second incidence of EAE do so after 12 days of remission.

Collectively, this data indicates that the chance of a splenectomised simulation
experiencing a relapse of autoimmune symptoms decreases following each relapse, as
evidenced by the decreasing proportion of the population that experience increasing
numbers of EAE incidence. However, where subsequent relapses do occur, they occur
more quickly and last for decreasing periods of time. Figure 7.38 depicts the progres-
sion of EAE in four example splenectomy simulation executions. These examples are
indicative of the relapsing nature of EAE following splenectomy, mono-phasic EAE
examples are not shown. The examples demonstrate that the first episode tends to
be the most severe. Thereafter simulations may enter extended periods of remission
before clinical symptoms re-present. Relapses are very rarely more severe than level 1,
and do not tend to last as long as the initial episode.

7.4.2.3 Impact on effector T cell populations

The nine responses pertaining to effector T cell dynamics, outlined in section 6.2,
have been calculated for control and splenectomy groups. Table 7.4 summarises the
magnitude of effect that splenectomy has on each of these responses, using the A test to
contrast response distributions between control and splenectomy experimental groups.

The results indicate that splenectomy has the biggest effect measurable by the A
test on the maximum number of effector CD4Treg and effector CD8Treg cells, which
experience considerable reductions in size. As indicated by figures 7.41 and 7.42, the
spleen is a major site of Treg priming. Its removal explains this reduction in CD4Treg
and CD8Treg number at peak autoimmunity.

The number of effector CD4Thl1 cells remaining at 40 days is also altered by splenec-
tomy, the A test once more indicating the biggest magnitude of effect possible. These
effects may be observed in figure 7.39, which depicts the median effector T cell dynam-
ics. Whereas effector CD4Th1 cell number is reduced to zero by day 40 in the control
group, splenectomy sees the effector CD4Thl population persist at under 100 cells in
size for over 150 days of observation.

The intensity of the CD4Thl and CD4Th2 immune responses, as measured by the
maximum number of these cells reached at any point in time, are not significantly
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Figure 7.34: Mean progression of EAE under control and splenectomy experiments.
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Figure 7.35: Cumulative counts of the proportion of simulations experiencing each degree of
EAE severity, for control and splenectomy experiments.
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Figure 7.36: Long-term cumulative counts of the proportion of simulations experiencing each
degree of EAE severity, for control and splenectomy experiments.
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EAE incidence

| Control (%) | Splenectomy (%) |

Mortality rate

0 EAE episodes
1 EAE episode
2 EAE episodes
3 EAE episodes
4 EAE episodes
5 EAE episodes

>6 EAE episodes

14.2
0.2
99.6
0.2
0.0
0.0
0.0
0.0

19.4
0.0
80.6
12.6
4.8
1.6
0.2
0.2

(a) The mortality rate and total number of autoimmune occurrences experienced by con-
trol and splenectomised simulation groups.
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(d) Cumulative distribution plot of the duration of remission from EAE for splenectomy
group. Note that remissions are numbered following the first incidence of EAE; the
period between immunization and the initial onset of autoimmune symptoms is not shown.
Further, by definition, a remission must end in another incidence of EAE. This is to
exclude those that are terminated by the end of observation, which skew the data.

Figure 7.37: Analyses of number of EAE incidences and remissions, and their durations for
control and splenectomy experimental groups.
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affected, though a ‘medium’ effect is found in the delay at which the CD4Th1 response
peaks. The times at which CD4Treg and CD8Treg immune responses peak are not
significantly affected by splenectomy.

’ Response ‘ A test score
CD4Thl Max 0.58
CD4Th1 Maz Time 0.64T
CD4Th2 Mazx 0.44
CD4Th2 Mazx Time 0.49
CD4Treg Max 0.00*
CD4Treg Maz Time 0.38
CD8Treg Max 0.00*
CD8Treq Max Time 0.40
CD/Th1 at 40d 0.99*

Table 7.4: The A test scores indicating magnitude of difference in response distributions be-
tween splenectomy and control experimental groups. Scores marked * are indicative of ‘large’
differences between response distributions, being <0.29 or >0.71. Those marked T are indica-
tive of ‘medium’ differences, <0.36 or >0.64.

7.4.2.4 Splenectomy reduces regulatory capacity of Treg populations

As demonstrated in figure 7.40, priming of the CD4Th population ceases around day
40 in the control group, however in the splenectomy group priming continues, albeit
at a reduced rate, until observation ends at 200 days. Hence, splenectomy reduces the
capacity for regulation to counter autoimmune behaviour to such a degree that com-
plete and permanent cessation of autoimmune T cell responses is often not possible.
Figure 7.36b demonstrates that a small proportion of the simulation population expe-
rience EAE grade 1 severity at any point in time for the full 200 days of observation.
As described above, these incidences of clinical symptoms tend to present in relapsing
forms.

It has been established in section 6.4.2.1 of the previous chapter that the stimulus
for Treg priming is the severity of the autoimmune response. In absence of the spleen,
a primary site of Treg priming (figures 7.41 and 7.42) the regulatory immune responses
are unable to reach a sufficient size to completely eradicate autoimmune behaviour.
Regulation is effective in reducing the size of the CD4Thl population, however when
this population becomes small the capacity of DCs to prime Treg populations reduces,
and the CD8Treg population dies out before it is able to completely abrogate the
CDA4Th1 population. The lack of CD8Tregs allows the CD4Thl population to once
more expand, and in the period taken for DC populations to further prime Treg cells
in response, clinical symptoms re-present. Whilst this pattern may repeat for extended
periods of time, figure 7.39c suggests that the CD4Thl immune response is abrogated
completely by day 170 in over 50% of simulations (figure 7.39¢ depicts the median
simulation behaviour).

7.4.2.5 Influence on APC populations

Figure 7.43 shows the states of APC activation in the CNS over 200 days of obser-
vation for both control and splenectomy groups. In the control group, the number of
immunogenic APCs reaches a peak of 50 at the height of the autoimmune response.
This figure is similar in the splenectomy group, however the number of immunogenic
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APCs does not return to basal levels, instead holding relatively steady at over 20. The
peak of autoimmune activity sees around 1000 effector CD4Thl cells in the system.
The observation that 1000 effector CD4Thl cells induce immunogenic phenotypes in
50 CNS-resident APCs, and that only ~100 effector CD4Thl cells (between days 50
and 100 in splenectomy group) can induce immunogenic phenotypes in ~30 APCs,
supports the conclusion that there exists a non-linear relationship between CD4Thl
population size and the degree of autoimmunity experienced. This diminishing return
on increasing CDTh1 cell number was previously established in section 7.2.2.6.

Figure 7.44, the states of APC activation in the CLN, demonstrates that fewer
than 10 immunogenic DCs in the CLN, out of a total number of ~95, is sufficient to
maintain the CD4Thl population at levels capable of inducing relapsing clinical EAE
symptoms, but often insufficient to prime the number of Treg cells required to abrogate
autoimmunity.

It has been established, in section 7.2.2.4 and shown in figure 7.45a, that the end of
the CD4Thl immune response is marked by a transition of the majority immunogenic
DCs in the CLN adopting a type 2 polarization in place of type 1. Figure 7.45a
reveals that this majority also occurs in splenectomised mice, between days 25 and 55.
However, this majority is not sufficient to result in a type 2 deviation of CD4Th cells
capable of out-competing the effect of the CD4Thl population; the CD4Th2 cells do
not outnumber the CD4Th1 cells, the number of type 1 polarized DCs in the CLN
increases to equal the number of type 2 polarized, and the autoimmune response does
not terminate.
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Figure 7.38: Example EAE progressions of individual splenectomised simulation executions.
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Figure 7.39: The median system wide T cell dynamics, obtained from 500 simulation executions,

showing control and splenectomy experiments.
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Figure 7.41: Cumulative count CD4Treg cells primed in each compartment, for control and
splenectomy experiments.
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Figure 7.42: Cumulative count CD8Treg cells primed in each compartment, for control and
splenectomy experiments.
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Figure 7.43: States of APC activation in the CNS, for control and splenectomy experiments.
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Figure 7.44: States of APC activation in the CLN, for control and splenectomy experiments.

20
—Type 1
—Type2
15
K]
© 10
o
5
0
0 50 100 150 200
Time (days)

(a) Control.

20,
—Type 1
—Type2
15
10
5
0
0 50 100 150 200
Time (days)

(b) Splenectomy.

Figure 7.45: Polarizations of DCs in the CLN, for control and splenectomy experiments.
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7.4.3 Summary

The section has described the use of the ARTIMMUS simulation in investigating the
results of a splenectomy experiment. The role of the spleen in EAE has been investi-
gated in vivo by [Ben-Nun et al. 1980]. Ben-Nun et al.’s experiments on rats exposed
the spleen’s role in aiding recovery from EAE; its removal results in more severe EAE.
A similar experiment, the removal of the spleen before the induction of EAE, has been
engineered into ARTIMMUS with the aim of gaining insight into its role in EAE.

It is important to note that ARTIMMUS was calibrated against mouse data from
the Kumar lab, whereas the experiments performed by Ben-Nun et al. were on rats.
The metric used to grade EAE severity by Ben-Nun et al. differs from that of the
Kumar lab, against which the simulation’s own EAE grading system was calibrated.
Ben-Nun’s et al.’s metric directly examines the damage to the CNS once the experiment
has been terminated, whereas that used by the Kumar lab is based on the degree of
paralysis observed. Ben-Nun et al. do, however, report mortality rates and period of
autoimmune symptoms, noting days of onset, and recovery, and incidence of relapsing
and chronic EAE in a manner that facilitates qualitative comparison with the results
gained from ARTIMMUS.

The simulation’s results are consistent with those observed in vivo in that splenec-
tomy results in more severe EAE symptoms. Following splenectomy, autoimmune con-
ditions present more severely and last longer. Splenectomy in ARTIMMUS had a
considerable effect on the long term recovery from EAE. In absence of splenectomy
all mice that do not perish experience complete recovery with no relapsing symptoms
over the 200 days of observation. In contrast, splenectomy results in 20% of all mice
experiencing at least one relapse of clinical symptoms.

Results from ARTIMMUS demonstrated that the majority of Treg priming occurs in
the spleen, and that its removal results in significantly reduced CD4Treg and CD8Treg
numbers. This reduced Treg population is able to regulate the CD4Th1 population to
the point that the difference in EAFE severities between splenectomy and control groups
at 40 days is not statistically significant, but is often not able to completely abrogate
the CD4Thl population. This results in the remitting autoimmune symptoms noted
above.

It is noteworthy that the effect of splenectomy on the levels of EAE experienced at
peak immunity and at various points following immunization was not deemed ‘large’
through use of the A test, though ‘medium’ effects did occur. The present experi-
mentation has not investigated whether greater magnitudes of effect might be reached
with different strengths of immunization for EAE. The immunization protocols used
to induce EAE differ between labs, and between experiments conducted by the same
lab. An experiment intended to investigate the ability of an intervention to reduce the
severity of symptoms might induce more severe EAE than an experiment intended to
investigate the potential of an intervention to increase symptoms. The experimenta-
tion reported in this section has investigated splenectomy under a single immunization
protocol. Section 7.4.2.4 suggested that the inability of splenectomised simulations to
completely abrogate the CD4Thl population was due to the reduced Treg immune
responses. The reduced CD8Treg number in splenectomised simulations are able to
substantially reduce CD4Thl cell number, but not before the reduction in CD4Thl
cells results in reduced Treg priming capacity, which once more permits the expan-
sion of the CD4Th1 cell population. Further experimentation with ARTIMMUS could
examine the ability of splenectomised simulations to effectively abrogate the CD4Thl
population as a function of immunization strength; a stronger immunization for EAE
might result in enhanced autoimmune activity that the reduced Treg populations are
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less capable of regulating, hence resulting in increasingly severe and relapsing autoim-
munity. Alternatively, it is possible that under a stronger immunization the increased
CD4Th1 number might provide additional priming capacity for Treg populations that
are able to abrogate the autoimmune response after a single episode of autoimmune
symptoms. Such experimentation would provide greater insight into the interaction
between autoimmune and regulatory immune responses, and the role of the spleen in
recovery from EAE.

7.5 Conclusion

This chapter has reported three strands of in silico experimentation into EAE. Sec-
tion 7.2 has examined the cellular dynamics that underpin autoimmunity and regula-
tion in EAE. It also explored the relapsing nature of EAE in simulations where the
regulatory pathway is disabled.

Section 7.3 focuses on various aspects of the regulatory pathway through which
CD8Treg cells apoptose CD4Th1 cells. The section challenges a finding of the previ-
ous section, that the majority of CD4Thl apoptosis through regulation occurs in the
circulatory system. It is found that this finding critically depends on an arbitrarily
assigned parameter value, and as such the finding cannot be accepted as representa-
tive of real-world EAE. This demonstrates the importance of appreciating the effect
of arbitrarily assigned parameter values: in silico predictions that rest on arbitrarily
assigned parameter values should be challenged.

Lastly, section 7.4 reports on using ARTIMMUS to gain insight into the role of
the spleen, motivated by wet-lab experimentation conducted in the 1980s that revealed
splenectomised rats to experience more severe EAE than their control group counter-
parts. The section predicts that the spleen is a major source of Treg priming, and
that its removal results in reduced numbers of Tregs which cannot combat autoim-
munity with the same efficiency, though most mice do still recover. Direct objective
comparison between the wet-lab data and in silico results is not possible, the wet-lab
metrics of autoimmunity severity differ from those of the Kumar lab that ARTIMMUS
employs. However, the two sets of results are consistent with one another, and demon-
strate the generality of ARTIMMUS: it is able to replicate phenomena from another
model, against which it was not calibrated. This finding serves to increase confidence
that simulation results are representative of real-world EAE.

This chapter has addressed research objective 4: to perform novel in silico exper-
imentation using the agent-based simulation of EAE. It provides contributions to the
field of EAE, and provides a context for exploring how statistical and modelling tech-
niques provide confidence in simulation results being representative of real-world EAE.
This is the subject of the following and final chapter of this thesis.
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Chapter 8

Discussion

The present chapter concludes the work of this thesis, and commences in section 8.1
with a reflection upon the extent to which the modelling and statistical techniques
applied and developed are considered to provide confidence in simulation results being
representative of the real-world domain. The last contribution of this thesis is made:
a novel meta-heuristic search based technique that is proposed to guide simulation
development to appropriate levels of abstraction, and demonstrate this to have been
the case. Next, section 8.2 returns to the thesis aim and the research objectives,
and provides a chapter-by-chapter summary of content and contributions. Section 8.3
details four strands of further work that have arisen from this thesis. Lastly, section 8.4
presents the concluding remarks of this thesis.

8.1 Reflections on establishing confidence in simulation

This thesis is motivated by the need to establish confidence that in silico results are
representative of the immune system domains that they intend to capture. The in-
troductory chapter considered four aspects of agent-based in silico experimentation in
which confidence must be provided. These are:

e Confidence that the simulation’s capture of the cells, processes and interactions
of the target domain is satisfactorily accurate, given the investigations that are
to be performed on it. These aspects of the simulation have been referred to as
the simulation’s mechanics.

e Confidence that the simulation is correctly parameterised; that the mechanics
have associated with them the correct rates, probabilities, quantities and temporal
behaviours. These aspects have been referred to as the simulation’s parameters.

e Confidence that in silico results are representative of the simulation’s dynamics,
and not merely the result of stochasticity in the simulation.

e Understanding of the implications of in silico results in terms of the original
domain: how do simulation metrics map to the real-world system, and are inter-
esting simulation results merely the result of underspecified parameter values?
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The aim of this thesis has been to address these issues of simulation confidence
through modelling and statistics, by undertaking a case study in modelling and simulat-
ing a complex murine autoimmune disease, experimental autoimmune encephalomyeli-
tis (EAE). This is reflected in the thesis aim:

To apply and develop statistical and modelling techniques for agent-
based simulations of immunology, specifically experimental autoimmune en-
cephalomyelitis.

The present section reflects on how the modelling and statistical techniques explored
in this thesis establish confidence that the results arising from in silico experimentation
with ARTIMMUS are representative of real-world EAE. It proposes a novel method
for quantifying how well a simulation captures its target domain, and explaining how
this may be integrated into the CoSMoS process to demonstrably guide simulation
development towards a faithful representation of the target system. The concluding
section explores how the various techniques examined in this thesis may add objectivity
to the establishment of confidence in simulation.

8.1.1 Explicit domain modelling

The CoSMoS process, reviewed in the introductory chapter, underpins simulation-based
experimentation with explicit domain modelling [Andrews et al. 2010]. The process
promotes simulation-based investigation of complex systems as an inherently inter-
disciplinary activity, and as such the present case study in EAE has been conducted
in collaboration with Dr. Kumar, an immunologist and expert in the disease. The
CoSMoS process may be considered to address the first of four aspects of simulation
confidence detailed above: establishing confidence that the simulation’s mechanics are
a faithful representation of the target domain. The domain modelling work conducted
in chapter 4 has been highly beneficial in addressing the complexity of EAE and gaining
a consistent perspective of its dynamics. The creation of a full specification of the do-
main has highlighted areas of ambiguity and underspecification in immunology, and the
activity has been valuable in guiding interaction with the domain expert. Confidence in
the simulation’s faithful representation of the domain is achieved though domain expert
verification that the dynamics underpinning it are realistic and appropriate. Though
time-consuming, it is felt that explicit domain modelling has been highly beneficial to
exploring EAE through simulation.

8.1.2 Calibration of simulation mechanics and parameters

The CoSMoS process is inherently iterative; as further scientific questions of the do-
main are addressed through simulation, the artifacts of the process are updated. The
CoSMoS process acknowledges that the first pass of the process may not lead to a
simulation whose dynamics are consistent with the target domain, and that this dis-
crepancy can motivate further iterations of the process [Andrews et al. 2010]. Indeed,
this has been the case in the present study of EAE. However, the process offers no guid-
ance on deciding whether a simulation satisfactorily captures a target-domain, or how
to rectify inconsistencies should they be found. Chapter 5 reports the collaborative cal-
ibration procedure, by which this was achieved through close collaboration between the
domain expert and the modeller. The procedure explores the space of both simulation
mechanics and parameters in developing the simulation to a point where it satisfactorily
reflects the dynamics of real-world EAE under two experimental scenarios. Once more
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it is felt that substantial input from the domain expert during development provides
confidence that the simulation is appropriately grounded in the real-world domain.

A strength of the procedure is its calibration against multiple real-world experimen-
tal scenarios, real-world interventions such as adoptive transfer experiments, genetic
knockout experiments, or administering different doses of immunogen. The more sce-
narios in which a simulation can replicate the behaviour of the real-world, the greater
the confidence that may be assumed in its faithful representation of the target sys-
tem, and the greater the certainty attributed to its results under scenarios where real-
world behaviours are not known. Chapter 3’s review of the existing literature on
modelling and simulating the immune system revealed that most simulations are cal-
ibrated against at most one experimental scenario, and parameter values are adopted
from a wide variety of sources. As explained in chapter 5, calibration against only
a single experimental scenario does not protect against fitting an incorrect model to
only a single data point. The literature reviewed in chapter 3 often demonstrate that
simulation dynamics are consistent with wet-lab experimental data, but also point to
discrepancies between the two. We argue that the calibration procedure developed in
this thesis is the stronger approach: firstly, discrepancies between in silico and wet-lab
data can motivate further simulation development; secondly, simulation mechanics and
parameters are set to best replicate multiple scenarios, rather than biasing towards
any one. This procedure addresses the first two aspects of establishing confidence in
simulation: confidence that both simulation mechanics and parameters are appropriate
representations of the real-world domain.

The ARTIMMUS simulation was calibrated against two experimental scenarios, and
the experience of having done so has revealed how many parameter combinations and
mechanistic abstractions can lead to alignment of the simulation with real-world EAE
under only one of the two scenarios. It is felt that this collaborative calibration pro-
cedure greatly improves confidence that the simulation is representative of real-world
EAE. However, it is also felt that ARTIMMUS could benefit from calibration against
more than two experimental scenarios, and this is reflected in the further work section
below. It should also be noted that a criticism made in chapter 3 of the subjective man-
ner in which much of the existing literature on computational immunology contrasts in
silico results with wet-lab data applies also to the present calibration of ARTIMMUS.
Calibration received substantial input from the domain expert, who made a subjective
assessment of whether the dynamics of ARTIMMUS matched their conception of the
i vivo system. This approach was motivated by the absence of domain-specific data
against which ARTIMMUS could be directly contrasted and calibrated. It is, however,
believed that this subjective assessment is better made by a domain expert than a
modeller.

8.1.3 Demonstrably representative results

The in silico experimentation that has been conducted using ARTIMMUS has at times
involved subtle changes in molecular expression, the effects of which have ranged from
large to small. ARTIMMUS is a stochastic simulation, and as such the results of
simulation executions given the same input parameters can differ. Interpretation of in
silico results requires that one understands the extent to which variations in simulation
behaviour can be attributed to the experimental procedure, as opposed to simulation
stochasticity. To this end, chapter 6 developed a consistency analysis technique to
establish the relationship between the level of accuracy reflected in averaged results,
and the number of simulation executions sampled in generating them. It allows com-
putational immunologists to ascertain the number of simulation executions required to
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correctly interpret data at the level of accuracy they desire, hence instilling confidence
that in silico results are representative of simulation dynamics, not stochastic varia-
tion. As such, it relates directly to the third aspect of instilling confidence in the results
of simulation-based experimentation: that results are representative of simulation dy-
namics and the current experimental procedure, not merely stochastic variation.

As a non-parametric effect magnitude test, the A test which underpins this pro-
cedure can also be used in hypothesis evaluation: computational immunologists can
decide in advance the magnitude of difference they consider significant, and then evalu-
ate the results in the context of hypotheses [Vargha & Delaney 2000]. This consistency
analysis technique can indicate the minimum effect magnitude that can be accepted
as being representative of the simulation, given the number of simulation executions
sampled in generating results.

In summary, this procedure can effectively establish confidence in in silico results
being representative of simulation dynamics under experimental procedures, especially
where the A test is used to interpret the significance of results.

8.1.4 Interpretation of in silico results in term of the target domain

Of the four aspects of establishing confidence that in silico results reflect the target-
system, identified above, the last is perhaps the least well appreciated in the literature;
it is not considered in any of the literature surveyed. The results that arise from
simulation-based experimentation reflect the dynamics of the simulation, and not nec-
essarily the target-domain. It is important to appreciate the separation of simulation
from target domain when making claims of immunology that arise from simulation.
Results of simulation will not necessarily translate directly into the immunological
domain. Simulations represent only a small subset of the entire immune system, with
many cells and physical compartments being omitted. Where cell types are represented,
their number rarely exceed a few thousand, whereas the real-world system encompasses
perhaps millions. Interpretation of in silico results into the real-world domain requires
the mapping between simulation and target system to be established.

In the case of ARTIMMUS, this mapping has concerned the six point scale system
used to grade the severity of autoimmunity in wet-lab mice. The metric relies on human
observation of the degree of paralysis experienced by the animal. ARTIMMUS does not
represent the vast majority of the mouse, and hence there is no obvious analogue by
which to grade the autoimmune severity in the simulation. This has been addressed by
engineering two experimental scenarios into the simulation, and calibrating a mecha-
nism whereby the rate of neuronal apoptosis in the CNS compartment is related to the
severity of autoimmunity experienced by real-world experimental animals undergoing
the same experiments. This mapping has greatly facilitated the appreciation of in silico
results in the same terms as employed in the wet-lab. The in vivo data against which
the mapping was calibrated was relatively sparse: 9 data points for one experiment,
and 18 for the other, which were used to form distributions of maximum EAE severity
scores across the group. It is felt that the calibrated mapping it as accurate as could be
expected given the sparsity of data, and hence the confidence that one may have in this
in stlico autoimmunity severity scoring system being representative of the real-world
system could not be improved upon without more wet-lab data.

A second aspect of interpreting in silico results into the real-world domain that
has been considered in this thesis stems from the substantial variation in, or complete
absence of, immunological data required to inform and parameterise the simulation.
The values reported for a particular immunological phenomenon, used to guide simula-
tion parameterisation, can vary by orders of magnitude. The effect of this variation or
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absence on simulation behaviour must be considered prior to interpreting simulation
results back into immunology: an insightful or critical in silico prediction may only
hold for a small range of parameter values, smaller than the range of possible values
reported in the immunological literature. If this is the case, then caution much be
exercised when interpreting results.

The present thesis has addressed this issue through the development of a novel
robustness analysis. The analysis may be used to identify the range of simulation
parameter values for which simulation behaviour is statistically consistent, and the
points at which scientifically significant deviations in behaviour occur. The analysis
has been used in this thesis to determine such values for parameters assigned arbitrary
values. Many simulation parameters have been informed through domain expertise,
or have been determined through calibration, giving some confidence in their values.
However, some parameters have no direct biological analogue, and as such there is no
guidance for their parameterisation. In ARTIMMUS these parameters were assigned
arbitrary values such that calibration could commence. The analysis reveals the extent
upon which the simulation’s default behaviour requires these parameters to hold a
particular range of values. It is important for computational immunologists to consider
these results, and ensure that they are comfortable with them. Furthermore, the results
of this analysis should be communicated to the academic community, alongside in silico
predictions. Researchers in the wider community can then examine these criticalities
and assess whether or not they consider them to be important or significant. If there is
cause for concern, then less weight may be held in the results of the experimentation.

Several methods of application for this robustness analysis have been proposed
in chapter 6. These methods allow researchers to establish the range of simulation
behaviors that are explained through underspecified parameter values: variation in
domain-specific knowledge. In silico results exceeding these ranges may be assumed
more representative of the real-world domain.

The robustness analysis, and the methods of application proposed, help to ground in
silico results in the real domain. They establish the degree to which simulation-derived
experimental results are supported by established domain knowledge, and hence how
much confidence may be placed in them. Full integration of in silico and wet-lab
techniques requires that simulation results be appropriately interpreted into the real
domain, and the present techniques offer a starting point by which this may be accom-
plished. With respect to ARTIMMUS, the simplest form of the robustness analysis
has been applied, and criticalities of simulation behaviour upon parameter values are
known. However, the extended methods of application require more domain-specific
data and literature to be gathered, and this is considered beyond the scope of the the-
sis. It is felt that this work is highly worthwhile, since the potential it has to provide
confidence in in silico results is thought to be substantial. As such, it is reflected in
the further work section below.

8.1.5 Simulation augmentation and confidence in existing results

It has been maintained throughout this thesis that simulation validity is not an all-or-
nothing quality, and is best thought of in terms of confidence that the results of in silico
experimentation are representative of the real-world domain. The techniques explored
in this thesis can be applied to either increase that confidence, or demonstrate in silico
results are not representative. The application of the CoSMoS process and the inter-
disciplinary collaborative calibration procedure in developing ARTIMMUS do provide
confidence in the results of in silico experimentation. The splenectomy experiments
of section 7.4 demonstrate that ARTIMMUS produces results consistent with those of
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a different lab’s EAE model, against which it was not calibrated. This demonstrates
some level of generality in the simulation, and again serves to improve confidence in its
results. However, it is important to consider what may happen to existing simulation
results were additions to be made to ARTIMMUS.

One motivation for performing iterations of the CoSMoS process is to address sub-
sequent scientific questions of a domain. As explored more fully in the further work
section below, a second regulatory pathway has recently been identified by the Ku-
mar laboratory whereby CD8Treg cells down-regulate the immune response in general.
These cells are thought to interact with DCs through CD200:CD200R molecular sig-
nalling and suppress their ability to prime T cell populations. Very little is currently
known about the influence of this pathway in EAE, and hence its investigation in silico
is left as further work. However, consider the hypothetical scenario where this pathway
has substantial influence in EAE. DCs prime autoimmune CD4Th1 cells, and as such
the suppression of this priming ability could help mediate recovery from autoimmunity.
However, DCs also prime CD4Th2, CD4Treg and CD8Treg cells, which are involved in
the abrogation of autoimmunity. Hence, the CD8Treg cells may regulate themselves,
which could serve to enhance autoimmune activity. The effects of this pathway are
difficult to predict, but could be substantial. Its implementation in ARTIMMUS might
lead to a significant reduction in CD8Treg priming. One of the in silico predictions of
this thesis is that there exists considerable redundancy in the ability of the CD8Treg
population to apoptose autoimmune CD4Thl1 cells, thereby mediating recovery from
autoimmunity. If the CD200 regulatory pathway were to substantially reduce CD8Treg
number, then the pathway may no longer exhibit such redundancy. The in stlico pre-
diction would have been incorrect, yet the application of the CoSMoS and calibration
processes would not have revealed this to be the case a priori. In this hypothetical
scenario, the CD200 pathway is important and had been investigated. However, had
it not been investigated, perhaps because the Kumar laboratory did not perform the
experiments to discover it, the in silico prediction may have lead to publications which
then directed further wet-lab work, all based on incorrect assumptions.

The CoSMoS process and the collaborative calibration procedure can instill confi-
dence that a simulation is an accurate representation of the target system, but they
do not demonstrate this to be the case, and there is no means of quantifying to what
extent it is a faithful surrogate of real-world EAE. The following section proposes an
extension of the collaborative calibration procedure which could potentially quantify
how well a simulation captures the complexity of the target domain. It makes use
of extensive experimental data in doing so. This extension can be employed during
development to guide a simulation to an appropriate level of abstraction.

8.1.6 A meta-heuristic framework for quantifying the accuracy of
simulation mechanics

The demonstration that a simulation can replicate the results observed in the real-world
system under a variety of different scenarios can increase confidence that the simulation
has correctly captured the target domain. These scenarios represent different experi-
ments, for example: genetic knock-out experiments, administration of different doses of
virus, or adoptive transfer experiments. The present section extends this idea, and pro-
poses a framework that makes use of meta-heuristic search techniques in establishing
the extent to which a simulation appropriately captures the complexity of the target.
Meta-heuristic search algorithms operate over a space of potential solutions to a
problem, and attempt to identify the best quality solution [Luke 2009]. The quality of a
particular solution can be ascertained through application of a fitness function, supplied
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to the algorithm a priori. These algorithms are stochastic in nature, and operate
by maintaining either one or many candidate solutions to the problem. Candidate
solutions are stochastically perturbed in an effort to improve their quality, and as
such these algorithms are iterative in nature. Meta-heuristic search algorithms are not
guaranteed to find the global optimum solution to a problem, and will often converge
on sub-optimal solutions. They are however well suited to application in very large
problem spaces, and where the fitness landscape of solutions is highly non-linear or
noisy!.

The framework builds on the concept that the same experiment performed on the
same system will reveal, given allowances for stochasticity, the same results. A simula-
tion intended as a surrogate for a target system will produce similar results if it correctly
captures the complexities underlying the target system; it is these complexities that
define the way the target system responds to different scenarios. If the complexity is
incorrectly captured, then the same set of results cannot be achieved without manipu-
lating some aspect of the simulation’s representation in order to compensate.

The proposed framework is captured diagrammatically in figure 8.1. It makes use
of only three real-world experiments, but there is no theoretical limit on the number
that are actually used in practice, and the greater number the stronger the approach.
Application of the framework begins by identifying a series of experiments that have
been performed on the target system, and engineering each of these into the simulation.
Meta-heuristic search is then applied to each experiment in turn, attempting to tune
simulation parameters to align simulation behaviour under each particular experiment
with the corresponding results obtained in the target system. Hence, if N real world
experiments have been identified, meta-heuristic search will be performed N times, and
will ultimately yield N sets of optimised parameter values, which may be considered
as N points in the simulation’s parameter space. The degree to which the simulation
captures the complexity of the target system is revealed in the proximity of these points
in parameter space to one another. If they lie close together, then the simulation may
be deemed a faithful representation of the target system. If, on the other hand, the
N points in parameter space lie far apart, then the opposite may be concluded. This
is because some critical aspect of the target system’s complexity has been incorrectly
abstracted, and as such the meta-heuristic process must substantially adjust parameter
values to compensate.

To reinforce this concept, if the target system was not the real-world system, but
in fact the simulation itself, then the meta-heuristic search would always return pa-
rameter values that lie in close proximity to one another; the simulation is a perfect
representation of itself. It is the distance between points in parameter space at the end
of this optimisation process that reveals how well one system captures another.

The framework is not intended as a replacement for the CoSMoS process,
rather it constitutes a valuable complement to the simulation development process
[Andrews et al. 2010]. The first iterations of the CoSMoS process are often spent de-
veloping a simulation to a state that is considered appropriate for the questions that
are to be asked of it, however the CoSMoS process does not indicate how this might
be ascertained. The present framework provides supporting evidence for this decision.
The input of the domain expert in grounding simulation work within the real domain
cannot be understated, however the present framework provides an objective measure
that this has been accomplished: that the simulation demonstrably captures the com-

!This refers to problems where the quality of nearby solutions in problem space may vary con-
siderably, making the application of numerical or analytical optimisation techniques that follow the
gradients of neighbouring solution qualities to arrive at optimal solutions problematic.
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plexities of the real-world system. It is envisaged that the framework be applied at the
end of each iteration of simulation development, at which point it can indicate whether
or not further development is required. Although determination of which amendments
are to be made to a simulation that requires further development are best left to the
collaboration between the domain expert and the modeller, it is possible that the results
of the present framework can provide insight into which aspects of the simulation are in
need of re-consideration. By examining the nature of the real world experiments that
could not be replicated without substantial parameter alteration, and consideration of
which parameters were being perturbed to compensate for inadequate replication of
the target system, insight may be gained into those aspects of the target system and
simulation that are not well aligned.

The practical implementation of this framework is not without its challenges, par-
ticularly with reference to the tendency of meta-heuristic search to find local optima
rather than the global, however discussion thereof is deferred to the further work sec-
tions below.

8.1.7 Confidence objectivity

There is another important contribution to establishing confidence in in silico results
that this framework could provide: objectivity. This thesis has noted that confidence
is not an all-or-nothing quality, that one may hold varying degrees of confidence that a
simulation is representative of the real system for particular types of experimentation.
However, as evidenced in this discussion, confidence is often subjective and difficult to
quantify. Of the four aspects of establishing confidence in simulation results explored
in this thesis, only one can be argued in a highly objective manner: confidence that
averaged simulation results are not simply the result of stochasticity.

The consistency analysis technique for establishing the link between accuracy of
averaged simulation results and number of simulation samples obtained in generating
them is firmly grounded in objective statistical methods. The robustness analysis tech-
nique, which quantifies the range of simulation parameter values for which simulation
behaviour is scientifically consistent, is also highly objective, though its interpretation
is problem specific and may be subjective as a result. The methods of application
by which sensitivity and robustness analysis techniques can be applied and considered
in the context of domain-specific knowledge to qualify the significance of simulation-
based results in terms of the target domain are somewhat objective. The sensitivity
and robustness analysis techniques are based on objective statistical methods, however
they rely on one having a firm idea of the biologically plausible ranges of parameter
values. As presented in this thesis, these methods are theoretical and have not been
instantiated. Further research into how these techniques may be employed in scenarios
where biologically plausible parameter ranges are known only as probabilities or loose
estimates is left as further work, discussed below.

With respect to establishing confidence in a simulation’s mechanics, or its parame-
ters, the CoSMoS process does not indicate when a simulation is ‘good enough’, since
this is dependent on the particular study being conducted. The collaborative calibra-
tion process explored in this thesis employes the domain expert’s opinion in ascertaining
when this is the case, an approach which is also subjective. The literature review of
existing modelling and simulation works in immunology explored how researchers con-
trast in silico behaviours with established wet-lab data in order to argue the accuracy of
the simulation, however comparisons are again subjective. The present meta-heuristic
search approach to guiding simulation development to appropriate levels of abstraction
offers an opportunity to argue confidence in simulation mechanics and parameters in
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Figure 8.1: A meta-heuristic based technique for quantifying how well a simulation captures
its target domain. Established real-world experimental procedures in the target system are
identified, and each is engineered into the simulation. Meta-heuristic search is applied to each
i stlico experiment in turn, optimising simulation parameters with respect to the dynamics
observed in the real-world system. The resultant optimised parameter sets, of which there is one
for each experimental procedure, are then considered. Should these points in parameter space
lie in close proximity to one another, then the simulation faithfully captures the complexities
of the target domain. Should they lie far apart, then it does not: some critical aspect of
the real-world system is inappropriately abstracted in the simulation, and the meta-heuristic
search process is making considerable adjustments to parameter values to compensate. Note
that only three experiments are depicted here for clarity; the larger the number of experiments,
the stronger the technique.
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more objective terms. The quality of a simulation’s representation of its target domain
is encoded in the spatial spread of optimised points in parameter space. Whilst it
would be challenging to define a general principle for how much spread is acceptable,
since it is dependent on the number and nature of parameters in particular simulations,
measuring how successive iterations of any one simulation’s development reduce this
spread could indicate when to stop development: when the improvement in spread is
not longer statistically significant.

8.2 Thesis summary, and contribution

The present section returns to the aims and objectives of this thesis, and provides a
summary of how the objectives were met, and the contributions that were made in
doing so.

To apply and develop statistical and modelling techniques for agent-
based simulations of immunology, specifically experimental autoimmune en-
cephalomyelitis.

Five research objectives were identified to guide the work of this thesis in addressing
its aim. These were as follows:

Obj 1: Explore the the role of explicit domain modelling in the EAE case study.
Obj 2: Create an agent-based simulation of EAE.
Obj 3: Investigate and develop techniques for calibrating agent-based simulations.

Obj 4: Perform novel in silico experimentation using the agent-based simulation of
EAE.

Obj 5: Develop and apply statistical techniques for interpreting in silico results in the
context of the target domain, EAE.

The remainder of this section provides a chapter-by-chapter summary of this thesis,
indicating where research objectives were met, and listing the contributions of this
thesis.

Chapter 1: The motivation for exploring immunological phenomenon through com-
putational methods is provided. The issue of establishing confidence that the
results of in silico experimentation are representative of the real-world domain is
introduced. The CoSMoS process, which proposes to underpin simulation-based
investigation of complex systems with explicit and rigorous modelling activities,
is reviewed. Lastly, the thesis aim and research objectives that guide the cur-
rent work in exploring modelling and simulation techniques to support in silico
experimentation are detailed, and an overview of the thesis is presented.

Chapter 2: A review of immunology at the level of detail required to comprehend
EAE is provided. The EAE mouse model employed by the Kumar lab is de-
scribed. The complexity of immunology is used to motivate the application of
computational methods in its exploration. This chapter forms the domain of the
CoSMoS process. Contributions:

e Articulation of the complex nature of EAE, and motivating its investigation
through computational modelling and simulation.
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Chapter 3: The literature on exploring immunology through modelling and simula-
tion is reviewed. Focus is given to the manner in which computational methods
have complemented more traditional wet-lab techniques. The question of sim-
ulation accuracy is considered, and the approaches through which the literature
addresses it are reviewed.

Contributions:

e Making explicit the need to establish confidence in the results of in sil-
ico experimentation being representative of their target simulation, and the
identification of four aspects of simulation-based experimentation in which
this must be done: simulation mechanics, simulation parameters, appropri-
ately accurate simulation results, and the interpretation of simulation results
into the original domain.

Chapter 4: The chapter reports the construction of a domain model of EAE, ex-
pressed using the UML. A detailed assessment of UML’s strengths and weak-
nesses in specifying this complex autoimmune disease is presented. This chapter
addresses research objective 1.

Contributions:

e A complete and comprehensive domain model of EAE, no such agent-based
model existed prior to this thesis.

e A methodology for creating and presenting complex immunological systems
such as EAE using UML.

e A detailed analysis of UML’s ability to capture particular immune system
aspects present in EAE.

Chapter 5: The construction and calibration of the EAE simulation platform, AR-
TIMMUS, is presented. The manner in which the domain model is interpreted as
a specification for the simulation is detailed, and implementation-specific amend-
ments and additions are reported. In terms of the CoSMoS process, this chapter
details the transition from domain model to platform model. The chapter reports
the novel and highly interdisciplinary collaborative calibration procedure used to
develop and parameterise the simulation to a satisfactory representation of real-
world EAE. This chapter addresses research objectives 2 and 3.

Contributions:

e A highly interdisciplinary and collaborative calibration procedure for devel-
oping simulations to appropriate levels of abstraction, and the articulation
of the importance of calibrating immunological simulations against multiple
data points.

e The first agent-based simulation of EAE known to exist, which may be used
to perform in silico experimentation into the nature of the disease.

Chapter 6: This chapter concerns the development and application of statistical
methods to support in silico experimentation in ARTIMMUS. In terms of the
CoSMoS process it represents part of the results model, the manner in which it is
validated against the domain model, and how predictions are interpreted into the
domain. Firstly, the chapter derives a means of grading simulation executions in
terms of the 6 point scale employed in wet-lab research. This greatly facilitates
interpretation of in silico results, and helps to contextualise them in terms of the
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real domain. The A test is used in creating and applying a novel procedure for
establishing the relationship between the accuracy of averaged simulation results,
and the number of simulation executions sampled in deriving them, named the
consistency analysis technique. The results of this analysis are used to determine
how many simulation executions are employed in deriving averaged simulation re-
sults in the remainder of this thesis. A global sensitivity analysis, based on latin
hypercube sampling, is performed on ARTIMMUS. The results provide insight
into the relative importance of different cells, molecules, and their interactions
to the autoimmunity and regulatory aspects of EAE. The A test is once more
employed in the creation of a novel robustness analysis, capable of determining
the range of parameter values over which simulation behaviour is scientifically
consistent. This technique is applied to the parameters of ARTIMMUS, and
focus is given to those that were assigned arbitrary values. The implications
of these results being assigned inappropriate values are considered. Lastly, the
chapter considers how the implications of in silico results can be established in
terms of the real-world domain. To this end, several approaches in which sensi-
tivity and robustness analyses can be applied and considered in the context of
domain-specific knowledge concerning the biologically plausible ranges of param-
eter values are proposed. Research objectives 4 and 5 are addressed.

Contributions:

e A novel technique for establishing the relationship between the accuracy
of averaged simulation results, and the number of simulation executions
sampled in deriving them.

e The prediction that the type 2 deviation of the autoimmune response ob-
served during the recovery from EAE is a result of regulation of CD4Thl
cells by CD8Tregs, rather than an active driver of recovery.

e A novel robustness analysis technique, capable of determining the bound-
aries of simulation parameters at which scientifically significant deviations
in simulation behaviour occur.

e Several theoretical methods of application whereby this robustness analysis
technique, sensitivity analysis and domain specific knowledge can be used
to qualify the significance of in silico results in terms of the target domain.

Chapter 7: The ARTIMMUS simulation platform is used to perform novel experimen-
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tation into EAE, hence it further represents the CoSMoS results model. Firstly,
two experimental scenarios, being physiological recovery from autoimmunity and
hampered recovery through abrogation of the regulatory pathway, are examined
in detail to reveal the cellular dynamics which give rise to these system-level phe-
nomenon. Secondly, the CD8Treg mediated regulatory pathway is investigated
in silico, examining the effect of perturbing its efficacy. Lastly, ARTIMMUS is
employed in gaining insight into the role of the spleen in EAE. These results
are contrasted with those of a different laboratory that performed splenectomy
experiments on rats. The results are consistent, and demonstrate the generality
of ARTIMMUS: it may be used to gain insight into other EAE models than that
of the Kumar laboratory. This chapter addresses research objective 4.

Contributions:

e [n silico elucidation of the system-level cellular and compartmental dynam-
ics that give rise to autoimmunity and its recovery.
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e Prediction that there exists considerable redundancy in the regulatory ca-
pacity of the CD8Treg population to counter autoimmunity through the
apoptosis of CD4Th1 cells.

e Prediction that the primary role of the spleen in EAE models is as a site of
substantial Treg priming, and that hindered recovery from autoimmunity in
splenectomised mice is due to the substantially reduced numbers of Tregs
generated within the system.

Chapter 8: The conclusive chapter of this thesis. The contribution that explicit do-
main modelling, calibration and statistical methods make to establishing confi-
dence in in silico results being representative of real-world EAE are discussed.
An extension to the collaborative calibration procedure of chapter 5 that makes
use of established real-world experimental data in quantifying how well simula-
tion captures the target domain is proposed. The contributions of this thesis are
summarised, avenues of further work are presented, and final concluding remarks
are made. This chapter makes additional contribution to research objective 3.

Contributions:

e A theoretical technique for employing meta-heuristic search algorithms in
quantifying how faithful a simulation’s representation of the target domain
is, and the manner in which this can be used to develop simulations to
appropriate levels of abstraction.

From the above summary of this thesis is may be concluded that each of the five
research objectives identified to guide the thesis in achieving its aim have been met.
As such, it is concluded that this thesis has accomplished its aim.

8.3 Further work

The contributions of this thesis have revealed several avenues of potential further work,
which are explored in turn in the present section. Four broad strands of future work are
identified, relating to: the in silico investigation of EAE, section 8.3.1; the modelling of
complex systems using the UML, section 8.3.2; the use of meta-heuristic search in guid-
ing simulation development and calibration, section 8.3.3, and lastly the instantiation
and further investigation of robustness analysis methods, section 8.3.4.

8.3.1 Further investigation of EAE

This thesis has made use of ARTIMMUS, a simulation platform for the investigation
of EAE, in providing novel investigation and insight into the nature of the disease.
One prediction to arise from this in silico experimentation is that type 2 deviation
of the autoimmune response is a reactive result of regulatory activity by CD8Treg cells,
rather than a driving force in the abrogation of autoimmune behaviour. When DCs
that would ordinarily prime CD4Th2 cells are altered to prime only CD4Thl cells,
hence substantially revoking the ability of type 2 deviation to oppose autoimmune ac-
tivity, the changes to T cell system dynamics were marginal. Two more predictions
arising from ARTIMMUS are that there exists great redundancy in the ability of the
regulatory network to control autoimmune behaviour, and that the reason splenec-
tomised mice experience hampered recovery from autoimmune symptoms is due to its
priming of large populations of regulatory T cells: its removal substantially reduces
the number of Treg cells generated in response to autoimmunity. As highlighted in
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chapter 3, one means to promote confidence in simulation results is to verify in silico
predictions experimentally in the real-world system. This has not been performed as
clinical immunological investigation is outside the scope of this thesis, and relies on
the domain expert currently having the resources to allocate to such experimentation.
Wet-lab investigation into the hypotheses arising from ARTIMMUS is left as further
work.

In consultation with the domain expert, the following aspect of the real-world do-
main has been highlighted as a point of further work. Recent wet-lab experimentation
has revealed that effector CD8Treg cells express the CD200 molecule. Its corresponding
receptor, CD200R, is expressed on dendritic cells (DCs). CD200:CD200R. interaction
leads to the down-regulation of DC priming ability. Hence, the CD200 pathway rep-
resents a second regulatory pathway that may influence the onset and recovery from
autoimmunity in EAE. Figure 8.2 depicts the two regulatory pathways in EAE, the
induction of apoptosis in autoimmune-inducing CD4Thl cells by CD8Treg cells al-
ready represented in ARTIMMUS, and the suppression of DC priming capacity through
CD200:CD200R signalling by CD8Tregs. As may be appreciated from the diagram, it
is difficult to predict the exact impact of the CD200 pathway: reduced DC priming
ability can lead to the priming of fewer CD4Thl cells, responsible for mediating au-
toimmune behaviour, but it may also lead to the priming of fewer Treg cells responsible
for opposing autoimmune behaviour. It is proposed that the incorporation of this path-
way into ARTIMMUS, and the appropriate re-calibration of the simulation, can lead
to novel insight into the role of this pathway in EAE, and its potential as a target for
enhancing regulatory activity in mice.

Lastly, should this further work on investigating EAE through ARTIMMUS be
performed, the simulation will require additional development and re-parameterisation.
It is suggested that this be accompanied by calibration against additional experimental
scenarios. Although current calibration against two experimental scenarios is believed
to have guided the simulation towards a more faithful representation of the domain
than might have been achieved by considering only one, more scenarios would provide
further confidence in the simulation’s results.

8.3.2 Capturing complex systems with the UML

Chapter 4 has explored the applicability of the UML to the specification of EAE, a
complex autoimmune disease. This modelling case study has revealed usage pattens by
which the high-dimensional complexity of EAE can be decomposed and described on
two-dimensional diagrams. It has highlighted the inability of standard UML notation to
express certain aspects of the domain, such as mass-concurrency which escalates as the
disease progresses, the ambiguity in attempting to capture both an entity’s individual
history and the number of entities that may engage in a particular relationship at a
system-level, and stochastic and time-dependent behaviours.

Further work in modelling other immunological or complex system domains can re-
veal whether these findings relate only to the present case study in EAE, or are broader
issues in modelling complex systems in general. If found to be general issues, then ef-
forts can be made to define more formally the semantics underpinning the syntactic
notations and the patterns of usage identified and created in chapter 4. These contri-
butions can then form useful guidelines and support for others attempting to model
complex systems.
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Figure 8.2: Abstract representation of the cells and their interactions involved in the two
regulatory pathways of EAE: the induction of apoptosis in CD4Thl cells by CD8Tregs, and
the CD200:CD200R mediated suppression of DC priming capacity by CD8Treg cells. Red lines
indicate promotion of autoimmune behaviour, whereas blue lines indicate promotion of recovery
from autoimmunity. Only DCs and T cells are shown.

8.3.3 Meta-heuristic guided calibration and simulation development

The calibration procedure identified in chapter 5 makes extensive use of the domain
expert’s expertise to parameterise the simulation. In this manner, the simulation was
calibrated and aligned with the work of one particular lab, rather than taking param-
eter values from potentially unrelated sources and literature. However, the procedure
calls for a collaborative decision between modeller and domain expert to be made
with respect to altering either simulation parameters or amending the simulation’s me-
chanics. The ARTIMMUS simulation platform contains around 60 parameters which
were largely perturbed by hand and assessed by eye, though guided by modelling- and
domain-expertise, in aligning simulation behaviour with that of the real-world system.
It is felt that this process could benefit from automation and more objective assessment.
It is impractical to investigate large numbers of parameter perturbations manually, and
it is conceivable that certain simulation abstractions were unnecessarily considered in-
appropriate on the basis of inability to satisfactorily replicate real-world dynamics as
a result.

Meta-heuristic search techniques, introduced above in section 8.1.6, can aid param-
eterisation by more fully exploring parameter space. In fact, a natural consequence of
the application of the meta-heuristic guided development procedure described above
is that the points in parameter space necessary to replicate a variety of real-world be-
haviours should lie in proximity to one another. Hence, the framework can not only
indicate when a simulation’s development represents an appropriate abstraction of the
target domain, but will automatically deliver suitable parameter values as well. These
points in parameter space may not correspond exactly, in which case one could either
adopt one of them, select a point in parameter space that lies at their centre, or apply a
larger multi-objective meta-heuristic search to identify a parameter set that optimises
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the simulation with respect to all the real-world behaviours simultaneously.

A challenge for this approach, and of the meta-heuristic guided development frame-
work in general, is the lack of suitable data available in the literature against which
to calibrate the simulation. This was noted in chapter 5, and was a motivation for
the incorporation of the domain expert in the process. However, if the domain ex-
pert is able to subjectively assess whether an observed simulation behaviour matches
their intuition of the real-world system, one would hope that they can also describe
the criteria against which they are making this assessment. This could form the basis
for the fitness evaluation functions required by meta-heuristic algorithms, and whilst
still somewhat subjective, it is more objective than relying purely on intuition though
subsequent iterations of the calibration procedure of chapter 5.

Hence, further work is proposed to investigate the integration of the aforemen-
tioned meta-heuristic guided development with the calibration approach of chapter 5,
and with the CoSMoS process. The meta-heuristic guided development process can
better explore parameter space, and more objectively indicate whether the simulation
appropriately captures the real-world domain. Where this is found to not be the case,
collaborative consultation between modeller and domain expert can lead to suggestions
for how to best amend the simulation, and as indicated in section 8.1.6 above. It is
possible that the meta-heuristic guided development process can suggest areas on which
to focus. This leads to an iteration in the CoSMoS process; the domain is explored,
domain model diagrams are amended, the simulation platform is altered and finally
re-assessed.

A second strand of further work concerns the application of the meta-heuristic
guided development process itself. The ability of this process to indicate whether
the simulation appropriately abstracts the target domain rests on the ability of meta-
heuristic search to locate points in parameter space that best align simulation behaviour
with that of the real-world. However, as noted in section 8.1.6, meta-heuristic search
techniques do not necessarily reveal the global optimum solution, and can converge
on local optimum. This can mislead the overall process: a simulation that does ap-
propriately abstract the target-domain may be incorrectly assessed as not doing so
because the search processes converge on local optima that lie far apart. There are a
number of potential solutions to this problem. Firstly, certain meta-heuristic search
algorithms, such as differential evolution, naturally permit the specification of upper
and lower boundaries in which to constrain the search process [Storn & Price 1995].
These boundaries could be used to constrain search to biologically-plausible parameter
ranges. Secondly, certain meta-heuristic search algorithms, such as genetic algorithms,
maintain a population of candidate solutions [Luke 2009]. These could be seeded with
the results of previous optimisations over other experimental scenarios. Hence, the
search process is constrained to find local optima that are at least biologically plausi-
ble, and encouraged to converge on the same optima, if appropriate. Lastly, the degree
to which a simulation faithfully captures the complexity of the real-world domain is
encoded in the proximity of points in parameter space resulting from the optimisation
process. It seems unlikely that these points will all lie exactly atop one another. Inves-
tigation will be required to ascertain the relationship between a satisfactorily faithful
representation, and the proximity of these points to one another. This thesis has pro-
posed the meta-heuristic search guided development process, but has not applied it nor
investigated the technologies necessary to achieve it. These avenues of research are left
as further work.
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8.3.4 Instantiation and further investigation of robustness analysis
techniques

Chapter 6 saw the creation of a novel robustness analysis technique, capable of indi-
cating the extent to which parameter values can be perturbed before a scientifically
significant deviation in simulation behaviour occurs. It was used to identify these pa-
rameter boundaries in the ARTIMMUS simulation platform. Section 6.6 then proposed
three applications of this technique that could qualify the significance of simulation de-
rived results in terms of the original domain; separating those results arising through
underspecified parameter values from those that are genuinely representative of the
domain. The application of these techniques to the case study in EAE was considered
outside the scope of this thesis. The application of these techniques to a case study
where more data on biologically plausible parameter values are known, and hence an
evaluation of their contribution to integrating in silico results with the simulation’s
target domain, is left as further work.

A second avenue of further work regarding the application of the robustness analysis
is as follows. The three approaches of application for the robustness analysis identified
in section 6.6 depend upon one having a firm idea of biologically plausible ranges for
parameter values. In many domains this may not be the case, immunologists may
be able to quantify a rough probability distribution describing the likely value for a
parameter, but might not be willing to provide firm boundaries for its likely value. The
application of these robustness analysis techniques in the presence of these distributions
of values is worthy of investigation, since it would make the approach more applicable
to a wider range of problem domains.

8.4 Concluding remarks

The field of immunology, and the bio-medical industries in general, have made tremen-
dous advancements over the last 150 years. The value of these fields is well appreciated
by society, delivering improved well-being and longer lives.

Research methods used in immunology have, likewise, made tremendous advance-
ments. Modern assays can now examine molecular expression by cells and DNA tran-
scription events, leading to data concerning the genes, proteins and events influenc-
ing susceptibility and development of disease. In wivo imaging techniques can ex-
amine cellular interactions at incredibly small scales. However, there is a growing
sentiment within immunology that these low level reductionist approaches, and vast
quantities of data that they produce, alone cannot lead to a coherent understand-
ing of how low-level system components and interactions lead to disease and recovery
[Cohen & Harel 2007, Germain et al. 2011].

Immunologists are increasingly looking to computational modelling and simulation
methods to aid in integrating, animating and reasoning about the data that they collect
from the wet-lab. These methods help in providing an oversight of a system, allow for
the formulation and evaluation of hypotheses in the context of established data, and
identifying potentially fruitful avenues of further research.

However, a review of the growing literature on modelling and simulating immuno-
logical systems reveals that the question of simulation validity is not well appreciated
in the field. Computational models and simulations are highly abstract representations
of the systems that they intend to capture. They are man-made artifacts, and results
of in silico experimentation are not necessarily representative of the real-world system.
One example where two simulations of the same disease created in the same laboratory
have provided directly contradictory results has been highlighted in section 3.5.5 of this
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thesis, it is not unreasonable to assume that there may exist many more. For computa-
tional techniques to be genuinely insightful the means to determine that a simulation is
a faithful representation of its target domain, or at least ascertain the extent to which
in silico results may be assumed representative, must be established.

The CoSMoS project has identified this need, and is actively researching methods
by which to address it. Their CoSMoS process underpins simulation-based investiga-
tion with rigorous and explicit domain modelling, promoting close collaboration with
domain experts as a means of verifying that the work conducted in silico is a fair
representation of the real-world system. Further, these models make simulation-based
investigation transparent to the wider community, allowing others to assess the as-
sumptions underpinning a simulation, and hence how much trust to hold in its results.

It is the position of this thesis that whilst domain modelling is a valuable and
necessary means of arguing confidence in simulation based work, it alone is not suffi-
cient. If a simulation is to be accepted as a faithful surrogate of some target system,
then it must be demonstrated as such. The implications of underspecified biological
values must be understood in the simulation domain, and results from the simulation
domain must be appropriately interpreted in the real-world domain. This thesis has
investigated statistical methods that build towards this goal.

The benefits that computational methods can bring to immunological research are
compelling. Far sighted researchers are proposing ‘personalised medicine’, computa-
tional artifacts that operate at the level of the individual. Hence, an individual’s specific
immunological history and current symptoms can be considered in silico when selecting
the best strategy for treatment for that individual [Hood et al. 2004, An et al. 2009].
Simulating specific individuals is a formidable goal, and one imagines that it will some-
day be realised. However, the challenges of simulation validity articulated in this thesis
must be met before this can be accomplished. Simulation can have as much potential to
mislead as it does to inform. If it is to become an integral component the immunolog-
ical research of the future, then we must have confidence that its results are insightful
and trustworthy.
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Appendix A

Primer on UML, and Additional
Materials for EAE Domain
Model

The present appendix chapter provides additional materials on modelling EAE. It ac-
companies chapter 4, the domain model of experimental autoimmune encephalomyelitis.
Section A.1 provides an introduction to the UML’s class, activity and state machine
diagrams, which are used extensively in creating the domain model of EAE. Section A.2
provides additional diagrams that form part of the EAE domain model.

A.1 UML notations

The domain model of EAE, presented in chapter 4 makes use of UML class diagrams,
activity diagrams and state machine diagrams. The present section provides an intro-
duction to these UML diagrammatic notations, exploring through example the standard
syntax and semantics that are used in the EAE domain model. Departures from stan-
dard UML notation in modelling EAE are described in the sections where they are
used. For additional information, the reader is referred to [Fowler 2004].

Section A.1.1 describes UML class diagrams, section A.1.2 explores activity dia-
grams, and lastly section A.1.3 describes state machine diagram notation.

A.1.1 Class diagrams

Figure A.1 shows an example UML class diagram, demonstrating the various concepts
and relationships used in the present thesis. Classes represent logical entities in the
domain being modelled. These entities may be instantiated, constituting individuals
which may carry their own state. The relationships that instances of particular classes
have with one another are depicted by lines connecting classes together. The class to
which an instance belongs is referred to as its ‘type’.

Relationships may be named, as demonstrated by role name R. Role names may be
placed at both ends of a relationships, but are optional. It is customary to provide at
least one role name. In the present example, instances of A share relationship R with
instances of class B. The number of instances that engage in a particular relationship
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R2
[e F—H=e] [F]

Figure A.1: Example UML class diagram.

may be indicated through ‘multiplicities’, which are again optional. In the present
example, every single instance of type A is associated with many instances of type B,
indicated by the symbol *%, whereas every single instance of type B is associated with
exactly one instance of type A. The relationship between classes A and B is an example
of an ‘association’ relationship; the two classes are related but one does not ‘own’ the
other.

A second type or relationship is termed ‘composition’, and is demonstrated by the
relationships held between class B and classes C' and D. They are used to indicate
that instances of some class are fundamental components of instances of some other
class. Composition relationships have some restrictions not applicable to to standard
association relationships. Firstly, a particular instance may engage in only a single
composition. Hence, an instance of B may be a fundamental component of either
an instance of C' or an instance of D, but not both. Secondly, composition entails
that the destruction of an instance entails the destruction of all its components. If an
instance of B is a component of an instance of C, and the instance of C is destroyed,
so too is the instance of B. Composition relationships may also be given role names
and multiplicities, though these are again optional. In the example, an instance of C
may be composed of either a single instance, or no instances B. On the other hand,
instances of D may be composed of any number of instances of B.

A third type of relationship is termed ‘generalization’. These relationships may
have role names, but do not have multiplicities. Generalization is used to indicate
that some class is everything that another class is, but may have additional features.
For example, classes FE and F have all the features that class D does, including the
composition relationship with B. In addition, class E shares relationship R2 with class
G, whereas class F' does not. From an instance of class B’s perspective, it does not
care whether the instance of D that it may be associated with is really an instance of
D, or E or F.

A.1.2 Activity diagrams

UML activity diagrams, an example of which is depicted in figure A.2, offer a means to
specify the flow of events. ‘Activities’ are indicated in rounded-corner rectangles, and
may describe any abstract notion. One activity typically leads to another, as indicated
by the arrow transitions. The solid circle indicates the initial node, it is from here that
interpretation of the activity diagram commences. The solid circle enclosed within
another circle indicates the final node, at which point interpretation terminates.

In the example, the first activity to occur is A. This leads to activity B. Activities
may be undertaken by entities or parties, and this responsibility is indicated by dotted
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Figure A.2: Example UML activity diagram.

lines names ‘swim lanes’. In the present example, X is responsible for undertaking
activity A, whilst Y is responsible for undertaking all other activities indicated.

Activity diagrams allow for activities to be undertaken in parallel. Completion of
activity B leads to activities C' and D, which are undertaken in parallel, as indicated
by the solid black bar, termed a ‘fork’ relationship. When both C' and D complete, the
‘join’ relationship leads to the triggering of E. Both C' and D must complete before £
commences.

E represents a decision relationship. If condition Z holds true, then F leads to the
final state. Otherwise activity F' is undertaken, which in turn also leads to the final
state.

A.1.3 State machine diagrams

®
(2]

[G1]/Actl

C
do/ Act2

T T2

@—( =)

(5 o]
G

.

[G2]

Figure A.3: Example UML state machine diagram.

The dynamics of a logical entity in the model may be depicted using a UML state
machine diagram. These diagrams depict the states that such an entity may exist in.
State machine diagrams are typically drawn for the classes in the domain model (see
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section A.1.1 above). Instances of a class have their own state, as described using a
state machine diagram, and two instances of the same class need not be in identical
states.

Figure A.3 depicts an example state machine diagram. The solid black circle repre-
sents the start state, and the transition from it indicates that upon creation an instance
exists in state B. States may be encapsulated: state A is a composite state, whilst the
instance exists in states B, C' or D, it is still in state A.

Transitions between states are indicated by arrows. They may be labelled with a
name, as with the transition from D to E. Transitions may be guarded, to indicate that
some condition must hold true before the transition may occur. The transition from B
to C'is guarded by condition GI. Furthermore, transitions may entail that some action
be undertaken, which may have consequences elsewhere in the system. On transitions,
actions are indicated by the ¢/’ symbol, and in the example the transition from B to
C is accompanied by action Actl. Names, guards and actions are all optional.

Whilst in a particular state, an entity may also perform actions. This is indicated
by the syntax ‘do/’. Whilst in state C, an instance in this example performs action
Act2.

Sequences of states may be orthogonal to one another, and this is indicated by
dotted lines. In the example, state D is orthogonal to B and C. An instance in state
A is also in state D, regardless of whether it is in state B or C.

Any transition leaving a composite state requires that all other sub-states also be
left. In the example, undertaking transition 71 entails that the entity is no longer in
state D, and undertaking transition T2 entails that the entity is no longer in state C.
If T'1 is taken, than the entity does not enter E, whilst it does if T2 is taken. T1 leads
to the final state, in which case the instance is destroyed.

Lastly, states may be decomposed into more complex states, as with state D in
the example. Decomposition is indicated a by symbol comprising two small circles
connected by a line. The expansion of a state is depicted on a separate composite state
in which the name appears in italics. In the example, an entity entering state D also
enters state F. It may transit to G if condition G2 is true, and may transit back to F'
by taking transition T3. All the while the instance is also in state D.

A.2 Additional domain model diagrams

The present section details additional diagrams of the EAE domain model, presented
in chapter 4. Section A.2.1 presents a class diagram of the establishment of requlation
perspective, and section A.2.2 details a class diagram of the type 2 deviation of the
autoimmune response perspective.

A.2.1 Class diagram of establishment of regulation perspective

Figure A.4 depicts a class diagram describing the static relationships between entities
involved in the instigation and perpetuation of the regulatory immune response. The
response is instigated through the phagocytosis of CD4Th (including both CD4Thl
and CD4Th2) cells by DCs. Any particular DC may phagocytose between zero and
many CD4Th cells over the course of its lifespan. A CD4Th cell is phagocytosed by
exactly one DC. This prompts the DC to express MHC-ILI:Fr3. Qa-1:CDR1/2 complexes
are expressed only after a DC has been licensed by a CD4Treg, as discussed below.
Expression is only possible on DCs that have phagocytosed a least one CD4Th1 cell,
in which case many such complexes are expressed. Otherwise none are. A MHC-II:Fr3
complex is expressed by exactly one DC, and the same holds for Qa-1:CDR1/2 cells.
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Figure A.4: UML class diagram depicting the relationships between entities of the domain
model involved in the instigation and perpetuation of the regulatory immune response.

An MHC-II:Fr3 complex can bind with at most one CD4Treg cell at a time, but
over the course of its existence may bind with many different CD4Treg cells. Such
binding events deliver signal 1 to CD4Treg cells. A CD4Treg can receive signal 1 at
most once. The same relationships hold for Qa-1:CDR1/2 complexes and CD8Treg
cells.

Having received signal 1, both CD4Treg and CD8Treg cells can receive signal 2 if the
DC to which they are bound expresses co-stimulatory molecules. A DC must be induced
into expressing co-stimulatory molecules, and this only occurs upon the perception of a
sufficient concentration of type 1 cytokines. A DC is only induced into co-stimulatory
molecule expression at most once, after which these molecules are expressed for the
remainder of its mature lifespan. Co-stimulatory molecule expression is induced by
the simultaneous perception of sufficient concentration of type 1 cytokine, once a DC
is mature. Perception by cells does not destroy cytokine molecules, and a particular
type 1 cytokine may be perceived by any number of DCs during its existence. When
and if expression is induced, a DC will express many co-stimulatory molecules. Co-
stimulatory molecules are modelled in such a manner that a single instance is sufficient
to deliver signal 2 to a T cell upon binding. As with signal 1, T cells can only receive
signal 2 at most once, and they may not receive it at all during their lifespans.

Upon receipt of both signals 1 and 2, both CD4Tregs and CD8Tregs enter their
proliferative cycles. During this time they may spawn any number of naive daughter
T cells, though only one cell may be spawned at a time. A T cell has only one parent
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T cell.

Proliferating T cells differentiate into effector cells once their proliferative cycle
completes. An effector CD4Treg cell licenses a DC for Qa-1 expression upon binding
with MHC-II:Fr3 complexes as expressed by that DC. This binding also locally activates
the CD4Treg. A DC can be licensed for Qa-1 expression at most once, after which time
it may express Qa-1 molecules for the remainder of its lifespan as a mature cell. This
does not however prevent any number of effector CD4Tregs binding with a particular
DC, and hence deriving local activation. A CD4Treg may license any number of DCs.

Both CD8Treg and CD4Treg cells secrete type 1 cytokines upon being locally ac-
tivated. They may be locally activated any number of times after their differentiation
into effector cells. If locally activated, these cells secrete many type 1 cytokines. A
particular type 1 cytokine molecule can only be secreted from one source, in this case
either a CD4Treg or a CD8Treg (other sources not indicated on the diagram).

Effector CD8Treg cells may bind with Qa-1:CDR1/2 complexes as expressed by
CD4Th1 cells, a binding from which they derive local activation. Following this binding,
a CD8Treg cell will induce apoptosis in the CD4Thl cell. A CD4Th1 cell can be induced
into apoptosis by a CD8Treg at most once, and a CD8Treg cell can induce apoptosis
in any number of CD4Thl1 cells.

A.2.2 Class diagram of type 2 deviation of the autoimmune
response perspective

Figure A.5 denotes a class diagram of the cells and molecules involved in type 2 devia-
tion, and indicates relationships between these entities, and the numbers of entities that
engage in such relationships over time. The central component of type 2 deviation of
the autoimmune response is the DC, which primes T cells populations. Any particular
T cell primes only on a single DC at a time. In the majority of cases a T cell entering
proliferation will complete this cycle whilst bound to the same DC, however should
the DC expire, a proliferating T cell will continue migratory behaviour until either
differentiating into an effector cell, or binding to another DC expressing MHC:peptide
complexes for which it is specific. If a DC is not presenting MHC:peptide complexes
then it cannot prime T cells, otherwise it may prime many.

The expression of MHC:peptide complexes requires that a DC have phagocytosed
either a neuron for expression of MBP peptides, or a CD4Th cell for the expression
of Fr3 and CDR1/2 peptides. Any particular apoptotic cell must be phagocytosed by
exactly one APC (CNS macrophages are not indicated on figure A.5, since they are
not directly related to type 2 deviation of the immune response). The phagocytosis of
Treg cells is not indicated on the diagram since they contain no peptides pertaining to
EAE.

A pre-requisite for priming of T cells is that the DC express co-stimulatory
molecules, a single instance of which is modelled here as being sufficient to induce
signal 2 in a single T cell at a time. Co-stimulatory molecule expression is induced
in DCs through the perception of type 1 cytokine. Many such cytokine molecules are
required for this induction. A type 1 cytokine molecule is secreted by only one cell,
which is either a DC, a locally activated effector CD4Thl, CD4Treg (not shown on
figure A.5) or CD8Treg cell.

An immunogenic DC is either type 1 or type 2 polarized, and this influences the
polarization adopted by CD4Th cells that it primes. Type 1 polarized DCs secrete
type 1 cytokine, whereas type 2 polarized DCs do not secrete any cytokines. The
polarization that a DC adopts is based on the balance of type 1 versus type 2 cytokine
in its immediate vicinity upon maturation. Cytokines molecules are not destroyed
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Figure A.5: UML class diagram depicting the relationships between entities of the domain
model that lead to the type 2 deviation of the autoimmune response.

following their perception by cells, and as such they may influence anywhere between
zero and many cells.

Neurons are indirectly induced into apoptosis by CD4Th1 cells, through the secre-
tion of type 1 cytokine and stimulation of CNS macrophages. Owing to this indirect
relationship, a single neuron may be induced into apoptosis through the actions of at
least one CD4Thl cell, and a single CD4Th1 cell is responsible for inducing apoptosis
in any number of neurons.

235






Appendix B

Additional Materials on
Calibrating ARTIMMUS

The present appendix chapter provides additional materials on ARTIMMUS and its
calibration. Section B.1 provides a full listing of the parameters in ARTIMMUS, noting
their name, type, default calibrated values, and function. Section B.2 provides details
on how each parameter was calibrated.

B.1 Simulation platform parameters

The following table, table B.1, is a comprehensive list of all the parameters to the
ARTIMMUS simulation platform. It lists their name, type, default value following cal-
ibration, and a note describing its function. Parameters are grouped according to their
function; for example, the names of all parameters relating to T cells begin with the
text “T'Cell..” Some parameters are overridden by others, for example, TCell_Prolif-
erationMean applies to all T cells except for CD4Th2 cells, for which the parameter
value is provided by Th2Polarization_proliferationMean. The prefixes that parameter
names are assigned are related to the abstract and concrete classes in the simulation
platform’s design, indeed it is in these classes that the parameters are held in the sim-
ulation platform. As such, parameters relating to abstract classes may have influence
over several concrete cell classes, as indicated by the class diagram of figure 5.1. Hence,
parameters starting with the text “APC_" apply to both CNS macrophages and DCs.
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Table B.1: The standard parameters of the ARTIMMUS simulation platform. The table details
their types, default values (following calibration), and what they parameterise. Note that to
aid transparency parameter names relate to their function, and are presented in a hierarchical
manner. For example, the first two parameters in the table are APC_immatureDurationMean
and APC_immatureDurationStdDev. R refers to the real numbers, IN refers to the natural
numbers. Percentages are indicated in the range 0.0 to 1.0, indicated by the notation (% /

100). 2 x IN indicates even numbers.

] Parameter details Description
APC
immatureDurationMean The mean of the normal distribution of times
type: 0.0 <R from which the duration that an APC spends

default: 48.0 hours

in an immature state before maturing is
selected from.

immatureDurationStdDev
type: 0.0 <R
default: 24.0 hours

2x the standard deviation of the normal
distribution of times from which the duration
that an APC spends in an immature state
before maturing is selected from.

timeOfDeathMean The mean of the normal distribution of times
type: 0.0 <R from which an APCs mature lifespan is
default: 110.0 hours selected from.

timeOfDeathStdDev 2x the standard deviation of the normal
type: 0.0 <R distribution of times from which an APCs

default: 48.0 hours

mature lifespan is selected from.

probabilityPhagocytosisToPeptide
type: 0.0 <R <1.0
default: 0.02 (% / 100)

The probability (scaled between 0.0 and 1.0)
that the phagocytosis of a cell by an APC will
lead to the derivation of presentable peptides.

CD4THelper

diff00
type: 0.0 <R <1.0
default: 0.05 %/100

The probability (scaled between 0.0 and 1.0)
that a CD4Th cell will adopt a type 1
polarization if type 1 cytokine comprises less
than 80% of the cytokine milieu in the grid
space where the cell resides.

diff08
type: 0.0 <R <1.0
default: 0.85 (%/100)

The probability (scaled between 0.0 and 1.0)
that a proliferating CD4Th cell will adopt a
type 1 polarization if type 1 cytokine
comprises 80% or more of the cytokine milieu
in the grid space where the cell resides.

CD4Treg
typelSecretedPerHour WhenA ctivated The quantity of type 1 cytokine secreted per
type: 0.0 <R hour by locally activated effector CD4Treg
default: 10.0 molecules cells.

CD8Treg
typelSecretedPerHour WhenA ctivated The quantity of type 1 cytokine secreted per
type: 0.0 <R hour by locally activated effector CD8Treg

default: 10.0 molecules

cells.

cd8TregToCD4ThelperSpecificity DropOff
type: 0.0 <R <1.0
default: 1.0 (%/100)

The probability (scaled between 0.0 and 1.0)
that a successful binding between an effector
CD8Treg and a Qa-1 expressing CD4Th cell
will lead to the former inducing the apoptosis
of the latter.

CNSCell
apoptosisTNFaThreshold The threshold quantity of TNF-« above which
type: 0.0 <R a neuron occupying the same grid space is

default: 5.0 molecules

induced into apoptosis.

Continued on Next Page. ..
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Table B.1 — Continued

’ Parameter details \ Description
Circulation

width . . . .

type: 2 x N The width of the circulation compartment in

default: 62 grid spaces terms of grid spaces

f;;)gel_ltz <N The height of the circulation compartment in
' . f gri .

default: 40 grid spaces terms of grid spaces

timeToCrossOrgan . .

type: 0.0 < R The average time required for a T cell to cross

default: 5.0 hours

the circulation compartment.

default: 20.0 hours

CLN
width i i
type: 2 x IN The width of the CLN compartment in terms
default: 50 grid spaces of grid spaces.
?;;)gel.lg N The height of the CLN compartment in terms
default: 50 grid spaces of grid spaces.
ElszgCOr ZSSiE({) rgan The average time required for a naive T cell to
d}:e ?at;lt'. 120 hours migrate through the CNS compartment.

CNS
width i i
typer 2 x IV The width of the CNS compartment in terms
default: 50 grid spaces of grid spaces.
f;:)gel-th N The height of the CNS compartment in terms
default: 50 grid spaces of grid spaccs.
E;?gig%risil{organ The average time for an apoptotic T cell to

migrate through the CNS compartment.

CNSMacrophage

basalMBPExpressionProbability
type: 0.0 <R < 1.0
default: 0.2 (% / 100)

The probability that a newly created CNS
macrophage will express MHC-II:MBP

complexes.

typel RequiredForActivation
type: 0.0 <R
default: 2.5 molecules

The threshold quantity of type 1 cytokine
above which a CNS macrophage occupying the
same grid space is induced into TNF-«
secretion.

tnfaSecreted PerHour WhenStimulated
type: 0.0 <R
default: 100.0 molecules

The quantity of TNF-« secreted per hour by
an activated CNS macrophage.

phagocytosisProbabilityImmature
type: 0.0 <R <1.0
default: 0.7 (% / 100)

The probability that contact between an
immature CNS macrophage and an
apoptotic cell will result in the former
phagocytosing the latter.

phagocytosisProbabilityMature
type: 0.0 <R < 1.0
default: 0.3 (% / 100)

The probability that contact between a mature
CNS macrophage and an apoptotic cell will
result in the former phagocytosis the latter.

DendriticCell

typel RequiredForActivation
type: 0.0 <R
default: 2.0 molecules

Continued on Next Page. ..

The minimum quantity of type 1 cytokine
required for the induction of co-stimulatory
molecule expression in a mature DC occupying
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Table B.1 — Continued

Parameter details

|

Description

the same grid space.

phagocytosisProbabilityImmature

type: 0.0 <R <1.0
default: 1.0 (% / 100)

The probability that contact between an
immature DC and an apoptotic cell will result
in the former phagocytosing the latter.

phagocytosisProbabilityMature

type: 0.0 <R <1.0
default: 0.3 (% / 100)

The probability that contact between a mature
DC and an apoptotic cell will result in the
former phagocytosing the latter.

typelSecretedPerHourImmunized

type: 0.0 <R
default: 10.0 molecules

The quantity of type 1 cytokine secreted per
hour of an immunogenic DC.

cytokineType2PolarizationRatio

type: 0.0 <R <1.0
default: 0.17 (% / 100)

The minimum proportion of type 2 cytokine
comprising the cytokine milieu required for the
adoption of a type 2 polarization in a DC
occupying the same grid space.

DendriticCellMigrates

lengthOfTimeMovingFollowingMigration

The length of time that a migratory DC is

type: 0.0 <R motile for after migrating into a lymphoid
default: 3.5 hours compartment from its original compartment.
Molecule
molecularHalflife
type: 0.0 <R The half life of secreted cytokines in hours.
default: 30 min
decayThreshold The threshold concentration of cytokine in a
type: 0.0 <R grid space below which the concentration is set
default: 0.01 to 0.0.
Simulation
immunizationLinearFreq The periodicity with which immunization DCs
type: 0.0 <R are inserted into the SLO compartment, whilst

default: 6.0 hours

this process persists.

immunizationLinearInitial
type: IN
default: 14 cells

The number of immunization DCs placed in
the SLO compartment at time zero (time at
which immunization for EAE is administered).

immunizationLinearDCO
type: 0.0 <R
default: 2.0 cells

The number of immunization DCs placed in
the SLO compartment as a result of
immunization for EAE decreases linearly over
time. This parameter dictates the number at
time zero.

immunizationLinearGradient
type: R < 0.0
default: -0.005 cells/hour

The number of immunization DCs placed in
the SLO compartment as a result for
immunization for EAE decreases linearly over
time. This parameter dictates the gradient of
linear decrease.

S;pmec ﬁ4Th rF.he bat".al number of naive CD4Th cells in the
default: 40 cells simulation.

f;lpme:Cﬁlereg The l.)asal I}umber of naive CD4Treg cells in
default: 30 cells the simulation.

numCD8Treg The basal number of naive CD8Treg cells in

Continued on Next Page. ..
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B.1. Simulation platform parameters

Table B.1 — Continued

Parameter details \ Description
type: IN the simulation.
default: 30 cells
numCNS
type: IN The number of neurons in the simulation.
default: 500 cells
f;;;CﬁSMacrop hage The number of CNS macrophages in the
default: 75 cells simulation.
numDC The number of DCs permanently residing in
type: IN the CLN and SLO compartments in the
default: 10 cells simulation.
numBDCCNS The number of migratory DCs in the CNS
type: IV compartment at the start of the simulation
default: 40 cells P ’
f;;Z_Dﬂi'Sp leen The number of DCs permanently residing in
default: 100 cells the spleen compartment.
SLO
width . .
type: 2 x N The width of the SLO compartment in terms
default: 50 grid spaces of grid spaces.
f;;gel?t The height of the SLO compartment in terms
default: 50 grid spaces of grid spaces.
timeToCrossOrgan The average time required for a naive T cell to
type: 0.0 <R migrate through the SLO
default: 12.0 hours compartment.
Spleen
width . .
type: 2 x IN The width of the SLO compartment in terms
default: 62 grid spaces of grid spaces.
f;;gel.th <« N The height of the SLO compartment in terms
default: 40 grid spaces of grid spaces.
:;r;legC(’)rissROrgan The average time required for a naive T cell to
default: 55 hours migrate through the Spleen compartment.
TCell
apoptosisNaiveMean The mean of the normal distribution of times
type: 0.0 <R from which the durations that naive T cells

default: 30.0 hours

can survive without receiving MHC:peptide
stimulation are selected from.

apoptosisNaiveStdDev
type: 0.0 <R
default: 17.0 hours

2x the standard deviation of the normal
distribution of times from which the durations
that naive T cells can survive without receiving
MHC:peptide stimulation are selected from.

apoptosisPartialMaturityMean

type: 0.0 <R
default: 12.0 hours

The mean of the normal distribution of times
from which the durations that partially
activated T cells can Survive without receiving
MHC:peptide stimulation are selected from.

apoptosisPartialMaturityStdDev

type: 0.0 <R
default: 6.0 hours
Continued on Next Page. ..

2x the standard deviation of the normal
distribution of times from which the durations
that partially activated T cells can survive
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Table B.1 — Continued

’ Parameter details

|

Description

without receiving MHC:peptide stimulation
are selected from.

AICDMean
type: 0.0 <R
default: 60.0 hours

The mean of the normal distribution of times
from which the durations that effector T cells
can survive for, given frequent local activation,
are selected from.

AICDStdDev
type: 0.0 <R
default: 56.0 hours

2x the standard deviation of the normal
distribution of times from which the durations
that effector T cells can survive for, given
frequent local activation, are selected from.

becomeEffectorMean The mean of the normal distribution of times
type: 0.0 <R from which the durations that T cells spend in
default: 60.0 hours proliferating states are selected from.
becomeEffectorStdDev 2% the standard deviation of the normal

type: 0.0 <R distribution of times from which the durations

default: 56.0 hours

that T cells spend in proliferating states are
selected from.

proliferationMean
type:0.0 < R
default: 19.2 hours

The mean of the normal distribution of times
from which the durations required for
proliferating T cells to produce naive daughter
cells are selected from. This parameter does
not apply to CD4Th2 cells.

proliferationStdDev
type: 0.0 <R
default: 9.6 hours

2x the standard deviation of the normal
distribution of times from which the durations
required for proliferating T cells to produce
naive daughter cells are selected from. This
parameter does not apply to CD4Th2 cells.

Ee]lzl.Delrgrﬁgsp ace The maximum number of T cells that fit into a
d}élf?al.ll £ 7 colls single simulation grid space.
specificity UpperLimit The upper limit of specificities that T cells

type: 0.0 <R <1.0
default: 0.9 %/100

may have for their cognate MHC:peptide
complexes.

specificity LowerLimit
type: 0.0 <R <1.0
default: 0.5 %/100

The lower limit of specificities that T cells may
have for their cognate MHC:peptide
complexes.

timeLocalActivationInducedEffector...
...FunctionFor

type: 0.0 <R

default: 48.0 hours

The length of time that effector T cells survive
for following each local activation event, before
entering apoptosis through neglect.

timeLocalActivationDelay

The length of time that must elapse following

type: 0.0 <R differentiation into effector cells before a T cell

default: 10.0 hours is susceptible to local activation.
Thi1Polarization

mhcUnExpressionDelayMean The mean of the normal distribution of times

type: 0.0 <R from which the durations of Qa-1 expression

default: 8.0 hours

by effector CD4Th1 cells are selected from.

mhcUnexpressionDelayStdDev
type: 0 <R
default: 2.0 hours

2x the standard deviation of the normal
distribution of times from which the durations
of Qa-1 expression by effector CD4Thl cells
are selected from.

typelSecretedPerHour WhenA ctivated
type: 0.0 <R
Continued on Next Page. ..

242

The quantity of type 1 cytokine secreted per
hour by locally activated effector CD4Thl




B.2. Calibration of simulation parameters

Table B.1 — Continued

’ Parameter details \ Description
’ default: 100.0 molecules \ cells.
Th2Polarization
proliferationMean The mean of the normal distribution of times
type: 0.0 <R from which the durations required for
default: 28.8 hours proliferating CD4Th2 cells to produce naive
daughter cells are selected from.
proliferationStdDev 2x the standard deviation of the normal
type: 0.0 <R distribution of times from which the
default: 19.2 hours durations required for proliferating CD4Th2
cells to produce naive daughter cells are
selected from.
type2SecretedPerHour WhenActivated The quantity of type 2 cytokine secreted per
type: 0.0 <R hour by locally activated effector CD4Th2
default: 100.0 molecules cells.

B.2 Calibration of simulation parameters

This section gives an overview of how the parameters of the simulation, listed above in
table B.1, were assigned their default parameter values. Some parameters were assigned
arbitrary values, whereas others are based on domain-specific knowledge or literature.
The values of some parameters were adjusted in order to align simulation behaviour
with that observed in vivo. An overview of the calibration procedure is provided in
section 5.3.2. The present section provides more detail on which parameters were
calibrated, and how. It is not, however, intended as a comprehensive report of the
order in which parameters or simulation behaviours were addressed, or the manner in
which their exact values were altered.

The compartmental dimensions, parameterised by Circulation_height, Circulation_-
width, CLN_height, CLN_width, CNS_height, CNS_width, SLO_height, SLO_width,
Spleen_height and Spleen_width are all assigned arbitrary values of 50, with the follow-
ing exception. The height and width of the circulation and spleen compartments are
set to permit a cell to migrate through the compartment within the required time, yet
maintain an area close to that of other parameters, being 2500 (50 x 50) grid spaces.

The time for a T cell to migrate through each compartment is parameterised by
the following: Clirculation_timeToCrossOrgan, CLN_timeToCrossOrgan, CNS_timeTo-
CrossOrgan, SLO_timeToCrossOrgan and Spleen_timeToCrossOrgan. The values for
the CLN, SLO and spleen are derived from immunological literature [Kindt et al. 2007].
The value for the CNS was arbitrarily picked to be greater than the migration time
for any other compartment. Although immunological literature indicates that the mi-
gration time for the circulatory compartment should be 30 minutes, it is felt that a
figure of 30 min substantially biases T cell migrations towards compartments directly
involved in EAE, since the simulation platform represents only compartments that are
integral to EAE. Hence the migration time is arbitrarily increased to 5 hours.

The parameters Simulation.numCD4Th, Simulation.numCD4Treg and Simula-
tion_.numCD8Treg dictate the basal number of T cells in the simulation. Their fig-
ures are arbitrarily picked, though the ratios between them are based on the domain
expert’s input. Simulation.numDC is assigned an arbitrarily small value, whilst Sim-
ulation_numDCSpleen is assigned an arbitrary a value significantly larger than Simula-
tion_.numDC.
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B. ADDITIONAL MATERIALS ON CALIBRATING ARTIMMUS

Immunization for EAE in the simulation is parameterised through four parameters:
Simulation_immunizationLinearInitial, Simulation_immunizationLinearDCO0, Simula-
tion_immunizationLinearGradient and Simulation_immunizationLinearFreq. Simula-
tion_immunizationLinearlInitial is arbitrarily picked. The remaining three are set such
that the peak of the CD4Thl population expansion occurs at approximately the cor-
rect time, determined with help of the domain expert. It was also set such that the
population of CD4Th1 cells produced through immunization is sufficient to instigate
self-perpetuating autoimmunity in the CNS after all the immunization DCs have ex-
pired.

TCell_specificityUpperLimit and TCell_specificityLowerLimit are arbitrarily se-
lected to give a reasonably wide range of specificities. All the T cells in the simulation
are intended to be specific to a particular MHC:peptide complex, and as such TCell_-
specificityLowerLimit is not set to lie near the value 0.0, since this would effectively
constitute a T cell with no specificity for its intended MHC:peptide complex.

DendriticCell_phagocytosisProbabilityImmature, DendriticCell_phagocytosisProb-
abilityMature, CNSMacrophage_phagocytosisProbabilityImmature, CNSMacrophage_-
phagocytosisProbabilityMature are assigned arbitrary values, but ensuring that mature
DCs are the most phagocytic type of APC in the simulation, and that mature APCs
are more phagocytic than immature APCs.

The following parameters all pertain to the induction of apoptosis in neurons,
and are calibrated as a group: Simulation_.numCNSMacrophage, numDCCNS, Sim-
ulation_numCNS, DendriticCell_cytokineType2PolarizationRatio, CNSMacrophage_-
typelRequiredForActivation and APC_probabilityPhagocytosisToPeptide. They are
calibrated on the basis of their ability to maintain a self-perpetuating autoimmunity
in the CNS, yet permit the regulatory network to abrogate autoimmune behaviour.
The domain expert has indicated that APC_probabilityPhagocytosisToPeptide should
hold a value of a few percent, and this is used as its starting value in calibration.
Simulation_.numCNS is selected such that there remain sufficient space in the CNS
compartment for T cells, DCs and CNS macrophages to migrate around the space
without excessive hinderance. The domain expert has indicated that there should exist
around 7 neurons for every CNS macrophage; this is reflected in the domain model.
DendriticCell_typel RequiredForActivation is set to be more sensitive than CNSMacro-
phage_typel RequiredForActivation.

CNSCell_apoptosisTNFaThreshold is tuned by examining the concentrations of
TNF-« in simulation gridspaces over time. From this graph it is possible to iden-
tify peaks in concentration which occur when activated CNS macrophages come into
close proximity with neurons. The threshold was selected near the top of these peaks,
indicating that close proximity to a TNF-« secreting CNS macrophage is required to
induce apoptosis in a neuron.

Molecule_molecularHalflife is assigned its value based on an estimate by the domain
expert. Molecule_decayThreshold is assigned an arbitrary value substantially smaller
than the quantity of cytokines secreted by any cell in a single time step of the simulation,
and intended such that cytokines can not have infinitely far reaching influence.

The following parameters all relate to the standard deviations of distributions
from which the durations of time that cells spend in particular states are se-
lected from: APC_timeOfDeathStdDev, APC_immatureDurationStdDev, TCell_prolif-
erationStdDev, TCell_apoptosisNaiveStdDev, TCell_apoptosisPartialMaturityStdDev,
TCell_becomeEffectorStdDev, TCell_ AICDStdDev, Th2Polarization_proliferationStd-
Dev. These parameters are assigned arbitrarily determined values close to, but not
exceeding, the corresponding mean parameter for the particular distribution that they
parameterise.
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The value of CNSMacrophage_basalMBPExpressionProbability is fine tuned by
identifying the percentage required for autoimmune behaviour to become established
in the CNS, and the turnover of CD4Thl cells in absence of regulatory activity to
self-perpetuate once immunization DCs have expired. When set too low, the autoim-
mune response does not gain the critical intensity required for self-perpetuation after
the MHC-II:MBP presenting immunogenic DCs resulting from immunization for EAE
expire. The value of TCell_timeLocalActivationDelay is assigned on the basis of em-
pirical observation of simulation behaviour. It is set sufficiently high such that T cells
do not generally become locally activated in the same compartment as where they
were primed. The value of TCell_timeLocalActivationInducedEffectorFunctionFor is
assigned with guidance from the domain expert.

The values for the parameters CNSMacrophage_tnfaSecreted PerHour WhenStimula-
ted, DendriticCell_typelSecretedPerHourImmunized, ThlPolarization_typelSecreted-
PerHourWhenActivated and Th2Polarization_type2SecretedPerHour WhenA ctivated
are arbitrarily picked. CD4Treg_typelSecretedPerHourWhenActivated and CD8Treg_-
typelSecretedPerHour When Activated are arbitrarily picked to be significantly less than
type 1 secreted by CD4Th1 cells.

APC_timeOfDeathMean was informed by domain expert. APC_immatureDura-
tionMean was picked in order to achieve a level of presentation able to sustain immune
responses.

The following parameters all pertain to the durations of time that T cells remain
in particular stages of their lifecycles for: TCell_apoptosisNaiveMean, TCell_apopto-
sisPartialMaturityMean, T'Cell_proliferationMean, Th2Polarization_proliferationMean,
TCell AICDMean and TCell_becomeEffectorMean. Their initial values are all based
on consultation with the domain expert, but are then subject to fine-tuning in order to
adjust the height of T cell population expansions, and the times at which these occur.
This is performed by simultaneously adjusting all parameters by the same proportion.

CD4THelper_diff0)0 and CD4THelper_diff08 are selected such the balance of
CD4Th1 to CD4Th2 cells during the immune response are perceived as correct by
the domain expert. Furthermore, these parameters are set to reflect the strong cy-
tokine stimulus required for the adoption of type 1 polarization by CD4Th cells, which
will more readily adopt a type 2 polarization [Kindt et al. 2007].

The value of TCell_cellsPerGridspace is informed by domain expert, based on the
diameter of a T cell in comparison to a dendritic cell.

The values of ThlPolarization_mhcUnExpressionDelayMean and Thl1Polarization_-
mhcUnExpressionDelayStdDev were informed by domain expert.

CD8Treg_cd8Treg ToCD4ThelperSpecificityDropOff is arbitrarily set to 100%, since
the domain expert had no reason to believe that interaction between a CD8Treg and
Qa-1 expressing effector CD4Th1 cell would constitute any weaker a binding than a
CD8Treg with a Qa-1:CDR1/2 expressing DC.

DendriticCellMigrates_lengthOf T'imeMovingFollowingMigration is selected such
that migratory DCs originating from the CNS on average move around half way through
the CLN compartment before becoming immotile.
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Appendix C

Supporting Material for
Statistical Techniques

The present appendix chapter provides additional material and data on the consistency
analysis technique of section 6.3, and on applying the global sensitivity and robustness
analysis techniques of sections 6.4 and 6.5 to ARTIMMUS.

Section C.1 provides the code used to generate A test scores. Data pertaining
to global sensitivity analysis is presented in section C.2, and that pertaining to the
robustness analysis is presented in section C.3.

C.1 Calculating the A test

The following matlab' code is used to generate Vargha-Delaney A test scores in this
paper [Vargha & Delaney 2000]. It was kindly provided through personal communica-~
tion with Prof. Susan Stepney and Simon Poulding at the University of York. Note
that it is only valid if the two distributions being compared contain the exact same
number of samples.

function A = Atest(X, Y)

[p,h,st] = ranksum(X,Y,’alpha’,0.05);
N = size(X,1); M = size(Y,1);

A = (st.ranksum/N - (N+1)/2)/M;

C.2 Global sensitivity analysis

This section details all results of performing a latin hypercube based sensitivity analysis
on the EAE simulation, as described in section 6.4. Data for each response is presented
in turn, in the following order: CD4Thi Maz, CD4Thi Max Time, CD4Th2 Maz,
CD4Th2 Mazx Time, CD/Treq Max, CD4Treg Max Time, CD8Treq Max, CD8Treg Mazx
Time, CD4Thl at 40 days, Maximum EAFE, and EAE at /0 days. Data for each
response proceeds with a table that details the partial rank correlation coefficient for
each parameter and the particular response, and its associated p value. Graphs of

L nttp: / /www.mathworks. co.uk/.
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parameter values against response values are drawn for all parameters for which the
associated p value was less than or equal to 0.1.

Note that the partial rank correlation coefficient removes the effect of other pa-
rameter changes in its calculation, however these changes are not removed from the
response-parameter graphs. As such, the partial rank correlation coeflicients reported
do not bear a direct relation to the correlations that may be observed on the graphs.
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C.2. Global sensitivity analysis

Table C.1: Partial rank correlation coefficient between parameter values and the CD4Th1 Max

response, and the associated p value.

] Response Name

|[PRCC P Value Rank

Continued on Next Page. ..

CD4THelper_diff08 0.82  6.9e-105 1

CNSCell_apoptosisTNFaThreshold -0.77  4.6e-83 2

CNSMacrophage_tnfaSecretedPerHour WhenStimulated 0.77  2.2e-82 3

Simulation_immunizationLinearDC0 0.76 8.1e-81 4

APC_timeOfDeathMean 0.76 2.0e-78 5

Molecule_molecularHalflife 0.65 1.5e-50 6

TCell_proliferationMean -0.63  2.3e-47 7

TCell_ AICDMean 0.62 1.5e-46 8

Simulation_immunizationLinearFreq -0.61  6.4e-44 9

Simulation_immunizationLinear Gradient 0.42 7.5e-19 10
TCell_timeLocalActivationInducedEffectorFunctionFor 0.39 6.1e-17 11
TCell_cellsPerGridspace 0.38 1.8e-15 12
TCell_becomeEffectorMean -0.27  1.4e-08 13
CNS_height -0.26  3.8e-08 14
APC_probabilityPhagocytosisToPeptide 0.21 1.3e-05 15
Th2Polarization_proliferationMean -0.18  0.00024 16
CNS_width -0.18  0.00026 17
Simulation_numCNSMacrophage 0.16  0.00077 18
APC_immatureDurationMean -0.16 0.0012 19
ThilPolarization_mhcUnExpressionDelayMean -0.093 0.057 20
TCell_specificityLowerLimit 0.087 0.076 21
DendriticCell_typel RequiredForActivation 0.085 0.082 22
Thi1Polarization_mhcUnExpressionDelayStdDev -0.081 0.097 23
Circulation_timeToCrossOrgan -0.081 0.1 24
TCell_apoptosisNaiveMean 0.078 0.11 26
TCell_specificityUpperLimit 0.078 0.11 26
DendriticCell_phagocytosisProbabilityImmature 0.077 0.12 28
TCell_ AICDStdDev -0.077 0.12 28
DendriticCell_cytokineType2PolarizationRatio -0.072 0.14 29
CNSMacrophage_typel RequiredForActivation -0.071 0.15 30
CD8Treg_typelSecretedPerHour WhenA ctivated 0.063 0.2 31
TCell_apoptosisPartialMaturityMean -0.061 0.22 32
Simulation_numDCCNS 0.059 0.23 33
TCell_becomeEffectorStdDev -0.058 0.23 34
CD4Treg_typelSecretedPerHour WhenA ctivated -0.058 0.24 35
APC_timeOfDeathStdDev -0.055 0.26 36
Simulation_.numCNS 0.046 0.34 37
CNSMacrophage_phagocytosisProbabilityMature 0.044 0.37 38
CNS_timeToCrossOrgan 0.042 0.39 39
APC_immatureDurationStdDev -0.039 0.43 40
SLO_width -0.038 0.44 41
Th1Polarization_typelSecreted PerHour WhenActivated 0.032 0.51 43
Simulation_.numCD4Th 0.032 0.51 43
CD8Treg_cd8Treg ToCD4ThelperSpecificity DropOff -0.029 0.56 44
TCell_timeLocalActivationDelay 0.028 0.57 45
TCell_apoptosisNaiveStdDev -0.027 0.58 46
SLO_height -0.026 0.59 47
CLN_height 0.025 0.62 48
Th2Polarization_type2Secreted PerHour WhenActivated 0.024 0.63 49
Spleen_height 0.023 0.64 51
TCell_proliferationStdDev -0.023 0.64 51
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Table C.1 — Continued

’ Response Name H PRCC P Value Rank
TCell_apoptosisPartialMaturityStdDev -0.022 0.65 52
CNSMacrophage_basalMBPExpressionProbability 0.022 0.66 53
Circulation_height -0.021 0.66 54
Simulation_immunizationLinearInitial 0.02 0.68 55
CNSMacrophage_phagocytosisProbabilityImmature 0.02 0.69 56
Th2Polarization_proliferationStdDev 0.018 0.71 57
Spleen_timeToCrossOrgan -0.017 0.73 58
CD4THelper_diff00 -0.016 0.74 59
CLN_timeToCrossOrgan 0.015 0.75 60
SLO_timeToCrossOrgan 0.015 0.76 61
Simulation_numDC 0.013 0.79 62
DendriticCell_typelSecreted PerHourImmunized 0.012 0.8 63
Circulation_width -0.01 0.84 64
Simulation_numCD4Treg -0.0049 0.92 65
Simulation_numCD8Treg -0.0042 0.93 66
Molecule_decayThreshold 0.004 0.93 67
Spleen_width 0.0034 0.94 68
CLN_width -0.0032  0.95 69
DendriticCell_phagocytosisProbabilityMature 0.0025 0.96 70
Simulation_.numDCSpleen -0.0021 0.97 71
DendriticCellMigrates_lengthOfTimeMovingFollowingMigration || 0.00056  0.99 72

Table C.2: Partial rank correlation coefficient between parameter values and the CD4Thi Maz
Time response, and the associated p value.

’ Response Name H PRCC P Value Rank
TCell_proliferationMean 0.83  7.5e-109 1
CNSMacrophage_tnfaSecreted PerHour WhenStimulated 0.75 1.4e-76 2
CNSCell_apoptosisTNFaThreshold -0.73  2.9e-T1 3
Molecule_molecularHalflife 0.59 8.7e-41 4
TCell_becomeEftectorMean -0.48 1.2e-25 5
CD4THelper_diff08 -0.43  3.4e-20 6
APC_timeOfDeathMean -0.43  5.7e-20 7
Simulation_immunizationLinearDC0 -0.41 1.7e-18 8
CNS_height -0.3 3.4e-10 9
Simulation_immunizationLinearGradient 0.24 7.2e-07 10
TCell_becomekEftectorStdDev 0.24 8.6e-07 11
CNS_width -0.22  3.7e-06 12
TCell_ AICDMean 0.19 6.9¢-05 13
Th2Polarization_proliferationMean 0.17  0.00041 14
Simulation_-numCNSMacrophage 0.15 0.0016 16
TCell_apoptosisNaiveMean 0.15 0.0016 16
TCell_specificity LowerLimit -0.13 0.0062 17
APC_immatureDurationStdDev 0.13 0.0073 18
TCell_cellsPerGridspace 0.12 0.011 19
Simulation_immunizationLinearFreq 0.12 0.012 20
CNSMacrophage_typel RequiredForA ctivation -0.12 0.015 21
Simulation_numCD4Th -0.11 0.021 23
Th1Polarization_mhcUnExpressionDelayMean -0.11 0.021 23
TCell_timeLocalActivationInducedEffectorFunctionFor 0.11 0.024 24

Continued on Next Page. ..
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Table C.2 — Continued

Response Name

HPRCC P Value Rank

SLO_width 0.091 0.062 25
TCell_apoptosisPartialMaturityStdDev 0.085 0.084 26
TCell_specificity UpperLimit -0.079 0.11 27
Simulation_.numDCCNS 0.076 0.12 28
SLO_height 0.075 0.13 29
APC_probabilityPhagocytosisToPeptide 0.073 0.14 30
Simulation_-numCNS 0.072 0.14 31
Circulation_width 0.071 0.15 32
CNSMacrophage_basalMBPExpressionProbability 0.064 0.19 33
Spleen_timeToCrossOrgan 0.062 0.21 34
CLN_timeToCrossOrgan 0.058 0.24 35
CLN_width 0.054 0.27 36
Circulation_height 0.053 0.28 37
CD8Treg_typelSecretedPerHour WhenA ctivated -0.048 0.33 38
Circulation_timeToCrossOrgan 0.047 0.33 39
Molecule_decayThreshold -0.045 0.35 40
CNSMacrophage_phagocytosisProbabilityImmature -0.041 0.4 41
TCell_proliferationStdDev 0.038 0.43 42
Simulation_numCD8Treg -0.035 0.47 43
CD8Treg_cd8TregToCD4ThelperSpecificity Drop Off -0.033 0.5 44
DendriticCell_typelSecreted PerHourImmunized 0.033 0.51 46
TCell_ AICDStdDev 0.033 0.51 46
TCell_apoptosisNaiveStdDev 0.031 0.53 47
Simulation_numCD4Treg -0.029 0.55 49
ThiPolarization_typelSecretedPerHour WhenA ctivated 0.029 0.55 49
TCell_apoptosisPartialMaturityMean 0.027 0.58 50
CD4Treg_typelSecretedPerHour WhenA ctivated 0.025 0.61 52
CLN_height 0.025 0.61 52
Th1Polarization_mhcUnExpressionDelayStdDev 0.024 0.63 54
DendriticCellMigrates_lengthOfTimeMovingFollowingMigration || -0.024 0.63 54
Spleen_width 0.023 0.64 55
DendriticCell_phagocytosisProbabilityMature 0.02 0.69 56
DendriticCell_phagocytosisProbabilityImmature -0.018 0.71 57
APC_timeOfDeathStdDev -0.017 0.72 58
Simulation_immunizationLinearInitial -0.017 0.73 59
Th2Polarization_proliferationStdDev 0.016 0.75 60
APC_immatureDurationMean -0.015 0.76 61
DendriticCell_cytokineType2PolarizationRatio 0.014 0.78 62
DendriticCell_typel RequiredForActivation -0.013 0.79 63
CD4THelper_diff00 0.012 0.81 64
TCell_timeLocalActivationDelay -0.011 0.82 65
Th2Polarization_type2Secreted PerHour WhenActivated 0.01 0.83 66
CNS_timeToCrossOrgan -0.0095 0.85 67
CNSMacrophage_phagocytosisProbabilityMature -0.0088 0.86 68
SLO_timeToCrossOrgan -0.0071 0.89 69
Simulation_numDCSpleen -0.0046 0.93 70
Simulation_-numDC 0.0028 0.95 71
Spleen_height 0.0018 0.97 72
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Table C.3: Partial rank correlation coefficient between parameter values and the CD4Th2 Max
response, and the associated p value.

] Response Name | PRCC P Value Rank
CD4THelper_diff08 -0.86  3.6e-125 1
CNSMacrophage_tnfaSecreted PerHour WhenStimulated 0.78 7.7e-86 2
CNSCell_apoptosisTNFaThreshold -0.77 4.1e-83 3
Molecule_molecularHalflife 0.63 6.3e-48 4
APC_timeOfDeathMean 0.43 2.6e-20 5
Simulation_immunizationLinearDC0 0.4 7.7e-18 6
TCell AICDMean 0.36 1.9e-14 7
CNS_height -0.34  6.9e-13 8
TCell_proliferationMean -0.24 7.7e-07 9
CNS_width -0.23 2.6e-06 10
APC_probabilityPhagocytosisToPeptide 0.22 5.2e-06 11
TCell_becomekEffectorMean -0.21 9.6e-06 12
Simulation_immunizationLinearFreq -0.2 4.7e-05 13
TCell_cellsPerGridspace 0.19 6.0e-05 14
TCell_timeLocalActivationInducedEffectorFunctionFor 0.16 0.00077 15
Simulation_numCNSMacrophage 0.16 0.00094 16
Simulation_immunizationLinearGradient 0.15 0.0026 17
DendriticCell_cytokineType2PolarizationRatio -0.13 0.0081 18
Th2Polarization_proliferationMean -0.12 0.016 19
Th2Polarization_type2Secreted PerHour When A ctivated 0.12 0.018 20
DendriticCell_phagocytosisProbabilityImmature 0.1 0.039 21
TCell_specificityLowerLimit 0.094 0.054 22
DendriticCellMigrates_lengthOf T'imeMovingFollowingMigration || 0.092 0.06 23
Circulation_timeToCrossOrgan -0.087 0.076 24
APC_immatureDurationStdDev -0.081 0.1 25
CD4THelper_diff00 -0.08 0.1 26
DendriticCell_typel RequiredForActivation -0.075 0.13 27
CNSMacrophage_typel RequiredForActivation -0.074 0.13 28
CD8Treg_cd8TregToCD4ThelperSpecificity Drop Off 0.068 0.16 29
Simulation_numDCCNS 0.067 0.17 30
Th1Polarization_typelSecreted PerHour WhenA ctivated -0.065 0.18 31
CLN_timeToCrossOrgan -0.062 0.2 32
TCell_apoptosisNaiveStdDev 0.062 0.21 33
CD8Treg_typelSecreted PerHour WhenA ctivated 0.057 0.25 34
Molecule_decayThreshold 0.054 0.27 35
APC_immatureDurationMean -0.047 0.34 36
TCell_apoptosisPartialMaturityStdDev -0.046 0.35 37
TCell_ AICDStdDev 0.044 0.37 39
CNSMacrophage_phagocytosisProbabilityImmature 0.044 0.37 39
TCell_apoptosisPartialMaturityMean -0.042 0.4 40
CNSMacrophage_basalMBPExpressionProbability 0.041 0.4 41
SLO_timeToCrossOrgan 0.039 0.43 42
TCell_apoptosisNaiveMean 0.038 0.44 44
Simulation_numCNS 0.038 0.44 44
APC_timeOfDeathStdDev -0.036 0.46 45
TCell_becomeEffectorStdDev -0.036 0.47 46
Circulation_height -0.033 0.5 47
Spleen_height -0.032 0.51 48
Simulation_.numCD4Th 0.031 0.53 49
ThiPolarization_mhcUnExpressionDelayStdDev -0.03 0.54 50
Spleen_timeToCrossOrgan -0.027 0.58 51
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C.2. Global sensitivity analysis

Table C.3 — Continued

’ Response Name H PRCC P Value Rank
CD4Treg_typelSecretedPerHour WhenA ctivated -0.021 0.66 52
Simulation_-numDC -0.018 0.71 53
Th2Polarization_proliferationStdDev 0.017 0.73 54
TCell_specificity UpperLimit 0.016 0.74 55
Simulation_numCD4Treg 0.014 0.77 56
Spleen_width -0.014 0.78 57
Simulation_numCD8Treg 0.013 0.79 60
DendriticCell_typelSecreted PerHourImmunized 0.013 0.79 60
CNSMacrophage_phagocytosisProbabilityMature -0.013 0.79 60
Simulation_numDCSpleen 0.012 0.8 62
SLO_height -0.012 0.8 62
ThilPolarization_mhcUnExpressionDelayMean -0.011 0.83 63
CLN_width 0.0069 0.89 65
Simulation_immunizationLinearInitial 0.0069 0.89 65
CLN_height 0.0035 0.94 66
DendriticCell_phagocytosisProbabilityMature 0.0025 0.96 67
Circulation_width -0.0022 0.96 68
TCell_timeLocalActivationDelay -0.0019 0.97 69
SLO_width 0.00057 0.99 70
CNS_timeToCrossOrgan -0.00048  0.99 71
TCell_proliferationStdDev -0.00021 1.0 72

Table C.4: Partial rank correlation coefficient between parameter values and the CD4Th2 Mazx
Time response, and the associated p value.

’ Response Name H PRCC P Value Rank
CNSMacrophage_tnfaSecreted PerHour WhenStimulated 0.81 3.1e-97 1
CNSCell_apoptosisTNFaThreshold -0.8 6.8e-96 2
Molecule_molecularHalflife 0.67 5.0e-56 3
CNS_height -0.41  5.7e-18 4
CNS_width -0.31  4.7e-11 5
TCell_proliferationMean 0.3 2.5e-10 6
CD4THelper_diff08 0.27 1.9¢-08 7
APC_probabilityPhagocytosisToPeptide 0.24 1.1e-06 8
Simulation_immunizationLinearGradient 0.2 2.8e-05 9
TCell_ AICDMean 0.2 4.1e-05 10
Simulation_numCNSMacrophage 0.19 7.2e-05 11
Simulation_immunizationLinearDC0 0.18 0.00021 12
TCell_becomeEffectorMean -0.15 0.0027 13
APC_timeOfDeathMean 0.12 0.011 14
TCell_ AICDStdDev 0.12 0.014 15
CNSMacrophage_typel RequiredForActivation -0.11 0.028 16
CD4THelper_diff00 -0.086  0.079 17
TCell_cellsPerGridspace 0.08 0.1 18
CD8Treg_typelSecretedPerHour WhenA ctivated -0.078 0.11 19
DendriticCell_typelSecreted PerHourImmunized 0.074 0.13 20
Simulation_.numDCCNS 0.065 0.19 21
Simulation_immunizationLinearFreq 0.061 0.21 22
DendriticCell_typel RequiredForActivation -0.058 0.23 23
Simulation_numCNS 0.058 0.24 24
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C. SUPPORTING MATERIAL FOR STATISTICAL TECHNIQUES

Table C.4 — Continued

’ Response Name H PRCC P Value Rank
SLO_width 0.057 0.24 25
Th1Polarization_mhcUnExpressionDelayStdDev 0.055 0.26 26
APC_immatureDurationStdDev -0.049 0.32 27
APC_timeOfDeathStdDev -0.048 0.33 29
DendriticCell_phagocytosisProbabilityMature -0.048 0.33 29
TCell_apoptosisPartialMaturityMean -0.044 0.37 30
Th2Polarization_proliferationStdDev -0.041 0.41 31
CD4Treg_typelSecretedPerHour WhenA ctivated -0.04 0.42 33
DendriticCell_phagocytosisProbabilityImmature 0.04 0.42 33
Simulation_.numCD4Treg 0.036 0.46 34
SLO_timeToCrossOrgan 0.035 0.48 35
CLN_timeToCrossOrgan 0.034 0.48 36
TCell_specificity UpperLimit -0.033 0.5 38
TCell_apoptosisPartialMaturityStdDev -0.033 0.5 38
TCell_apoptosisNaiveStdDev -0.032 0.52 39
TCell_timeLocalActivationInducedEffectorFunctionFor -0.031 0.53 40
Th1Polarization_mhcUnExpressionDelayMean -0.029 0.55 42
Simulation_numCD8Treg -0.029 0.55 42
CNSMacrophage_basalMBPExpressionProbability 0.027 0.59 43
Simulation_immunizationLinearInitial 0.026 0.6 44
Th2Polarization_type2Secreted PerHour When A ctivated 0.025 0.61 46
APC_immatureDurationMean 0.025 0.61 46
SLO_height -0.023 0.64 48
Simulation_numDC 0.023 0.64 48
Spleen_width -0.021 0.68 49
TCell_timeLocalActivationDelay -0.02 0.69 50
CD8Treg_cd8Treg ToCD4ThelperSpecificity Drop Off -0.019 0.7 51
TCell_becomekEftectorStdDev 0.014 0.78 52
Th2Polarization_proliferationMean 0.013 0.8 53
TCell_apoptosisNaiveMean -0.012 0.81 54
TCell_specificityLowerLimit 0.008 0.87 55
Simulation_numCD4Th 0.0076 0.88 56
Simulation_numDCSpleen -0.0074 0.88 57
Circulation_width 0.0071 0.89 58
DendriticCell_cytokineType2PolarizationRatio -0.0068 0.89 59
Th1Polarization_typelSecretedPerHour WhenActivated -0.0066 0.89 60
DendriticCellMigrates_lengthOfTimeMovingFollowingMigration || -0.006 0.9 61
CNSMacrophage_phagocytosisProbabilityMature -0.0055 0.91 62
CNSMacrophage_phagocytosisProbabilityImmature 0.0046 0.93 64
Spleen_height -0.0046 0.93 64
CNS_timeToCrossOrgan 0.0045 0.93 66
CLN_width 0.0045 0.93 66
CLN_height -0.0033  0.95 67
Circulation_timeToCrossOrgan -0.0032 0.95 69
TCell_proliferationStdDev -0.0032  0.95 69
Molecule_decayThreshold 0.0026 0.96 70
Circulation_height -0.0017 0.97 72
Spleen_timeToCrossOrgan -0.0017  0.97 72
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C.2. Global sensitivity analysis

Table C.5: Partial rank correlation coefficient between parameter values and the CD/ Treqg Max

response, and the associated p value.

] Response Name

|[PRCC P Value Rank

Continued on Next Page. ..

TCell_proliferationMean -0.91  4.9e-157 1
APC_timeOfDeathMean 0.87  3.7e-130 2
CNSCell_apoptosisTNFaThreshold -0.78  2.0e-88 3
CNSMacrophage_tnfaSecretedPerHour WhenStimulated 0.78 2.1e-85 4
CD4THelper_diff08 0.69 1.9e-59 5
Simulation_immunizationLinearDC0 0.67 2.9e-55 6
Molecule_molecularHalflife 0.66 2.7e-54 7
APC_probabilityPhagocytosisToPeptide 0.59 2.6e-41 8
TCell_becomeEffectorMean 0.51 1.6e-29 9
TCell AICDMean 0.45 2.5e-22 10
Simulation_immunizationLinearGradient 0.44 7.5e-21 11
TCell_cellsPerGridspace 0.35 1.3e-13 12
APC_immatureDurationMean -0.29 1.8e-09 13
Simulation_immunizationLinearFreq -0.27  1.6e-08 14
CNS_height -0.24  5.2e-07 15
TCell_timeLocalActivationInducedEffectorFunctionFor 0.23 2.7e-06 16
CNS_width -0.18  0.0003 17
Th2Polarization_proliferationMean -0.17  0.00058 18
TCell_becomekEftectorStdDev -0.16  0.00075 19
Circulation_timeToCrossOrgan -0.15 0.0022 20
CNSMacrophage_typel RequiredForActivation -0.14 0.003 21
DendriticCell_phagocytosisProbabilityImmature 0.14 0.0052 22
Simulation_numCNSMacrophage 0.13 0.01 23
Simulation_.numDCCNS 0.12 0.013 24
CLN_timeToCrossOrgan 0.12 0.016 25
DendriticCell_phagocytosisProbabilityMature -0.09 0.067 26
TCell_specificity UpperLimit 0.089 0.069 27
CD4THelper_diff00 -0.084  0.087 28
CD4Treg_typelSecretedPerHour WhenA ctivated -0.08 0.1 29
TCell_proliferationStdDev 0.076 0.12 30
CNSMacrophage_phagocytosisProbabilityImmature -0.069 0.16 31
Simulation_numCD4Treg 0.068 0.17 32
Th1Polarization_mhcUnExpressionDelayMean -0.066 0.18 33
CD8Treg_typelSecretedPerHour WhenA ctivated 0.064 0.19 34
TCell_specificity LowerLimit 0.063 0.2 35
CNS_timeToCrossOrgan 0.061 0.22 37
APC_immatureDurationStdDev -0.061 0.22 37
TCell_ AICDStdDev -0.058 0.24 38
DendriticCell_typelSecreted PerHourImmunized 0.056 0.26 39
CLN_width -0.055 0.26 40
CNSMacrophage_basalMBPFExpressionProbability 0.055 0.27 41
APC_timeOfDeathStdDev 0.054 0.27 42
Simulation_numCD8Treg -0.053 0.28 43
Spleen_timeToCrossOrgan -0.051 0.3 44
SLO_height -0.046 0.35 45
Th1Polarization_-mhcUnExpressionDelayStdDev -0.045 0.36 46
DendriticCell_cytokineType2PolarizationRatio -0.042 0.39 47
TCell_apoptosisPartialMaturityMean -0.04 0.41 48
Simulation_-numCD4Th 0.04 0.42 49
SLO_timeToCrossOrgan 0.039 0.43 50
TCell_apoptosisPartialMaturityStdDev -0.029 0.56 51
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C. SUPPORTING MATERIAL FOR STATISTICAL TECHNIQUES

Table C.5 — Continued

’ Response Name H PRCC P Value Rank
Simulation_numDC 0.028 0.57 52
Spleen_width -0.026 0.59 53
Th2Polarization_proliferationStdDev -0.025 0.6 54
Circulation_height -0.024 0.62 55
SLO_width -0.023 0.64 56
TCell_apoptosisNaiveMean 0.021 0.67 59
CD8Treg_cd8TregToCD4ThelperSpecificity Drop Off -0.021 0.67 59
Simulation_numCNS 0.021 0.67 59
Simulation_numDCSpleen 0.019 0.69 60
Circulation_width -0.019 0.7 61
Molecule_decayThreshold -0.017 0.72 62
CLN_height -0.016 0.74 65
Spleen_height 0.016 0.74 65
TCell_timeLocalActivationDelay 0.016 0.74 65
DendriticCellMigrates_lengthOfT'imeMovingFollowingMigration || -0.014 0.77 66
CNSMacrophage_phagocytosisProbabilityMature 0.013 0.79 67
Simulation_immunizationLinearInitial 0.011 0.82 68
ThiPolarization_typelSecreted PerHour WhenA ctivated 0.01 0.83 69
TCell_apoptosisNaiveStdDev 0.0096 0.84 70
Th2Polarization_type2Secreted PerHour WhenA ctivated 0.0066 0.89 71
DendriticCell_typel RequiredForActivation 0.0036 0.94 72

Table C.6: Partial rank correlation coefficient between parameter values and the CD4 Treg Maz
Time response, and the associated p value.

’ Response Name H PRCC P Value Rank
TCell_proliferationMean 0.92 2.6e-172 1
CNSCell_apoptosisTNFaThreshold -0.78 1.3e-87 2
CNSMacrophage_tnfaSecretedPerHour WhenStimulated 0.78 6.9e-86 3
Molecule_molecularHalflife 0.68 2.6e-58 4
TCell_becomekEftectorMean -0.51 9.1e-29 5
APC_timeOfDeathMean -0.39 6.4e-17 6
CNS_height -0.28 5.2e-09 7
TCell_apoptosisNaiveMean 0.25 1.9e-07 8
CNS_width -0.23 1.4e-06 9
Circulation_timeToCrossOrgan 0.23 3.3e-06 10
Simulation_immunizationLinearFreq 0.22 5.0e-06 11
TCell_becomekEftectorStdDev 0.2 3.6e-05 12
TCell_specificity UpperLimit -0.2 5.6e-05 13
TCell AICDMean 0.2 5.9e-05 14
Simulation_numCNSMacrophage 0.18 0.00015 15
Simulation_immunizationLinearDC0 -0.16 0.00074 16
CD4THelper_diff08 -0.15 0.002 17
TCell_specificityLowerLimit -0.15 0.0025 18
Molecule_decayThreshold -0.11 0.019 19
TCell_cellsPerGridspace 0.11 0.022 20
TCell_timeLocalActivationInduced EffectorFunctionFor 0.097 0.047 21
Simulation_immunizationLinearGradient 0.093 0.059 22
TCell_timeLocalActivationDelay 0.089 0.068 23
Simulation_numDCCNS 0.086 0.079 24
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C.2. Global sensitivity analysis

Table C.6 — Continued

Response Name H PRCC P Value Rank
Th2Polarization_proliferationStdDev -0.085 0.084 25
Spleen_width 0.083 0.09 26
DendriticCell_cytokineType2PolarizationRatio 0.081 0.1 27
CLN_timeToCrossOrgan 0.078 0.11 28
Simulation_numCNS 0.077 0.11 29
CNSMacrophage_phagocytosisProbabilityImmature -0.076 0.12 30
Th1Polarization_typelSecretedPerHour WhenActivated 0.074 0.13 31
SLO_width 0.073 0.14 32
Spleen_timeToCrossOrgan 0.069 0.16 33
Simulation_-numCD4Th -0.068 0.16 34
DendriticCellMigrates_lengthOf TimeMovingFollowingMigration || -0.067 0.17 35
Th2Polarization_type2SecretedPerHour WhenActivated -0.066 0.18 36
APC_immatureDurationMean 0.063 0.2 37
Simulation_numCD4Treg -0.055 0.26 39
CLN_width 0.055 0.26 39
CD4THelper_diff00 -0.054 0.27 40
TCell_apoptosisNaiveStdDev 0.044 0.37 41
CD4Treg_typelSecretedPerHour WhenA ctivated -0.043 0.38 42
CD8Treg_typelSecretedPerHour WhenA ctivated 0.042 0.39 43
TCell_apoptosisPartialMaturityMean 0.042 0.4 44
CNS_timeToCrossOrgan 0.041 0.4 45
DendriticCell_phagocytosisProbabilityImmature 0.041 0.41 46
Spleen_height 0.04 0.41 47
Circulation_height 0.039 0.43 48
TCell_proliferationStdDev -0.038 0.44 49
DendriticCell_typelSecreted PerHourImmunized 0.036 0.46 50
Simulation_numCD8Treg -0.035 0.47 51
ThilPolarization_mhcUnExpressionDelayMean -0.032 0.51 52
Th2Polarization_proliferationMean 0.028 0.56 53
Circulation_width 0.026 0.6 55
SLO_timeToCrossOrgan 0.026 0.6 55
Simulation_numDCSpleen -0.025 0.61 56
CNSMacrophage_basalMBPExpressionProbability 0.021 0.66 57
TCell AICDStdDev 0.02 0.68 58
CLN_height 0.019 0.7 59
APC_timeOfDeathStdDev 0.018 0.72 60
DendriticCell_typel RequiredForActivation 0.016 0.75 61
CD8Treg_cd8TregToCD4ThelperSpecificity Drop Off 0.015 0.75 62
SLO_height 0.015 0.76 63
CNSMacrophage_typel RequiredForActivation -0.014 0.77 64
Th1Polarization_mhcUnExpressionDelayStdDev 0.013 0.79 65
Simulation_immunizationLinearInitial -0.011 0.82 66
APC_immatureDurationStdDev 0.0096 0.85 67
APC_probabilityPhagocytosisToPeptide 0.0063 0.9 68
DendriticCell_phagocytosisProbabilityMature 0.0057 0.91 69
Simulation_numDC -0.0054 0.91 70
TCell_apoptosisPartialMaturityStdDev -0.0044 0.93 71
CNSMacrophage_phagocytosisProbabilityMature -0.00021 1.0 72
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C. SUPPORTING MATERIAL FOR STATISTICAL TECHNIQUES

Table C.7: Partial rank correlation coefficient between parameter values and the CD8Treg Max
response, and the associated p value.

] Response Name |[PRCC P Value Rank
APC_timeOfDeathMean 0.85  2.0e-119 1
TCell_proliferationMean -0.83  1.7e-106 2
CNSCell_apoptosisTNFaThreshold -0.8 5.9e-95 3
CNSMacrophage_tnfaSecreted PerHour WhenStimulated 0.79 1.2e-91 4
Molecule_molecularHalflife 0.69 2.0e-60 5
CD4THelper_diff08 0.67  6.7e-55 6
Simulation_immunizationLinearDC0 0.64 1.4e-48 7
APC_probabilityPhagocytosisToPeptide 0.59 5.3e-40 8
TCell_ AICDMean 0.5 4.1e-28 9
Simulation_immunizationLinearGradient 0.43 6.9e-20 10
TCell_cellsPerGridspace 0.39 1.7e-16 11
CNS_height -0.28  7.8e-09 12
APC_immatureDurationMean -0.25  2.1e-07 13
Simulation_immunizationLinearFreq -0.23  1.7e-06 14
CNS_width -0.21  1.9e-05 15
Th2Polarization_proliferationMean -0.17  0.00049 16
Simulation_numCNSMacrophage 0.15 0.0019 17
TCell_timeLocalActivationInducedEffectorFunctionFor 0.15 0.0025 18
DendriticCell_phagocytosisProbabilityImmature 0.14 0.004 19
TCell_specificity UpperLimit 0.14 0.0041 20
Circulation_timeToCrossOrgan -0.14 0.0052 21
CNSMacrophage_typel RequiredForActivation -0.13 0.0071 22
CLN_timeToCrossOrgan 0.12 0.017 23
TCell_specificity LowerLimit 0.11 0.019 24
DendriticCell_phagocytosisProbabilityMature -0.11 0.021 25
Simulation_numDCCNS 0.11 0.029 26
Simulation_.numCD8Treg 0.089 0.071 27
CD4THelper_diff00 -0.083 0.09 28
CNS_timeToCrossOrgan 0.082 0.095 29
APC_immatureDurationStdDev -0.081 0.096 30
CNSMacrophage_phagocytosisProbabilityImmature -0.081 0.099 31
CD4Treg_typelSecretedPerHour WhenA ctivated -0.071 0.15 32
CNSMacrophage_basalM BPExpressionProbability 0.07 0.15 33
TCell_proliferationStdDev 0.068 0.17 34
TCell_becomeEffectorMean -0.067 0.17 35
TCell_apoptosisPartialMaturityMean -0.064 0.19 36
TCell_timeLocalActivationDelay 0.063 0.2 37
Spleen_width -0.058 0.24 38
TCell_ AICDStdDev -0.057 0.24 39
CD8Treg_typelSecretedPerHour WhenA ctivated 0.05 0.31 42
DendriticCell_cytokineType2PolarizationRatio -0.05 0.31 42
SLO_height -0.05 0.31 42
Th1Polarization_mhcUnExpressionDelayStdDev -0.049 0.32 43
CLN_width -0.047 0.34 44
DendriticCell_typel RequiredForActivation 0.038 0.44 45
APC_timeOfDeathStdDev 0.037 0.45 46
Th1Polarization_typelSecreted PerHour WhenActivated 0.036 0.46 47
TCell_apoptosisPartialMaturityStdDev -0.035 0.47 49
Circulation_height -0.035 0.47 49
TCell_apoptosisNaiveMean -0.035 0.48 51
Simulation_numCD4Th 0.035 0.48 51
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C.2. Global sensitivity analysis

Table C.7 — Continued

’ Response Name

HPRCC P Value Rank

Simulation_numCNS 0.032 0.51 52
Circulation_width -0.025 0.61 53
TCell_apoptosisNaiveStdDev 0.022 0.65 54
Simulation_numDCSpleen 0.021 0.67 55
SLO_width -0.02 0.69 56
Simulation_numCD4Treg -0.019 0.69 57
Th1Polarization_mhcUnExpressionDelayMean -0.019 0.7 59
Simulation_numDC 0.019 0.7 59
CD8Treg_cd8TregToCD4ThelperSpecificity DropOff -0.016 0.75 60
Spleen_timeToCrossOrgan -0.015 0.76 62
CLN_height -0.015 0.76 62
Th2Polarization_type2Secreted PerHour WhenActivated 0.012 0.8 64
Molecule_decayThreshold -0.012 0.8 64
SLO_timeToCrossOrgan -0.01 0.84 66
Simulation_immunizationLinearInitial 0.01 0.84 66
TCell_becomeEffectorStdDev 0.0097 0.84 67
CNSMacrophage_phagocytosisProbabilityMature 0.0096 0.85 68
Th2Polarization_proliferationStdDev -0.0092 0.85 69
Spleen_height 0.0087 0.86 70
DendriticCell_typelSecreted PerHourImmunized 0.0037 0.94 71
DendriticCellMigrates_lengthOf TimeMovingFollowingMigration || -0.0012 0.98 72

Table C.8: Partial rank correlation coefficient between parameter values and the CD8Treg Max

Time response, and the associated p value.

’ Response Name

HPRCC P Value Rank

TCell_proliferationMean 0.93  3.7e-183 1
CNSCell_apoptosisTNFaThreshold -0.77  5.5e-84 2
CNSMacrophage_tnfaSecretedPerHour WhenStimulated 0.76 3.2e-81 3
Molecule_molecularHalflife 0.67 2.0e-55 4
TCell_becomeEffectorMean -0.57  5.0e-37 )
APC_timeOfDeathMean -0.45  5.0e-22 6
CNS_height -0.26  5.0e-08 7
Circulation_timeToCrossOrgan 0.24 1.1e-06 8
TCell_apoptosisNaiveMean 0.23 2.6e-06 9
CNS_width -0.22  4.3e-06 10
Simulation_immunizationLinearFreq 0.22 7.9¢-06 11
Simulation_immunizationLinearDC0 -0.21 1.6e-05 12
TCell_specificity UpperLimit -0.21  2.3e-05 13
TCell_becomeEffectorStdDev 0.2 3.5e-05 14
Simulation_numCNSMacrophage 0.17  0.00034 15
TCell_ AICDMean 0.17  0.00042 16
CD4THelper_diff08 -0.17  0.00068 17
TCell_specificity LowerLimit -0.16 0.0015 18
TCell_timeLocalActivationInducedEffectorFunctionFor 0.12 0.014 19
Molecule_decayThreshold -0.11 0.025 20
TCell_cellsPerGridspace 0.1 0.034 21
CLN_timeToCrossOrgan 0.1 0.04 22
Spleen_width 0.089 0.068 23
Simulation_numDCCNS 0.083 0.09 24
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C. SUPPORTING MATERIAL FOR STATISTICAL TECHNIQUES

Table C.8 — Continued

’ Response Name H PRCC P Value Rank
TCell_timeLocalActivationDelay 0.083 0.092 25
CNSMacrophage_phagocytosisProbabilityImmature -0.08 0.1 27
DendriticCellMigrates_lengthOf TimeMovingFollowingMigration || -0.08 0.1 27
SLO_width 0.077 0.12 28
Simulation_numCNS 0.076 0.12 29
Th2Polarization_type2Secreted PerHour WhenActivated -0.074 0.13 30
Th2Polarization_proliferationStdDev -0.073 0.14 31
DendriticCell_cytokineType2PolarizationRatio 0.07 0.15 32
Simulation_numCD4Th -0.068 0.16 33
CD4THelper_diff00 -0.068 0.17 34
APC_immatureDurationMean 0.067 0.17 35
Spleen_timeToCrossOrgan 0.063 0.2 36
TCell_apoptosisPartialMaturityMean 0.061 0.21 37
Th1Polarization_typelSecreted PerHour WhenA ctivated 0.061 0.22 38
Simulation_.numCD4Treg -0.055 0.26 40
Simulation_immunizationLinearGradient 0.055 0.26 40
CLN_width 0.053 0.28 41
Th2Polarization_proliferationMean 0.05 0.3 42
DendriticCell_phagocytosisProbabilityImmature 0.047 0.34 43
TCell_apoptosisNaiveStdDev 0.046 0.35 44
CNS_timeToCrossOrgan 0.045 0.36 45
SLO_timeToCrossOrgan 0.044 0.37 46
TCell_proliferationStdDev -0.042 0.39 47
Spleen_height 0.041 04 48
CD4Treg_typelSecretedPerHour WhenA ctivated -0.039 0.42 49
Circulation_height 0.038 0.44 50
Th1Polarization_mhcUnExpressionDelayStdDev 0.033 0.5 51
Simulation_numCD8Treg -0.032 0.52 52
CD8Treg_typelSecretedPerHour WhenA ctivated 0.029 0.56 53
Simulation_numDCSpleen -0.027 0.58 54
CNSMacrophage_basalMBPExpressionProbability 0.023 0.63 55
DendriticCell_typel RequiredForActivation 0.023 0.64 56
CD8Treg_cd8Treg ToCD4ThelperSpecificity Drop Off 0.02 0.68 57
Circulation_width 0.02 0.69 58
ThlPolarization_mhcUnExpressionDelayMean -0.019 0.69 60
APC_probabilityPhagocytosisToPeptide -0.019 0.69 60
SLO_height 0.018 0.71 61
CNSMacrophage_typel RequiredForActivation -0.017 0.74 62
CLN_height 0.015 0.76 63
APC_timeOfDeathStdDev 0.01 0.83 64
DendriticCell_phagocytosisProbabilityMature 0.0095 0.85 65
APC_immatureDurationStdDev 0.0094 0.85 66
TCell_ AICDStdDev 0.0088 0.86 68
Simulation_immunizationLinearInitial -0.0088 0.86 68
Simulation_numDC -0.0071 0.89 69
DendriticCell_typelSecreted PerHourImmunized -0.003 0.95 70
CNSMacrophage_phagocytosisProbabilityMature 0.0028 0.95 71
TCell_apoptosisPartialMaturityStdDev -0.0012 0.98 72
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C.2. Global sensitivity analysis

Table C.9: Partial rank correlation coefficient between parameter values and the CD4Th1 at
40 days response, and the associated p value.

] Response Name [PRCC P Value Rank |
CNSMacrophage_tnfaSecretedPerHour WhenStimulated 0.45 6.0e-22 1
CNSCell_apoptosisTNFaThreshold -0.36  3.2e-14 2
Th1Polarization_mhcUnExpressionDelayMean -0.34  9.6e-13 3
Molecule_molecularHalflife 0.3 2.2e-10 4
TCell_proliferationMean 0.25 1.3e-07 5
CD4THelper_diff08 0.24 7.3e-07 6
CNS_height -0.23  3.1e-06 7
Circulation_width 0.18 0.0003 8
Simulation_numCD8Treg -0.15 0.002 9
Th1Polarization_typelSecreted PerHour WhenActivated 0.15 0.003 10
TCell_specificity UpperLimit -0.13 0.0065 11
CLN_height 0.13 0.0092 12
TCell_apoptosisNaiveStdDev 0.12 0.011 13
DendriticCell_typelSecreted PerHourImmunized 0.12 0.013 14
Simulation_numDC 0.12 0.014 15
TCell_cellsPerGridspace -0.11 0.022 16
CNS_width -0.11 0.024 17
TCell_apoptosisPartialMaturityMean -0.11 0.029 18
Simulation_numDCCNS 0.1 0.042 19
CNSMacrophage_phagocytosisProbabilityImmature -0.098 0.046 20
Simulation_-numCNSMacrophage 0.095 0.052 21
Simulation_numCNS 0.09 0.067 22
Spleen_width 0.084 0.088 23
Simulation_immunizationLinearGradient -0.077 0.11 24
TCell AICDStdDev 0.071 0.15 25
CLN_timeToCrossOrgan 0.065 0.18 26
CLN_width -0.063 0.2 27
Th1Polarization_-mhcUnExpressionDelayStdDev -0.062 0.21 28
CD8Treg_typelSecretedPerHour WhenA ctivated 0.056 0.26 29
DendriticCellMigrates_lengthOfTimeMovingFollowingMigration || -0.055 0.26 30
Th2Polarization_type2Secreted PerHour When Activated -0.054 0.27 31
DendriticCell_cytokineType2PolarizationRatio -0.051 0.3 32
TCell_proliferationStdDev 0.05 0.31 34
DendriticCell_phagocytosisProbabilityMature 0.05 0.31 34
TCell_becomeEffectorMean 0.045 0.35 35
Simulation_immunizationLinearDC0 -0.045 0.36 37
TCell_apoptosisPartialMaturityStdDev -0.045 0.36 37
Th2Polarization_proliferationStdDev 0.042 0.39 39
CD4THelper_diff00 0.042 0.39 39
DendriticCell_typel RequiredForActivation 0.04 0.41 41
DendriticCell_phagocytosisProbabilityImmature 0.04 0.41 41
SLO_height 0.04 0.42 42
Spleen_height -0.039 0.43 43
Th2Polarization_proliferationMean -0.037 0.45 44
Circulation_timeToCrossOrgan -0.036 0.46 46
CNSMacrophage_phagocytosisProbabilityMature 0.036 0.46 46
Simulation_numDCSpleen -0.035 0.48 47
APC_timeOfDeathMean 0.031 0.53 48
CNSMacrophage_basalMBPExpressionProbability 0.029 0.55 49
Simulation_immunizationLinearFreq -0.027 0.58 50
Circulation_height 0.026 0.59 52

Continued on Next Page. ..
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C. SUPPORTING MATERIAL FOR STATISTICAL TECHNIQUES

Table C.9 — Continued

’ Response Name H PRCC P Value Rank
APC_timeOfDeathStdDev -0.026 0.59 52
CD8Treg_cd8Treg ToCD4ThelperSpecificity DropOff -0.026 0.6 53
CNS_timeToCrossOrgan 0.022 0.66 54
TCell_timeLocalActivationDelay 0.021 0.67 55
Spleen_timeToCrossOrgan -0.018 0.71 56
APC_probabilityPhagocytosisToPeptide -0.015 0.76 57
APC_immatureDurationMean -0.014 0.77 58
Simulation_immunizationLinearInitial 0.012 0.8 59
SLO_width -0.012 0.81 61
Molecule_decayThreshold 0.012 0.81 61
CNSMacrophage_typel RequiredForActivation -0.011 0.82 63
TCell_ AICDMean 0.011 0.82 63
Simulation_.numCD4Treg -0.01 0.83 64
Simulation_numCD4Th -0.0086 0.86 65
TCell_apoptosisNaiveMean -0.0068 0.89 66
APC_immatureDurationStdDev -0.0042 0.93 67
TCell_becomeEffectorStdDev -0.0034 0.94 68
SLO_timeToCrossOrgan -0.0018  0.97 69
TCell_specificityLowerLimit -0.0016 0.97 70
CDA4Treg_typelSecreted PerHour WhenA ctivated 0.0014 0.98 72
TCell_timeLocalActivationInducedEffectorFunctionFor -0.0014 0.98 72

Table C.10: Partial rank correlation coefficient between parameter values and the Max FAE
response, and the associated p value.

’ Response Name H PRCC P Value Rank ‘
CNSCell_apoptosisTNFaThreshold -0.88  3.Te-134 1
CNSMacrophage_tnfaSecreted PerHour WhenStimulated 0.87 7.1e-133 2
Molecule_molecularHalflife 0.79 3.3e-91 3
CNS_height -0.4 4.2e-17 4
CNS_width -0.32  1.3e-11 5
Simulation_-numCNSMacrophage 0.28 3.7e-09 6
TCell_ AICDMean 0.23 2.1e-06 7
CD4THelper_diff08 0.19  0.00014 8
APC_timeOfDeathMean 0.17  0.00053 9
Simulation_immunizationLinearDCO 0.15 0.0016 10
Simulation_immunizationLinearFreq -0.11 0.025 11
CNSMacrophage_phagocytosisProbabilityMature 0.1 0.034 12
CNSMacrophage_typel RequiredForActivation -0.1 0.038 13
Th1Polarization_mhcUnExpressionDelayMean 0.095 0.051 14
Simulation_numCNS 0.089 0.07 15
DendriticCell_typel RequiredForActivation -0.077 0.11 16
DendriticCell_phagocytosisProbability Mature -0.077 0.12 17
TCell_apoptosisNaiveMean -0.073 0.14 18
Circulation_timeToCrossOrgan -0.068 0.17 19
TCell_apoptosisPartialMaturityMean 0.062 0.21 20
CD4THelper_diff00 -0.061 0.22 21
TCell_becomeEffectorStdDev 0.057 0.25 23
TCell_proliferationMean -0.057 0.25 23
CLN_timeToCrossOrgan 0.054 0.27 25

Continued on Next Page. ..
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C.2.

Global sensitivity analysis

Table C.10 — Continued

Response Name

H PRCC P Value Rank

CD4Treg_typelSecretedPerHour WhenA ctivated -0.054 0.27 25
CNSMacrophage_phagocytosisProbabilityImmature 0.047 0.34 26
CNS_timeToCrossOrgan -0.043 0.38 28
TCell_ AICDStdDev 0.043 0.38 28
DendriticCellMigrates_lengthOfT'imeMovingFollowingMigration || 0.041 0.4 29
TCell_timeLocalActivationDelay -0.04 0.41 30
Simulation_immunizationLinearGradient 0.039 0.43 31
SLO_height -0.036 0.46 32
DendriticCell_typelSecreted PerHourImmunized 0.035 0.48 33
Th2Polarization_proliferationStdDev -0.034 0.48 35
Th2Polarization_proliferationMean -0.034 0.48 35
SLO_timeToCrossOrgan 0.034 0.49 37
Th1Polarization_typelSecreted PerHour WhenA ctivated 0.034 0.49 37
Simulation.numCD4Th 0.033 0.5 39
CNSMacrophage_basalMBPExpressionProbability 0.033 0.5 39
Simulation_numCD8Treg -0.032 0.51 40
TCell_cellsPerGridspace 0.029 0.55 42
Spleen_width -0.029 0.55 42
TCell_specificityUpperLimit 0.028 0.57 43
Th2Polarization_type2Secreted PerHour WhenA ctivated -0.027 0.58 44
SLO_width 0.027 0.59 45
TCell_apoptosisPartialMaturityStdDev -0.026 0.6 46
Spleen_timeToCrossOrgan 0.025 0.6 47
APC_probabilityPhagocytosisToPeptide -0.025 0.61 49
TCell_apoptosisNaiveStdDev -0.025 0.61 49
DendriticCell_phagocytosisProbabilityImmature -0.023 0.64 51
Simulation_numDC 0.023 0.64 51
Circulation_width 0.02 0.68 52
Simulation_.numCD4Treg 0.018 0.72 53
TCell_timeLocalActivationInducedEffectorFunctionFor 0.016 0.74 55
Simulation_immunizationLinearInitial 0.016 0.74 55
TCell_becomekEftectorMean -0.015 0.76 56
CLN_height 0.014 0.78 58
TCell_specificityLowerLimit -0.014 0.78 58
Spleen_height 0.013 0.8 59
CLN_width -0.012 0.8 60
DendriticCell_cytokineType2PolarizationRatio 0.011 0.82 61
CD8Treg_typelSecretedPerHour WhenA ctivated -0.011 0.83 62
Simulation_numDCSpleen -0.0096 0.84 63
Simulation_-numDCCNS 0.0069 0.89 64
TCell_proliferationStdDev -0.0063 0.9 65
ThlPolarization_mhcUnExpressionDelayStdDev 0.0059 0.9 66
Circulation_height 0.0058 0.91 67
APC_immatureDurationMean 0.0054 0.91 68
CD8Treg_cd8Treg ToCD4ThelperSpecificity Drop Off -0.0013 0.98 69
APC_timeOfDeathStdDev -0.0011 0.98 70
APC_immatureDurationStdDev 0.001 0.98 71
Molecule_decayThreshold -9.1e-05 1.0 72
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C. SUPPORTING MATERIAL FOR STATISTICAL TECHNIQUES

Table C.11: Partial rank correlation coefficient between parameter values and the FAE at 40
days response, and the associated p value.

] Response Name | PRCC P Value Rank |
CNSMacrophage_tnfaSecreted PerHour WhenStimulated 0.77 2.2e-82 1
CNSCell_apoptosisTNFaThreshold -0.77 6.5e-82 2
Molecule_molecularHalflife 0.65 8.3e-52 3
CNS_height -0.37 7.9e-15 4
CNS_width -0.32  4.2e-11 5
Simulation_.numCNSMacrophage 0.28 5.1e-09 6
APC_timeOfDeathMean 0.17 0.00055 7
CD4THelper_diff08 0.12 0.013 8
TCell_ AICDMean 0.12 0.016 9
Simulation_immunizationLinearDC0 0.11 0.023 10
Simulation_numCNS 0.1 0.034 11
APC_probabilityPhagocytosisToPeptide 0.095 0.052 12
TCell_apoptosisNaiveMean -0.093 0.059 13
CD4THelper_diff00 -0.081 0.099 14
CNSMacrophage_typel RequiredForActivation -0.081 0.1 15
DendriticCell_typel RequiredForActivation -0.076 0.12 16
APC_timeOfDeathStdDev -0.075 0.13 17
CLN_timeToCrossOrgan 0.073 0.14 18
DendriticCell_typelSecreted PerHourImmunized 0.068 0.16 19
TCell_becomeEffectorMean -0.066 0.18 20
TCell_apoptosisNaiveStdDev -0.065 0.18 21
Simulation_immunizationLinearFreq -0.061 0.21 23
TCell_specificityUpperLimit 0.061 0.21 23
TCell_ AICDStdDev 0.056 0.26 24
CNSMacrophage_phagocytosisProbabilityMature 0.055 0.26 26
CD4Treg_typelSecretedPerHour WhenA ctivated -0.055 0.26 26
Th2Polarization_type2Secreted PerHour WhenA ctivated -0.05 0.3 27
CNSMacrophage_phagocytosisProbabilityImmature 0.048 0.33 28
TCell_timeLocalActivationDelay -0.044 0.37 29
DendriticCell_phagocytosisProbabilityImmature -0.043 0.38 30
Simulation_.numDCCNS 0.037 0.46 31
APC_immatureDurationMean -0.036 0.46 32
Th2Polarization_proliferationMean -0.036 0.47 33
Spleen_width -0.031 0.53 35
DendriticCell_phagocytosisProbabilityMature -0.031 0.53 35
Simulation_numCD4Th 0.03 0.54 36
Simulation_numDCSpleen -0.029 0.56 38
CNSMacrophage_basalM BPExpressionProbability -0.029 0.56 38
SLO_timeToCrossOrgan 0.028 0.57 39
SLO_height -0.027 0.58 40
CNS_timeToCrossOrgan 0.027 0.59 41
Simulation_immunizationLinearGradient -0.026 0.6 42
TCell_becomeEfftectorStdDev 0.025 0.62 43
Molecule_decay Threshold 0.024 0.63 44
Simulation_-numDC 0.023 0.64 45
TCell_cellsPerGridspace 0.021 0.67 46
Th2Polarization_proliferationStdDev -0.018 0.71 47
Circulation_timeToCrossOrgan -0.018 0.72 48
CD8Treg_typelSecretedPerHour WhenA ctivated 0.017 0.73 49
APC_immatureDurationStdDev 0.015 0.76 50
SLO_width 0.012 0.8 53
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C.2. Global sensitivity analysis

Table C.11 — Continued

Response Name H PRCC P Value Rank
Simulation_numCD8Treg -0.012 0.8 53
Simulation_numCD4Treg 0.012 0.8 53
TCell_proliferationMean 0.012 0.81 54
Th1Polarization_mhcUnExpressionDelayMean 0.011 0.83 55
Spleen_height -0.01 0.83 56
CLN_height -0.0072 0.88 57
DendriticCell_cytokineType2PolarizationRatio 0.0068 0.89 58
CLN_width -0.0063 0.9 60
TCell_proliferationStdDev 0.0063 0.9 60
Circulation_width 0.0057 0.91 62
DendriticCellMigrates_lengthOf TimeMovingFollowingMigration || 0.0057 0.91 62
TCell_timeLocalActivationInducedEffectorFunctionFor 0.0037 0.94 63
TCell_specificity LowerLimit 0.0034 0.94 64
TCell_apoptosisPartialMaturityMean 0.003 0.95 65
Simulation_immunizationLinearInitial 0.0025 0.96 66
TCell_apoptosisPartialMaturityStdDev 0.0024 0.96 67
Th1Polarization_.mhcUnExpressionDelayStdDev -0.0023 0.96 68
Spleen_timeToCrossOrgan -0.0017 0.97 69
Circulation_height -0.0011 0.98 70
CD8Treg_cd8Treg ToCD4ThelperSpecificity DropOff -0.00051  0.99 71
Th1Polarization_typelSecretedPerHour WhenActivated 0.00043 0.99 72
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C. SUPPORTING MATERIAL FOR STATISTICAL TECHNIQUES

C.3 Robustness sensitivity analysis

This section presents the full results of applying the robustness analysis of section 6.5 to the
ARTIMMUS simulation. Data is presented for each response is presented in turn, in the fol-
lowing order: CD4Th1 Maz, CD4Th1 Max Time, CD4Th2 Max, CD4Th2 Max Time, CD4Treg
Mazx, CD4Treg Max Time, CD8Treq Max, CD8Treq Max Time, CD4Th1 at 40 days, Mazximum
EAE, and FAE at 40 days. Two further responses are presented hereafter, Mazimum FAE A
test and FAFE at 40 days A test, which employ the A test on Mazimum EAE and EAE at 40
days responses to determine when a scientifically significance change in simulation behaviour
has taken place. Data is presented in tables, with each table presenting the simulation’s param-
eters, the robustness index, lower and upper indexes, the lower and upper boundaries at which
significant deviation in simulation behaviours take place, the default value for each parameter.
Parameters are ranked according to their robustness indexes. For a full explanation of these
measures refer to section 6.5.1.
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Table C.12: Robustness indexes for parameters with respect to the CD/Th1 Mazx response. RI, robustness index; LI, lower index; UI, upper index; LB, lower

boundary; DV, default value; UB, upper boundary. Results indicating no significant deviation in behaviour are marked with a period.

] Parameter Name I RI (%) | LI (%) UI (%) | LB DV UB | Rank |
CNSCell_apoptosisTNFaThreshold 5.263 5.263 7.752 4.737(+) 5 5.388(—) 1
CNSMacrophage_tnfaSecreted PerHour WhenStimulated 5.638 7.201 5.638 92.8(—) 100 105.6(+) 2
CD4THelper_diff08 566 | 6334 5.6 0.7962(=)  0.85  0.8981(+) 3
CNS_height 6.53 6.53  7.432 46.73(+) 50 53.72(—) 4
Simulation_immunizationLinearDCO 6.672 7.838 6.672 1.843(—) 2 2.133(+) 5
APC_timeOfDeathMean 7.3 7.3 9.124 102(—) 110 120(+) 6
Molecule_molecularHalflife 7.439 9.284 7.439 0.4536(—) 0.5 0.5372(+) 7
TCell_ AICDMean 8.806 8.806 11.16 54.72(—) 60 66.69(+) 8
TCell_cellsPerGridspace 8.98 8.98 . 6.371(—) 7 . 9
ONS_width 9273 | 9273  12.56 45.36(+) 50 56.28(—) 10
TCell_proliferationMean 0282 | 11.97  9.282 16.9(+) 19.2 20 98(—) 11
Simulation_immunizationLinearFreq 10.31 10.31 11.67 5.382(+) 6 6.7(—) 12
Simulation_numCNSMacrophage 12.12 14.29 12.12 64.28(—) 75 84. 09(+) 13
TCell_timeLocalActivationInducedEffectorFunctionFor 14.59 14.59 23.67 40.99(—) 48 59.36(+) 14
Simulation_immunizationLinearGradient 16.92 16.92 21.62 | -0.005846(—) -0.005 -0.003919(+) 15
TCell_becomeEffectorMean 18.22 26.21 18.22 44.27(-) 60 70.93(—) 16
APC_probabilityPhagocytosisToPeptide 32.53 32.53 64.08 0.01349(-) 0.02 0.03282(+) 17
ThiPolarization_typelSecretedPerHour WhenActivated 38.04 38.04 509.8 61.96(—) 100 609.8(+) 18
TCell_apoptosisNaiveMean 38.2 38.2 104.4 18.54(—) 30 61.32(+) 19
Simulation_.numDCCNS 30.7 | 4088 397 23.65(—) 40 55. 88(+) 20
Th2Polarization_proliferationMean 41.66 41.66 16.8(+) 28.8 21
Simulation_numCNS 43.41 43.41 . 283(—) 500 22
Simulation-numCD4Th 48.1 48.1 83.79 20.76(—) 40 73. 51(—|—) 23
APC_immatureDurationMean 54.25 54.25 98.42 21.96(+) 48 95.24(—) 24
CNSMacrophage_typel RequiredForActivation 58 76.5 58 0.5875(+) 2.5 3.95(—) 25
Circulation_height 61.06 . 61.06 . 50 80.53(—) 26
TCell_timeLocalActivationDelay 64.22 64.22 258.4 3.578(—) 10 35.84(—) 27
SLO_width 67.65 67.65 . 50 83.82(—) 28

Continued on Next Page. ..
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Table C.12 — Continued

Parameter Name | RI (%) | LI (%) UI (%) | LB DV UB | Rank |
CNSMacrophage_basalMBPExpressionProbability 76.59 76.59 175.6 0.04683(—) 0.2 0.5511(+) 29
DendriticCell_phagocytosisProbabilityImmature 76.65 76.65 0.2335(—) 1 . 30
DendriticCell_cytokineType2PolarizationRatio 81.25 81.25 0.03188(—) 0.17 . 31
Circulation_timeToCrossOrgan 82.13 82.13 . 5 9.107(—) 32
SLO_height 82.59 . 82.59 . 50 91.29(—) 33
DendriticCell_typelSecreted PerHourImmunized 88.89 88.89 860.5 1.111(-) 10 96.05(+) 34
ThiPolarization_mhcUnExpressionDelayMean 93.54 93.54 0.5165(+) 8 . 35
Simulation_ numCD8Treg 94.96 94.96 1.513(+) 30 36
CD8Treg_cd8TregToCD4ThelperSpecificity DropOff 99.8 99.8 0.001967(+) 1 37
DendriticCell_typelRequiredForActivation 99.93 99.93 . 0.001395(—) 2 . 38
CLN_width 198.4 1984 50 149.2(—) 39
Molecule_decayThreshold 752.7 752.7 0.01 0.08527(—) 40
APC_immatureDurationStdDev 24 72
APC_timeOfDeathStdDev 48 72
CD4THelper_diff00 0.05 72
CD4Treg_typelSecretedPerHour WhenA ctivated 10 72
CD8Treg_typelSecreted PerHour WhenA ctivated 10 72
CLN_height 50 72
CLN_timeToCrossOrgan 12 72
CNS_timeToCrossOrgan 20 72
CNSMacrophage_phagocytosisProbabilityImmature 0.7 72
CNSMacrophage_phagocytosisProbabilityMature 0.3 72
Circulation_width 50 72
DendriticCellMigrates_lengthOf TimeMovingFollowingMigration 3.5 72
DendriticCell_phagocytosisProbabilityMature 0.3 72
SLO_timeToCrossOrgan 12 72
Simulation_immunizationLinearInitial 14 72
Simulation_.numCD4Treg 30 72
Simulation_numDC 10 72
Simulation_-numDCSpleen 100 72
Spleen_height 50 72
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Table C.12 — Continued

’ Parameter Name H RI (%) \ LI (%) UI (%) \ LB DV UB Rank
Spleen_timeToCrossOrgan . . . . 5 . 72
Spleen_width . . . . 50 . 72
TCell AICDStdDev . . . . 56 . 72
TCell_apoptosisNaiveStdDev . . . . 17 . 72
TCell_apoptosisPartialMaturityMean . . . . 12 . 72
TCell_apoptosisPartialMaturityStdDev . . . . 6 . 72
TCell_becomeEffectorStdDev . . . . 56 . 72
TCell_proliferationStdDev . . . . 9.6 . 72
TCell_specificity LowerLimit . . . . 0.5 . 72
TCell_specificity UpperLimit . . . . 0.9 . 72
Th1Polarization_mhcUnExpressionDelayStdDev . . . . 2 . 72
Th2Polarization_proliferationStdDev . . . . 19.2 . 72
Th2Polarization_type2Secreted PerHour When A ctivated . . . . 100 . 72

Table C.13: Robustness indexes for parameters with respect to the CD4Th1 Max Time response. RI, robustness index; LI, lower index; UI, upper index; LB,
lower boundary; DV, default value; UB, upper boundary. Results indicating no significant deviation in behaviour are marked with a period.

y Parameter Name | RI (%) | LI (%) UI (%) | LB DV UB | Rank |
TCell_proliferationMean 0177 | 9177 1147 17.44(—)  19.2 21.4(+) 1
CNSMacrophage_tnfaSecretedPerHour WhenStimulated 11.97 11.97 19.41 88.03(—) 100 119.4(+) 2
CNSCell_apoptosisTNFaThreshold 13.78 14.78 13.78 4.261(+) 5 5.689(—) 3
ONS_height 1479 | 1628  14.79 41.86(+) 50 57.4(—) 4
Simulation_immunizationLinearDCO 16.71 17.84 16.71 1.643(—) 2 2.334(—) 5
Molecule_molecularHalflife 16.73 16.73 31.33 0.4164(-) 0.5 0.6566(+) 6
Simulation_immunizationLinearGradient 22.76 22.76 38.57 | -0.006138(—) -0.005 -0.003071(—) 7
CNS_width 23.01 . 23.01 . 50 61.51(—) 8
Simulation.-num CNSMacrophage 23.71 23.71 29.6 57.22(—) 75 97.2(+) 9
TCell_becomeEffectorMean 24.94 24.94 45.57 45.04(+) 60 87.34(—) 10
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0.2

Parameter Name | RI (%) | LI (%) UI (%) | LB DV UB | Rank |
APC_timeOfDeathMean 26.84 26.84 . 110 139.5(—) 11
Simulation numCD4Th 41.43 41.43 55.51 23.43(+) 40 62.2(—) 12
Th2Polarization_proliferationMean 42.96 42.96 . 16.43(—) 28.8 . 13
SLO_width 4432 | 4432 5127 27.84(—) 50 75.64(+) 14
Circulation_height 46.95 46.95 26.53(—) 50 . 15
CD4THelper_diff08 47.23 47.23 0.4485(+) 0.85 16
TCell_cellsPerGridspace 47.96 47.96 3.642(—) 7 17
Simulation_.numDCCNS 51.7 51.7 . 19.32(—) 40 . 18
TCell_apoptosisNaiveMean 53.26 53.26 213.3 14.02(—) 30 93.98(+) 19
Simulation_numCNS 56.83 56.83 215.9(—) 500 . 20
CLN_width 57.31 57.31 21.34(—-) 50 21
ThilPolarization_typelSecreted PerHour WhenA ctivated 62.49 62.49 37.51(—) 100 22
TCell_timeLocalActivationInducedEffectorFunctionFor 65.05 65.05 16.78(—) 48 23
APC_probabilityPhagocytosisToPeptide 65.77 65.77 0.006846(—) 0.02 24
ThiPolarization-mhcUnExpressionDelayMean 69.2 69.2 . 2.464(+) 8 . 25
TCell_timeLocalActivationDelay 75.41 75.41 364 2.459(-) 10 46.4(—) 26
Simulation_numCD8Treg 76.89 76.89 249.6 6.933(+) 30 104.9(—) 27
Simulation_numCD4Treg 83.07 83.07 496.2 5.079(+) 30 178.9(—) 28
DendriticCell_cytokineType2PolarizationRatio 83.8 83.8 0.02755(—) 0.17 29
TCell_specificityLowerLimit 86.34 86.34 0.06832(+) 0.5 30
DendriticCell_phagocytosisProbabilityImmature 91.47 91.47 0.08532(—) 1 31
CD8Treg_cd8TregToCD4ThelperSpecificityDropOff 92.76 92.76 0.07239(+) 1 32
CNSMacrophage_basalMBPExpression Probability 95.18 95.18 0.009648(—) 0.2 33
DendriticCell_typelRequiredForActivation 99.77 99.77 . 0.00461(—) 2 . 34
CNSMacrophage_typel RequiredForActivation 127.5 127.5 . 2.5 5.687(—) 35
Simulation_immunizationLinearInitial 937.5 937.5 14 145.3(—) 36
TCell_ AICDMean 60 72
Simulation_immunizationLinearFreq 6 72
APC_immatureDurationMean 48 72
Circulation_timeToCrossOrgan 5 72
SLO_height 50 72
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Table C.13 — Continued

Parameter Name I RI(%) [ LI (%) UI %) ] LB DV UB Rank
DendriticCell_typelSecreted PerHourImmunized 10 72
Molecule_decayThreshold 0.01 72
APC_immatureDurationStdDev 24 72
APC_timeOfDeathStdDev 48 72
CD4THelper_diff00 0.05 72
CD4Treg_typelSecretedPerHour WhenA ctivated 10 72
CD8Treg_typelSecretedPerHour WhenA ctivated 10 72
CLN_height 50 72
CLN_timeToCrossOrgan 12 72
CNS_timeToCrossOrgan 20 72
CNSMacrophage_phagocytosisProbabilityImmature 0.7 72
CNSMacrophage_phagocytosisProbabilityMature 0.3 72
Circulation_width 50 72
DendriticCellMigrates_lengthOfTimeMovingFollowingMigration 3.5 72
DendriticCell_phagocytosisProbabilityMature 0.3 72
SLO_timeToCrossOrgan 12 72
Simulation_-numDC 10 72
Simulation_numDCSpleen 100 72
Spleen_height 50 72
Spleen_timeToCrossOrgan 5 72
Spleen_width 50 72
TCell AICDStdDev 56 72
TCell_apoptosisNaiveStdDev 17 72
TCell_apoptosisPartialMaturityMean 12 72
TCell_apoptosisPartialMaturityStdDev 6 72
TCell_becomeEffectorStdDev 56 72
TCell_proliferationStdDev 9.6 72
TCell_specificity UpperLimit 0.9 72
Th1Polarization_mhcUnExpressionDelayStdDev 2 72
Th2Polarization_proliferationStdDev 19.2 72
Th2Polarization_type2Secreted PerHour When A ctivated 100 72
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Table C.14: Robustness indexes for parameters with respect to the CD/Th2 Mazx response. RI, robustness index; LI, lower index; UI, upper index; LB, lower
boundary; DV, default value; UB, upper boundary. Results indicating no significant deviation in behaviour are marked with a period.

] Parameter Name | RI (%) | LI (%) UI (%) | LB DV UB | Rank |
CD4THelper_diff08 2.685 | 3.205 2638 | 08228(+) 085  0.8720() 1
CNSMacrophage_tnfaSecretedPerHour WhenStimulated 2.992 2.992 3.343 97.01(-) 100 103.3(+) 2
CNSCell_apoptosisTNFaThreshold 3.267 3.267 4.1 4.837(+) 5 5.205(—) 3
CNS_height 4018 | 4.018  4.854 47.99(+) 50 52.43(~) 4
Molecule_molecularHalflife 4.171 4.171 5.513 0.4791(-) 0.5 0.5276(+) 5
CNS_width 4657 | 4657  6.711 47.67(+) 50 53.36(—) 6
Simulation_num CNSMacrophage 6.788 7.189 6.788 69.61(—) 75 80.09(+) 7
APC._timeOfDeathMean 7617 | 7.617  9.935 101.6(—) 110 120.9(+) 8
TCel_LAICDMean 8544 | 8544  10.33 54.87(—) 60 66.2(+) 9
Simulation_immunizationLinearDC0 9.022 9.022 10.91 1.82(—) 2 2.218(+) 10
TCell_proliferationMean 9.809 | 11.93  9.809 1691(+) 192 21.08(—) 11
TCell_cellsPerGridspace 10.41 10.41 . 6.271(—) 7 . 12
Simulation_immunizationLinearGradient 15.16 17.62 15.16 -0.005881(—) -0.005 -0.004242(+) 13
Simulation_immunizationLinearFreq 16.13 16.13 37.34 5.032(+) 6 8.24(—) 14
APC_probabilityPhagocytosisToPeptide 16.92 16.92 19.48 0.01662(—) 0.02 0.0239(+) 15
TCell_timeLocalActivationInducedEffectorFunctionFor 19.02 19.02 65.13 38.87(—) 48 79.26(+) 16
TCell_becomeEffectorMean 20.64 29.22 20.64 42.47(—) 60 72.38(—) 17
Simulation.numDCCNS 23.84 | 2632  23.84 29.47(—) 40 49.53(+) 18
Simulation_numCNS 27.59 27.59 93.45 362(—) 500 967.3(—) 19
Circulation_height 36.99 . 36.99 . 50 68.49(—) 20
Th1Polarization_typelSecreted PerHour WhenA ctivated 38.01 38.01 . 61.99(—) 100 . 21
Th2Polarization_proliferationMean 45.21 45.21 . 15.78(+) 28.8 . 22
DendriticCell_cytokineType2PolarizationRatio 49.16 49.16 . 0.08643(+) 0.17 . 23
TCell_apoptosisNaiveMean 49.23 49.23 156.7 15.23(—) 30 77.02(+4) 24
CNSMacrophage_typel RequiredForActivation 50.32 54.99 50.32 1.125(+) 2.5 3.758(—) 25
CLN_width 51.53 51.53 . 24.23(+) 50 . 26
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Table C.14 — Continued

Parameter Name H RI (%) \ LI (%) UI (%) \ LB DV UB \ Rank
DendriticCell_phagocytosisProbabilityImmature 53.31 53.31 0.4669(—) 1 27
APC_immatureDurationMean 53.55 53.55 . 22.29(+) 48 . 28
Simulation_numCD4Th 54.33 54.33 103.4 18.27(—) 40 81.36(+) 29
SLO_width 56.01 56.01 97.02 22(+) 50 98.51(—) 30
TCell_timeLocalActivationDelay 58.56 58.56 212 4.144(+) 10 31.2(—) 31
Circulation_timeToCrossOrgan 59.66 . 59.66 . 5 7.983(—) 32
DendriticCell_typelSecreted PerHourImmunized 60.43 60.43 . 3.957(+) 10 . 33
CNSMacrophage_basalMBPExpressionProbability 78.32 78.32 132.1 0.04335(—) 0.2 0.4643(+) 34
CNSMacrophage_phagocytosisProbabilityMature 78.38 78.38 . 0.06485(+) 0.3 . 35
Th2Polarization_type2SecretedPerHour WhenActivated 87.03 92.12 87.03 7.879(—) 100 187(+) 36
Spleen_height 160 160 50 130(—) 37
Molecule_decayThreshold 235.2 235.2 0.01 0.03352(+) 38
CD4THelper_diff00 1345 1345 0.05 0.7226(—) 39
ThilPolarization.mhcUnExpressionDelayMean 8 . 72
Simulation_numCD8Treg 30 72
Simulation_-numCD4Treg 30 72
TCell_specificityLowerLimit 0.5 72
CD8Treg_cd8TregToCD4ThelperSpecificity Drop Off 1 72
DendriticCell_typel RequiredForActivation 2 72
Simulation_immunizationLinearInitial 14 72
SLO_height 50 72
APC_immatureDurationStdDev 24 72
APC_timeOfDeathStdDev 48 72
CD4Treg_typelSecretedPerHour WhenA ctivated 10 72
CD8Treg_typelSecretedPerHour WhenA ctivated 10 72
CLN_height 50 72
CLN_timeToCrossOrgan 12 72
CNS_timeToCrossOrgan 20 72
CNSMacrophage_phagocytosisProbabilityImmature 0.7 72
Circulation_width 50 72
DendriticCellMigrates_lengthOf TimeMovingFollowingMigration 3.5 72
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Table C.14 — Continued

] Parameter Name H RI (%) \ LI (%) UI (%) \ LB DV UB \ Rank \
DendriticCell_phagocytosisProbabilityMature . . . . 0.3 . 72
SLO_timeToCrossOrgan . . . . 12 . 72
Simulation_numDC . . . . 10 . 72
Simulation_.numDCSpleen . . . . 100 . 72
Spleen_timeToCrossOrgan . . . . 5 . 72
Spleen_width . . . . 50 . 72
TCell_ AICDStdDev . . . . 56 . 72
TCell_apoptosisNaiveStdDev . . . . 17 . 72
TCell_apoptosisPartialMaturityMean . . . . 12 . 72
TCell_apoptosisPartialMaturityStdDev . . . . 6 . 72
TCell_becomekEftectorStdDev . . . . 56 . 72
TCell_proliferationStdDev . . . . 9.6 . 72
TCell_specificity UpperLimit . . . . 0.9 . 72
Th1Polarization_mhcUnExpressionDelayStdDev . . . . 2 . 72
Th2Polarization_proliferationStdDev . . . . 19.2 . 72

Table C.15: Robustness indexes for parameters with respect to the CD/Th2 Max Time response. RI, robustness index; LI, lower index; UI, upper index; LB,
lower boundary; DV, default value; UB, upper boundary. Results indicating no significant deviation in behaviour are marked with a period.

] Parameter Name H RI (%) \ LI (%) UI (%) \ LB DV UB \ Rank ‘
CNSCell_apoptosisTNFaThreshold 5.2 5.2 6.986 4.74(+) 5 5.349(—) 1
CNSMacrophage_tnfaSecreted PerHour WhenStimulated 5.742 5.742 6.124 94.26(—) 100 106.1(+) 2
CNS_height 6.717 | 7.156  6.717 | 46.42(+) 50 53.36(—) 3
CNS_width 7021 | 7.021 1146 | 46.49(+) 50 55.73(—) 4
Molecule_molecularHalflife 7.759 7.759 8.434 0.4612(-) 0.5 0.5422(+) 5
Simulation_numCNSMacrophage 13.13 13.13 13.49 65.15(—) 75 85.12(+) 6
TCell_ AICDMean 24.62 | 24.62 3268 | 45.23(-) 60 79.61(+) 7
APC_probabilityPhagocytosisToPeptide 25.85 25.85 58.4 0.01483(—) 0.02 0.03168(+) 8
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Table C.15 — Continued

Parameter Name I RI(%) [ LI (%) UI %) ] LB DV UB Rank
TCell_cellsPerGridspace 33.17 33.17 4.678(—) 7 9
APC_timeOfDeathMean 35.8 35.8 70.62(—) 110 10
Simulation_immunizationLinearFreq 36.11 36.11 . 3.834(-) 6 . 11
Simulation_.numCNS 38.11 38.11 96.73 309.4(-) 500 983.6(—) 12
Simulation.numDCCNS 39.09 39.09 57.43 24.37(—) 40 62.97(+) 13
Simulation_immunizationLinearDCO 43.58 43.58 . 1.128(+) 2 . 14
Simulation_immunizationLinearGradient 44.1 . 44.1 . -0.005 -0.002795(+) 15
ThiPolarization_typelSecreted PerHour WhenA ctivated 44.88 44.88 55.12(—) 100 16
TCell_becomeEffectorMean 47.5 47.5 31.5(—) 60 17
TCell_timeLocalActivationInducedEffectorFunctionFor 49.56 49.56 24.21(—) 48 18
DendriticCell_phagocytosisProbabilityImmature 70.32 70.32 0.2968(—) 1 19
Simulation_numCD4Th 74.73 74.73 . 10.11(+) 40 . 20
CNSMacrophage_typel RequiredForActivation 75.85 86.19 75.85 0.3452(+) 2.5 4.396(—) 21
CNSMacrophage_phagocytosisProbabilityMature 90.65 90.65 0.02806(+) 0.3 . 22
CD4THelper_diff08 92.33 92.33 0.06518(—) 0.85 23
Th2Polarization_type2Secreted PerHour WhenA ctivated 94.89 94.89 . 5.113(—) 100 . 24
CNSMacrophage_basalMBPExpressionProbability 96.19 96.19 387.3 0.007622(—) 0.2 0.9745(+) 25
SLO_width 162.8 162.8 . 50 131.4(+) 26
Circulation_height 182.6 182.6 50 141.3(—) 27
TCell_timeLocalActivationDelay 325.5 325.5 10 42.55(-) 28
DendriticCell_typelSecreted PerHourImmunized 1834 1834 10 193.4(—) 29
TCell_proliferationMean 19.2 72
Th2Polarization_proliferationMean 28.8 72
DendriticCell_cytokineType2PolarizationRatio 0.17 72
TCell_apoptosisNaiveMean 30 72
CLN_width 50 72
APC_immatureDurationMean 48 72
Circulation_timeToCrossOrgan 5 72
Spleen_height 50 72
Molecule_decayThreshold 0.01 72
CD4THelper_diff00 0.05 72
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Table C.15 — Continued

Parameter Name | RI (%) | LI (%) UI (%) | LB DV UB | Rank |
Th1Polarization.mhcUnExpressionDelayMean 8 72
Simulation_numCD8Treg 30 72
Simulation_.numCD4Treg 30 72
TCell_specificity LowerLimit 0.5 72
CD8Treg_cd8Treg ToCD4ThelperSpecificity Drop Off 1 72
DendriticCell_typel RequiredForActivation 2 72
Simulation_immunizationLinearInitial 14 72
SLO_height 50 72
APC_immatureDurationStdDev 24 72
APC_timeOfDeathStdDev 48 72
CD4Treg_typelSecretedPerHour WhenA ctivated 10 72
CD8Treg_typelSecretedPerHour WhenA ctivated 10 72
CLN_height 50 72
CLN_timeToCrossOrgan 12 72
CNS_timeToCrossOrgan 20 72
CNSMacrophage_phagocytosisProbabilityImmature 0.7 72
Circulation_width 50 72
DendriticCellMigrates_lengthOf TimeMovingFollowingMigration 3.5 72
DendriticCell_phagocytosisProbabilityMature 0.3 72
SLO_timeToCrossOrgan 12 72
Simulation_numDC 10 72
Simulation_.numDCSpleen 100 72
Spleen_timeToCrossOrgan 5 72
Spleen_width 50 72
TCell_ AICDStdDev 56 72
TCell_apoptosisNaiveStdDev 17 72
TCell_apoptosisPartialMaturityMean 12 72
TCell_apoptosisPartialMaturityStdDev 6 72
TCell_becomekEftectorStdDev 56 72
TCell_proliferationStdDev 9.6 72
TCell_specificityUpperLimit 0.9 72
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Table C.15 — Continued

Parameter Name I RI(%) [ LI (%) UI %) ] LB DV UB Rank
ThlPolarization_mhcUnExpressionDelayStdDev . . . . 2 . 72
Th2Polarization_proliferationStdDev . . . . 19.2 . 72

Table C.16: Robustness indexes for parameters with respect to the CD4Treg Maz response. RI, robustness index; LI, lower index; Ul, upper index; LB, lower
boundary; DV, default value; UB, upper boundary. Results indicating no significant deviation in behaviour are marked with a period.

y Parameter Name | RI (%) [ LI (%) UI (%) | LB DV UB | Rank
TCell_proliferationMean 3539 | 3.530  3.799 1852(1) 192  19.93(0) 1
APC_timeOfDeathMean 4273 | 4273 4.392 105.3(—) 110 114.8(+) 2
CNSMacrophage_tnfaSecretedPerHour WhenStimulated 4.842 6.025 4.842 93.97(—) 100 104.8(+) 3
CNSCell_apoptosisTNFaThreshold 5.274 5.274 6.125 4.736(+) 5 5.306(—) 4
CNS_height 5822 | 5822 6.523 17.09(1) 50 53.26(—) 5
Molecule_molecularHalflife 6.794 6.933 6.794 0.4653(—) 0.5 0.534(+) 6
ONS_width 7202 | 7.202 932 46.4(+) 50 54.66(—) 7
TCell_cellsPerGridspace 8.562 8.562 . 6.401(—) 7 . 8
Simulation_immunizationLinearDCO 8.725 8.725 9.881 1.825(—) 2 2.198(+) 9
CD4THelper_diff08 8.844 8.844 9.845 0.7748(-) 0.85 0.9337(+) 10
TCell_becomeEffectorMean 9.525 9.525 21.13 54.28(—) 60 72.68(+) 11
APC_probabilityPhagocytosisToPeptide 9.778 9.778 10.68 0.01804(—) 0.02 0.02214(+) 12
TCel_AICDMean 121 121 13.02 52.74(-) 60 67.81(+) 13
Simulation_immunizationLinearGradient 12.95 18.51 12.95 | -0.005926(—) -0.005 -0.004353(+) 14
Simulation_-numCNSMacrophage 13.18 13.25 13.18 65.06(—) 75 84.89(+) 15
Simulation_ numDCCNS 16.67 16.67 20.75 33.33(—) 40 48.3(+) 16
TCell_timeLocalActivationInducedEffectorFunctionFor 17.56 17.56 48.79 39.57(—) 48 71.42(+) 17
Simulation_immunizationLinearFreq 26.81 26.81 30.71 4.392(+) 6 7.843(—) 18
Simulation_numCD4Treg 30.89 30.89 32.79 20.73(-) 30 39.84(+) 19
APC_immatureDurationMean 32.42 32.42 37.5 32.44(+) 48 66(—) 20
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Table C.16 — Continued

Parameter Name | RI (%) | LI (%) UI (%) | LB DV UB | Rank |
Circulation_height 32.55 32.55 . 50 66.28(—) 21
Th2Polarization_proliferationMean 34.15 34.15 . 18.96(+) 28.8 . 22
Simulation_numCNS 34.59 34.59 72.22 327.1(—) 500 861.1(—) 23
ThiPolarization_typelSecretedPerHour WhenActivated 35.32 35.32 693.8 64.68(—) 100 793.8(+) 24
Simulation_.numCD8Treg 37.63 37.63 44.89 18.71(+) 30 43.47(-) 25
TCell_specificity UpperLimit 40.8 40.8 . 0.5328(—) 0.9 . 26
Circulation_timeToCrossOrgan 44.98 . 44.98 . 5 7.249(—) 27
CLN_height 45.65 | 45.65  74.06 27.18(+) 50 87.03(—) 28
Simulation_numCD4Th 45.91 45.91 84.8 21.64(-) 40 73.92(4) 29
Spleen_width 4722 | 4722 1411 26.39(—) 50 120.6(—) 30
CLN_width 4845 | 4845 491 25.77(+) 50 74.55(—) 31
SLO_width 48.82 | 4882  99.03 25.59(+) 50 99.51(—) 32
Simulation_numDCSpleen 50.17 50.17 49.83(—) 100 33
TCell_apoptosisNaiveMean 50.61 50.61 14.82(—) 30 34
TCell_becomeEffectorStdDev 52.67 52.67 26.51(+) 56 35
DendriticCell_phagocytosisProbabilityImmature 54.63 54.63 . 0.4537(-) 1 . 36
CNSMacrophage_typel RequiredForActivation 71.6 92.85 71.6 0.1787(+) 2.5 4.29(—) 37
TCell_proliferationStdDev 75.77 . 75.77 . 9.6 16.87(+) 38
DendriticCell_cytokineType2PolarizationRatio 77.75 77.75 . 0.03782(—) 0.17 . 39
CNSMacrophage_basalMBPExpressionProbability 82.58 82.58 355.4 0.03485(—) 0.2 0.9108(+) 40
CNSMacrophage_phagocytosisProbabilityMature 83.66 83.66 . 0.04901(+) 0.3 . 41
DendriticCell_typelSecreted PerHourImmunized 84.73 84.73 627 1.527(—) 10 72.7(+) 42
CNSMacrophage_phagocytosisProbabilityImmature 87.8 87.8 0.08541(+) 0.7 . 43
TCell_specificityLowerLimit 88.54 88.54 . 0.05732(—) 0.5 . 44
TCell_timeLocalActivationDelay 88.58 88.58 219.6 1.142(—) 10 31.96(—) 45
DendriticCell_typel RequiredForActivation 98.85 98.85 643.9 0.023(+) 2 14.88(—) 46
Spleen_height 157.9 157.9 . 50 129(—) 47
Simulation_-numDC 342.1 342.1 10 44.21(+) 48
Th2Polarization_type2SecretedPerHour WhenActivated 369.1 369.1 100 469.1(—) 49
Molecule_decayThreshold 664.7 664.7 0.01 0.07647(—) 50
CD4THelper_diff00 0.05 . 72
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Table C.16 — Continued

’ Parameter Name H RI (%) \ LI (%) UI (%) \ LB DV UB Rank
ThlPolarization_mhcUnExpressionDelayMean . . . . 8 . 72
CD8Treg_cd8TregToCD4ThelperSpecificity Drop Off . . . . 1 . 72
Simulation_immunizationLinearInitial . . . . 14 . 72
SLO_height . . . . 50 . 72
APC_immatureDurationStdDev . . . . 24 . 72
APC_timeOfDeathStdDev . . . . 48 . 72
CD4Treg_typelSecretedPerHour WhenA ctivated . . . . 10 . 72
CD8Treg_typelSecretedPerHour WhenA ctivated . . . . 10 . 72
CLN_timeToCrossOrgan . . . . 12 . 72
CNS_timeToCrossOrgan . . . . 20 . 72
Circulation_width . . . . 50 . 72
DendriticCellMigrates_lengthOfTimeMovingFollowingMigration . . . . 3.5 . 72
DendriticCell_phagocytosisProbabilityMature . . . . 0.3 . 72
SLO_timeToCrossOrgan . . . . 12 . 72
Spleen_timeToCrossOrgan . . . . 5 . 72
TCell_ AICDStdDev . . . . 56 . 72
TCell_apoptosisNaiveStdDev . . . . 17 . 72
TCell_apoptosisPartialMaturityMean . . . . 12 . 72
TCell_apoptosisPartialMaturityStdDev . . . . 6 . 72
Th1Polarization_.mhcUnExpressionDelayStdDev . . . . 2 . 72
Th2Polarization_proliferationStdDev . . . . 19.2 . 72

Table C.17: Robustness indexes for parameters with respect to the CD4Treg Max Time response. RI, robustness index; LI, lower index; UI, upper index; LB,
lower boundary; DV, default value; UB, upper boundary. Results indicating no significant deviation in behaviour are marked with a period.

y Parameter Name | RI (%) [ LI (%) UI (%) | LB DV UB | Rank |

TCell_proliferationMean 5.584 5.584 5.836 18.13(—) 19.2 20.32(+) 1
CNSMacrophage_tnfaSecretedPerHour WhenStimulated 9.006 9.006 14.99 90.99(—) 100 115(+)
Continued on Next Page. ..
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Table C.17 — Continued

Parameter Name | RI (%) | LI (%) UI (%) | LB DV UB | Rank |

CNS_height 1099 | 17.94  10.99 A1.03(+) 50 55.49(—) 3

CNSCell_apoptosisTNFaThreshold 11.88 13.28 11.88 4.336(+) 5 5.594(—) 4

Molecule_molecularHalflife 12.8 12.8 19.96 0.436(—) 0.5 0.5998(+) 5

TCell_becomeEffectorMean 14.98 14.98 . 51.01(+) 60 . 6

ONS_width 16.4 164  16.84 41.8(+) 50 58.42(—) 7

Simulation_num CNSMacrophage 18.65 18.65 22.78 61.01(-) 75 92.09(+) 8

Simulation_immunizationLinearDC0 22.22 22.22 . 1.556(+) 2 . 9

Spleen_width 3211 | 3211  63.56 33.94(—) 50 81.78(+) 10
Simulation_immunizationLinearFreq 33.46 33.46 . 3.992(-) 6 ) 11
Simulation_immunizationLinearGradient 36.71 60.12 36.71 | -0.008006(+) -0.005 -0.003164(+) 12
TCell_cellsPerGridspace 39.2 39.2 4.256(—) 7 13
CLN_width 39.93 39.93 . 30.03(-) 50 . 14
Simulation numCD4Th 42.25 42.25 77.48 23.1(+) 40 70.99(—) 15
APC_timeOfDeathMean 42.36 42.36 . 63.4(—) 110 . 16
Circulation_height 43.99 49.09 43.99 25.45(—) 50 72(+4) 17
SLO_width 441 44.1 62.38 27.95(—) 50 81.19(+) 18
Simulation_numCNS 45.09 45.09 . 274.6(—) 500 . 19
Simulation_numCD4Treg 47.23 47.23 69.81 15.83(+) 30 50.94(—) 20
Thi1Polarization_typelSecretedPerHour WhenActivated 53.98 53.98 . 46.02(—) 100 . 21
TCell_apoptosisNaiveMean 54.93 54.93 71.98 13.52(—) 30 51.59(+) 22
TCell_timeLocalActivationDelay 57.11 57.11 4.289(—) 10 23
TCell_specificityLowerLimit 60.03 60.03 0.1999(+) 0.5 24
APC_probabilityPhagocytosisToPeptide 60.98 60.98 . 0.007804(—) 0.02 . 25
Simulation.numDCCNS 6358 | 6358  89.9 14.57(—) 40 75.96(+) 2%
TCell_timeLocalActivationInducedEffector FunctionFor 68.72 68.72 . 15.02(—) 48 . 27
Simulation-numCD8Treg 73.86 73.86 114.8 7.841(+) 30 64.44(—) 28
Circulation_timeToCrossOrgan 78.82 . 78.82 . 5 8.941(+) 29
DendriticCell_cytokineType2PolarizationRatio 82.52 82.52 . 0.02972(—) 0.17 . 30
TCell_proliferationStdDev 86.54 . 86.54 . 9.6 17.91(—) 31
CD4THelper_diff08 90.82 90.82 0.078(—) 0.85 . 32
DendriticCell_typelSecreted PerHourImmunized 91.87 91.87 0.8128(—) 10 33
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Table C.17 — Continued

Parameter Name I RI(%) [ LI (%) UI %) ] LB DV UB | Rank
DendriticCell_phagocytosisProbabilityImmature 92.77 92.77 0.0723(-) 1 . 34
DendriticCell_typelRequiredForActivation 97.67 97.67 578.8 0.04653(—) 2 13.58(+) 35
CNSMacrophage_typel RequiredForActivation 108.3 108.3 . 2.5 5.207(—) 36
Spleen_height 131.6 131.6 50 115.8(+) 37
Th2Polarization_type2SecretedPerHour WhenActivated 495.3 495.3 100 595.3(—) 38
Molecule_decayThreshold 3561 3561 0.01 0.3661(—) 39
TCell AICDMean 60 . 72
APC_immatureDurationMean 48 72
Th2Polarization_proliferationMean 28.8 72
TCell_specificity UpperLimit 0.9 72
CLN_height 50 72
Simulation_.numDCSpleen 100 72
TCell_becomeEffectorStdDev 56 72
CNSMacrophage_basalMBPExpressionProbability 0.2 72
CNSMacrophage_phagocytosisProbabilityMature 0.3 72
CNSMacrophage_phagocytosisProbabilityImmature 0.7 72
Simulation_-numDC 10 72
CD4THelper_diff00 0.05 72
Th1Polarization_mhcUnExpressionDelayMean 8 72
CD8Treg_cd8Treg ToCD4ThelperSpecificity DropOff 1 72
Simulation_immunizationLinearInitial 14 72
SLO_height 50 72
APC_immatureDurationStdDev 24 72
APC_timeOfDeathStdDev 48 72
CD4Treg_typelSecretedPerHour WhenA ctivated 10 72
CD8Treg_typelSecreted PerHour WhenA ctivated 10 72
CLN_timeToCrossOrgan 12 72
CNS_timeToCrossOrgan 20 72
Circulation_width 50 72
DendriticCellMigrates_lengthOfTimeMovingFollowingMigration 3.5 72
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Table C.17 — Continued

] Parameter Name | RI (%) | LI (%) UI (%) | LB DV UB | Rank |
DendriticCell_phagocytosisProbabilityMature . . . . 0.3 . 72
SLO_timeToCrossOrgan . . . . 12 . 72
Spleen_timeToCrossOrgan . . . . 5 . 72
TCell_ AICDStdDev . . . . 56 . 72
TCell_apoptosisNaiveStdDev . . . . 17 . 72
TCell_apoptosisPartialMaturityMean . . . . 12 . 72
TCell_apoptosisPartialMaturityStdDev . . . . 6 . 72
ThilPolarization_mhcUnExpressionDelayStdDev . . . . 2 . 72
Th2Polarization_proliferationStdDev . . . . 19.2 . 72

Table C.18: Robustness indexes for parameters with respect to the CD8Treg Maz response. RI, robustness index; LI, lower index; Ul, upper index; LB, lower
boundary; DV, default value; UB, upper boundary. Results indicating no significant deviation in behaviour are marked with a period.

y Parameter Name | RI (%) [ LI (%) UI (%) | LB DV UB | Rank
APC_timeOfDeathMean 5.794 5.794 6.062 103.6(—) 110 116.7(+) 1
TCell_proliferationMean 5.881 8.698 5.881 17.53(+) 19.2 20.33(—) 2
CNSCell_apoptosisTNFaThreshold 6.628 6.628 7.897 4.669(+) 5 5.395(—) 3
CNSMacrophage_tnfaSecreted PerHour WhenStimulated 6.674 6.752 6.674 93.25(—) 100 106.7(+) 4
CNS_height 74 74 7.626 16.3(+) 50 53.81(-) 5
ONS_width 8118 | 8.118 10.5 45.94(+) 50 55.25(—) 6
Molecule_molecularHalflife 8.731 8.731 9.419 0.4563(—) 0.5 0.5471(+) 7
TCell_cellsPerGridspace 9.613 9.613 . 6.327(—) 7 . 8
CD4THelper_diff03 1018 | 1018 1172 | 0.7635(—)  0.85  0.9497(+) 9
APC_probabilityPhagocytosisToPeptide 12.01 12.01 14.29 0.0176(—) 0.02 0.02286(+) 10
Simulation_immunizationLinearDCO 12.88 12.99 12.88 1.74(-) 2 2.258(+) 11
TCell_AICDMean 13.92 | 13.92  14.77 51.65(—) 60 68.86(-+) 12
Simulation-numCNSMacrophage 13.97 13.97 15.22 64.52(—) 75 86.42(+) 13
Simulation_immunizationLinearGradient 16.24 22.65 16.24 | -0.006133(—) -0.005 -0.004188(+) 14
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Table C.18 — Continued

Parameter Name H RI (%) \ LI (%) UI (%) \ LB DV UB \ Rank
TCell_becomeEffectorMean 17.27 17.27 23.7 49.64(—) 60 74.22(—) 15
TCell_timeLocalActivationInducedEffectorFunctionFor 21.95 21.95 . 37.46(—) 48 . 16
Simulation_numDCCNS 22.29 22.29 36.09 31.08(—) 40 54.43(+) 17
Simulation.numCD8Treg 24.00 | 2409  27.19 22.77(—) 30 38.16(+) 18
Simulation_immunizationLinearFreq 35.57 35.57 60.17 3.866(+) 6 9.61(—) 19
Th2Polarization_proliferationMean 36.36 36.36 . 18.33(+) 28.8 . 20
Simulation_numCNS 36.73 36.73 84.14 316.3(—) 500 920.7(—) 21
Circulation_height 39.21 . 39.21 . 50 69.6(—) 22
ThiPolarization_typelSecretedPerHour WhenActivated 39.64 39.64 60.36(—) 100 . 23
TCell_specificity UpperLimit 42.35 42.35 . 0.5189(—) 0.9 . 24
APC_immatureDurationMean 50.52 50.52 55.64 23.75(+) 48 74.71(—) 25
Simulation-numDCSpleen 50.76 50.76 . 49.24(—) 100 . 26
Simulation_-numCD4Treg 55.04 59.46 55.04 12.16(+) 30 46.51(—) 27
Simulation.numCD4Th 57.2 57.2 121.2 17.12(-) 40 88.46(+) 28
Circulation_timeToCrossOrgan 57.61 . 57.61 . 5 7.881(—) 29
CLN_width 59.73 59.73 63.65 20.14(+) 50 81.83(—) 30
DendriticCell_phagocytosisProbabilityImmature 61.3 61.3 0.387(—) 1 . 31
TCell_specificity LowerLimit 73.45 73.45 0.1327(-) 0.5 32
DendriticCell_cytokineType2PolarizationRatio 79.53 79.53 . 0.03481(—) 0.17 : 33
CNSMacrophage_typel RequiredForActivation 80.11 80.11 . 2.5 4.503(-) 34
Spleen_width 81.03 . 81.03 . 50 90.52(—) 35
TCell_timeLocalActivationDelay 81.86 81.86 275.6 1.814(-) 10 37.56(—) 36
CNSMacrophage_basalM BPExpressionProbability 85.4 85.4 0.02919(—) 0.2 37
DendriticCell_typelSecreted PerHourImmunized 86.42 86.42 1.358(—) 10 38
DendriticCell_phagocytosisProbabilityMature 89.19 89.19 . 0.03243(+) 0.3 . 39
CLN_height 114.8 114.8 . 50 107.4(—) 40
SLO_height 131.4 131.4 50 115.7(—) 41
SLO_width 137.8 137.8 50 118.9(—) 42
Spleen_height 163.1 163.1 50 131.5(—) 43
Th2Polarization_type2Secreted PerHour WhenA ctivated 409.8 409.8 100 509.8(—) 44
Simulation_.numDC 467 467 10 56.7(+) 45
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Parameter Name | RI (%) | LI (%) UI (%) | LB DV UB | Rank |
Molecule_decayThreshold 760.1 760.1 0.01 0.08601(—) 46
TCell_apoptosisNaiveMean 30 . 72
TCell_proliferationStdDev 9.6 72
DendriticCell_typel RequiredForActivation 2 72
TCell_becomeEffectorStdDev 56 72
CNSMacrophage_phagocytosisProbabilityMature 0.3 72
CNSMacrophage_phagocytosisProbabilityImmature 0.7 72
CD4THelper_diff00 0.05 72
ThilPolarization-mhcUnExpressionDelayMean 8 72
CD8Treg_cd8TregToCD4ThelperSpecificity DropOff 1 72
Simulation_immunizationLinearInitial 14 72
APC_immatureDurationStdDev 24 72
APC_timeOfDeathStdDev 48 72
CD4Treg_typelSecretedPerHour WhenA ctivated 10 72
CD8Treg_typelSecretedPerHour WhenA ctivated 10 72
CLN_timeToCrossOrgan 12 72
CNS_timeToCrossOrgan 20 72
Circulation_width 50 72
DendriticCellMigrates_lengthOfTimeMovingFollowingMigration 3.5 72
SLO_timeToCrossOrgan 12 72
Spleen_timeToCrossOrgan 5 72
TCell_ AICDStdDev 56 72
TCell_apoptosisNaiveStdDev 17 72
TCell_apoptosisPartialMaturityMean 12 72
TCell_apoptosisPartialMaturityStdDev 6 72
Thi1Polarization_.mhcUnExpressionDelayStdDev 2 72
Th2Polarization_proliferationStdDev 19.2 72
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Table C.19: Robustness indexes for parameters with respect to the CD8Treq Maz Time response. RI, robustness index; LI, lower index; UI, upper index; LB,

lower boundary; DV, default value; UB, upper boundary. Results indicating no significant deviation in behaviour are marked with a period.

] Parameter Name I RI (%) | LI (%) UI (%) | LB DV UB | Rank |
TCell_proliferationMean 5.911 5.911 6.219 18.07(—) 19.2 20.39(+) 1
CNSMacrophage_tnfaSecreted PerHour WhenStimulated 9.218 9.218 20.23 90.78(—) 100 120.2(+) 2
CNS_height 12.67 . 12.67 . 50 56.34(— ) 3
CNSCell_apoptosisTNFaThreshold 13.03 13.03 13.8 4.348(+) 5 5.69(—) 4
Molecule_molecularHalflife 13.93 13.93 28.95 0.4304(—) 0.5 0.6448(+) 5
TCell_becomeEffectorMean 14.94 14.94 . 51.04(+) 60 . 6
CNS_width 17.1 17.1 20.9 41.45(+) 50 60.45(—) 7
Simulation_numCNSMacrophage 19 19 27.91 60.75(—) 75 95.93(+) 8
Simulation_immunizationLinearDCO0 21.38 21.38 . 1.572(+) 2 . 9
Spleen_width 3311 | 3311  70.29 33.45(—) 50 85.14(+) 10
Simulation_immunizationLinearFreq 37.2 37.2 . 3.768(—) 6 . 11
Simulation_immunizationLinear Gradient 39.82 97.97 39.82 -0.007899(+) -0.005 -0.003009(+) 12
Simulation_numCD4Th 41.97 41.97 73.05 23.21(+) 40 69.22(—) 13
TCell_cellsPerGridspace 42.67 42.67 . 4.013(—-) 7 . 14
SLO_width 4475 | 4475 68.55 27.62(~) 50 84.28(+) 15
Circulation_height 4558 | 50.81  45.58 24.59(~) 50 72.79(+) 16
Simulation_numCNS 46.67 46.67 266.7(—) 500 17
APC_timeOfDeathMean 47.02 47.02 . 58.28(—) 110 . 18
Simulation_ numCD4Treg 48.05 48.05 69.65 15.59(+) 30 50.9(—) 19
TCell_timeLocalActivationInducedEffectorFunctionFor 53.73 53.73 22.21(-) 48 . 20
ThiPolarization_typelSecretedPerHour WhenActivated 56.07 56.07 . 43.93(—) 100 . 21
Simulation_numDCCNS 57.64 | 57.64  99.66 16.94(—) 40 79.87(+) 22
Spleen_height 57.75 | 5775 1317 21.13(~) 50 115.9(+) 23
TCell_timeLocalActivationDelay 59.87 59.87 398.1 4.013(-) 10 49.81(—) 24
TCell_specificityLower Limit 61.09 61.09 . 0.1946(+) 0.5 . 25
TCell_apoptosisNaiveMean 63.73 63.73 e 10.88(—) 30 53.31(+) 26
Simulation_-numCD8Treg 73.6 73.6 118.9 7.921(+) 30 65.67(—) 27
APC_probabilityPhagocytosisToPeptide 74.93 74.93 0.005014(—) 0.02 . 28
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Table C.19 — Continued

Parameter Name | RI (%) | LI (%) UI (%) | LB DV UB | Rank |
Circulation_timeToCrossOrgan 76.69 76.69 . 5 8.834(+) 29
DendriticCell_cytokineType2PolarizationRatio 82.23 82.23 . 0.03021(-) 0.17 . 30
TCell_proliferationStdDev 90.68 . 90.68 . 9.6 18.31(—) 31
DendriticCell_typelSecreted PerHourImmunized 91.5 91.5 0.8497(-) 10 32
CD4THelper_diff08 92.7 92.7 0.06202(—) 0.85 33
DendriticCell_phagocytosisProbabilityImmature 92.95 92.95 . 0.07054(-) 1 . 34
DendriticCell_typel RequiredForActivation 97.33 97.33 579.6 0.05345(—) 2 13.59(+) 35
CNSMacrophage_typel RequiredForActivation 106.3 106.3 . 2.5 5.158(—) 36
Th2Polarization_type2SecretedPerHour WhenA ctivated 545.8 545.8 100 645.8(—) 37
Molecule_decay Threshold 3721 3721 0.01 0.3821(—) 38
TCell_ AICDMean 60 . 72
Th2Polarization_proliferationMean 28.8 72
TCell_specificity UpperLimit 0.9 72
APC_immatureDurationMean 48 72
Simulation_numDCSpleen 100 72
CLN_width 50 72
CNSMacrophage_basalMBPExpressionProbability 0.2 72
DendriticCell_phagocytosisProbabilityMature 0.3 72
CLN_height 50 72
SLO_height 50 72
Simulation_numDC 10 72
TCell_becomekEftectorStdDev 56 72
CNSMacrophage_phagocytosisProbabilityMature 0.3 72
CNSMacrophage_phagocytosisProbabilityImmature 0.7 72
CD4THelper_diff00 0.05 72
ThlPolarization_mhcUnExpressionDelayMean 8 72
CD8Treg_cd8Treg ToCD4ThelperSpecificity DropOff 1 72
Simulation_immunizationLinearInitial 14 72
APC_immatureDurationStdDev 24 72
APC_timeOfDeathStdDev 48 72
CD4Treg_typelSecretedPerHour WhenA ctivated 10 72
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Table C.19 — Continued

’ Parameter Name H RI (%) \ LI (%) UI (%) \ LB DV UB Rank
CD8Treg_typelSecretedPerHour WhenA ctivated . . . . 10 . 72
CLN_timeToCrossOrgan . . . . 12 . 72
CNS_timeToCrossOrgan . . . . 20 . 72
Circulation_width . . . . 50 . 72
DendriticCellMigrates_lengthOf TimeMovingFollowingMigration . . . . 3.5 . 72
SLO_timeToCrossOrgan . . . . 12 . 72
Spleen_timeToCrossOrgan . . . . 5 . 72
TCell_ AICDStdDev . . . . 56 . 72
TCell_apoptosisNaiveStdDev . . . . 17 . 72
TCell_apoptosisPartialMaturityMean . . . . 12 . 72
TCell_apoptosisPartialMaturityStdDev . . . . 6 . 72
Th1Polarization_mhcUnExpressionDelayStdDev . . . . 2 . 72
Th2Polarization_proliferationStdDev . . . . 19.2 . 72

Table C.20: Robustness indexes for parameters with respect to the CD4Th1at40d response. RI, robustness index; LI, lower index; Ul, upper index; LB, lower
boundary; DV, default value; UB, upper boundary. Results indicating no significant deviation in behaviour are marked with a period.

y Parameter Name | RI (%) | LI (%) UI (%) | LB DV UB | Rank |
CNSCell_apoptosisTNFaThreshold 14.7 14.7 . 4.265(+) 5 . 1
TCell_proliferationMean 15.59 . 15.59 . 19.2 22.19(+) 2
CNSMacrophage_tnfaSecreted PerHour WhenStimulated 16.26 . 16.26 . 100 116.3(+) 3
CNS_height 1745 | 1745 . 41.27(+) 50 . 4
Th1Polarization_mhcUnExpressionDelayMean 17.57 17.57 . 6.595(+) 8 . 5
Molecule_molecularHalflife 25.29 . 25.29 . 0.5 0.6265(+) 6
APC_timeOfDeathMean 26.88 26.88 . 80.43(+) 110 . 7
TCell_becomeEffectorMean 29.03 29.03 48.65 42.58(+) 60 89.19(+) 8
Circulation_height 29.27 . 29.27 . 50 64.63(+) 9
TCell_cellsPerGridspace 37.56 37.56 . 4.371(+) 7 10
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Parameter Name | RI (%) | LI (%) UI (%) | LB DV UB | Rank |
Simulation_numCNSMacrophage 42.02 42.02 . 75 106.5(+) 11
Simulation_immunizationLinearDCO0 43.09 43.09 1.138(+) 2 . 12
CLN height 15.61 15.61 . 50 7281(+) 13
APC_probabilityPhagocytosisToPeptide 49.54 49.54 0.01009(+) 0.02 . 14
Simulation_-numCD8Treg 53.27 53.27 . 14.02(+) 30 . 15
Simulation_immunizationLinearGradient 54.15 . 54.15 . -0.005 -0.002292(+) 16
APC_immatureDurationMean 57.96 57.96 20.18(+) 48 17
CD8Treg_cd8TregToCD4ThelperSpecificity Drop Off 72.78 72.78 0.2722(+) 1 18
Simulation_numCD4Th 79.81 79.81 8.075(+) 40 19
Simulation_numDCSpleen 82.67 82.67 17.33(+) 100 20
Molecule_decayThreshold 87.05 87.05 . 0.001295(+)  0.01 . 21
Simulation_numCD4Treg 91.56 91.56 375.3 2.532(+) 30 142.6(+) 22
CNSMacrophage_typel RequiredForActivation 96.71 96.71 0.08234(+) 2.5 . 23
Th2Polarization_type2Secreted PerHour WhenA ctivated 97.59 97.59 . 2.41(+) 100 . 24
TCell_ AICDMean 99.74 99.74 60 119.8(+) 25
Simulation_ numDCCNS 112.1 112.1 40 84.84(+) 26
Circulation_width 126.5 126.5 50 113.3(+) 27
Spleen_height 140.7 140.7 50 120.3(+) 28
SLO_height 160.6 160.6 50 130.3(+) 29
ThiPolarization_typel SecretedPerHour WhenA ctivated 477.1 477.1 100 577.1(+) 30
DendriticCell_cytokineType2PolarizationRatio 484.5 484.5 0.17 0.9936(+) 31
CD4THelper_diff00 1060 1060 0.05 0.5798(+) 32
CNS_width 50 72
Spleen_width 50 72
Simulation_immunizationLinearFreq 6 72
SLO_width 50 72
Simulation_-numCNS 500 72
TCell_timeLocalActivationInducedEffector FunctionFor 48 72
TCell_timeLocalActivationDelay 10 72
TCell_specificity LowerLimit 0.5 72
TCell_apoptosisNaiveMean 30 72
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Table C.20 — Continued

Parameter Name I RI(%) [ LI (%) UI %) ] LB DV UB Rank
Circulation_timeToCrossOrgan 5 72
TCell_proliferationStdDev 9.6 72
DendriticCell_typelSecreted PerHourImmunized 10 72
CD4THelper_diff08 0.85 72
DendriticCell_phagocytosisProbabilityImmature 1 72
DendriticCell_typel RequiredForActivation 2 72
Th2Polarization_proliferationMean 28.8 72
TCell_specificityUpperLimit 0.9 72
CLN_width 50 72
CNSMacrophage_basalMBPExpressionProbability 0.2 72
DendriticCell_phagocytosisProbabilityMature 0.3 72
Simulation_-numDC 10 72
TCell_becomeEffectorStdDev 56 72
CNSMacrophage_phagocytosisProbabilityMature 0.3 72
CNSMacrophage_phagocytosisProbabilityImmature 0.7 72
Simulation_immunizationLinearInitial 14 72
APC_immatureDurationStdDev 24 72
APC_timeOfDeathStdDev 48 72
CDA4Treg_typelSecreted PerHour WhenA ctivated 10 72
CD8Treg_typelSecreted PerHour WhenA ctivated 10 72
CLN_timeToCrossOrgan 12 72
CNS_timeToCrossOrgan 20 72
DendriticCellMigrates_lengthOfT'imeMovingFollowingMigration 3.5 72
SLO_timeToCrossOrgan 12 72
Spleen_timeToCrossOrgan 5 72
TCell_ AICDStdDev 56 72
TCell_apoptosisNaiveStdDev 17 72
TCell_apoptosisPartialMaturityMean 12 72
TCell_apoptosisPartialMaturityStdDev 6 72
Th1Polarization_mhcUnExpressionDelayStdDev 2 72
Th2Polarization_proliferationStdDev 19.2 72
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Table C.21: Robustness indexes for parameters with respect to the Max FAFE response. RI, robustness index; LI, lower index; Ul, upper index; LB, lower

boundary; DV, default value; UB, upper boundary. Results indicating no significant deviation in behaviour are marked with a period.

] Parameter Name | RI (%) | LI (%) UI (%) | LB DV UB | Rank |
CNSCell_apoptosisTNFaThreshold 1.361 1.361 1.597 4.932(+) 5 5.08(—) 1
CNSMacrophage_tnfaSecretedPerHour WhenStimulated 1.412 1.846 1.412 98.15(—) 100 101.4(+) 2
Molecule_molecularHalflife 2.022 2.736 2.022 0.4863(—) 0.5 0.5101(+) 3
Simulation_numCNSMacrophage 3.081 | 3741  3.081 72.19(-) 75 77.31(+) 4
CNS_width 3247 | 3247 432 18.38(+) 50 52.16(—) 5
CNS_height 3.306 | 3.306  3.478 48.35(+) 50 51.74(—) 6
Simulation_numCNS 7553 | 7.553  8.636 462.2(~) 500 543.2(4) 7
TCell_ AICDMean 10.61 | 1061  12.25 53.63(—) 60 67.35(+) 8
APC_timeOfDeathMean 11.87 11.87 14.68 96.95(—) 110 126.1(+) 9
Simulation_immunizationLinearDC0 15.9 15.99 15.9 1.68(—) 2 2.318(+) 10
CD4THelper_diff08 16.93 16.93 . 0.7061(-) 0.85 . 11
TCell_proliferationMean 19.17 . 19.17 . 19.2 22.88(—) 12
Simulation_immunizationLinearFreq 20.72 20.72 36.19 4.757(+) 6 8.171(—) 13
TCell_timeLocalActivationInducedEffectorFunctionFor 23.26 23.26 107.8 36.84(—) 48 99.73(+) 14
TCell_cellsPerGridspace 24.78 24.78 . 5.265(—) 7 . 15
Th1Polarization_typelSecretedPerHour WhenActivated 27.92 27.92 58.19 72.08(—) 100 158.2(+) 16
CNSMacrophage_phagocytosisProbabilityMature 28.15 28.15 32.94 0.2155(—) 0.3 0.3988(+) 17
TCell_becomeEffectorMean 29.29 29.29 59.28 42.43(—) 60 95.57(—) 18
Simulation_immunizationLinearGradient 34.83 34.83 41.15 | -0.006741(—) -0.005 -0.002943(+) 19
CNSMacrophage_typel RequiredForActivation 36.37 42.72 36.37 1.432(+) 2.5 3.409(—) 20
TCell_ AICDStdDev 37.63 37.63 . 34.93(—) 56 . 21
Circulation_height 51.3 . 51.3 . 50 75.65(—) 22
CNSMacrophage_phagocytosisProbabilityImmature 52.72 52.72 . 0.331(—) 0.7 . 23
Simulation-numCD4Th 64 64 252 14.4(—) 40 140.8(+) 24
TCell_apoptosisNaiveMean 68.47 68.47 . 9.458(—) 30 . 25
Circulation_timeToCrossOrgan 70.98 70.98 . 5 8.549(—) 26
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Table C.21 — Continued

Parameter Name H RI (%) \ LI (%) UI (%) \ LB DV UB \ Rank
Simulation_numDCCNS 71.18 71.18 75.32 11.53(—) 40 70.13(+) 27
CNSMacrophage_basalMBPExpressionProbability 83.49 83.49 244.6 0.03301(—) 0.2 0.6891(+) 28
DendriticCell_typelSecreted PerHourImmunized 93.3 93.3 594.6 0.6696(—) 10 69.46(+) 29
DendriticCell_phagocytosisProbabilityImmature 93.67 93.67 . 0.06329(—) 1 . 30
TCell_timeLocalActivationDelay 96.19 96.19 273.9 0.381(—) 10 37.39(—) 31
SLO_width 130.9 130.9 . 50 115.4(—) 32
SLO_height 141.2 141.2 50 120.6(—) 33
Molecule_decayThreshold 1283 1283 0.01 0.1383(—) 34
Simulation_.numCD4Treg 30 . 72
Simulation_numCD8Treg 30 72
Th1Polarization_mhcUnExpressionDelayMean 8 72
CLN_height 50 72
APC_probabilityPhagocytosisToPeptide 0.02 72
APC_immatureDurationMean 48 72
CD8Treg_cd8TregToCD4ThelperSpecificity DropOff 1 72
Simulation_.numDCSpleen 100 72
Th2Polarization_type2Secreted PerHour WhenA ctivated 100 72
Circulation_width 50 72
Spleen_height 50 72
DendriticCell_cytokineType2PolarizationRatio 0.17 72
CD4THelper_diff00 0.05 72
Spleen_width 50 72
TCell_specificity LowerLimit 0.5 72
TCell_proliferationStdDev 9.6 72
DendriticCell_typel RequiredForActivation 2 72
Th2Polarization_proliferationMean 28.8 72
TCell_specificity UpperLimit 0.9 72
CLN_width 50 72
DendriticCell_phagocytosisProbabilityMature 0.3 72
Simulation_numDC 10 72
TCell_becomeEffectorStdDev 56 72

Continued on Next Page. ..

SIsATeuR AJIAT}ISUSS SSOUISNOY ‘€0



¢6¢

Table C.21 — Continued

] Parameter Name H RI (%) \ LI (%) UI (%) \ LB DV UB \ Rank \
Simulation_immunizationLinearInitial 14 72
APC_immatureDurationStdDev 24 72
APC_timeOfDeathStdDev 48 72
CD4Treg_typelSecretedPerHour WhenA ctivated 10 72
CD8Treg_typelSecretedPerHour WhenA ctivated 10 72
CLN_timeToCrossOrgan 12 72
CNS_timeToCrossOrgan 20 72
DendriticCellMigrates_lengthOf TimeMovingFollowingMigration 3.5 72
SLO_timeToCrossOrgan 12 72
Spleen_timeToCrossOrgan 5 72
TCell_apoptosisNaiveStdDev 17 72
TCell_apoptosisPartialMaturityMean 12 72
TCell_apoptosisPartialMaturityStdDev 6 72
Th1Polarization_mhcUnExpressionDelayStdDev 2 72
Th2Polarization_proliferationStdDev 19.2 72

Table C.22: Robustness indexes for parameters with respect to the FAE at 40d response. RI, robustness index; LI, lower index; UI, upper index; LB, lower

boundary; DV, default value; UB, upper boundary. Results indicating no significant deviation in behaviour are marked with a period.

] Parameter Name H RI (%) \ LI (%) UI (%) \ LB DV UB \ Rank ‘
CNSMacrophage_tnfaSecreted PerHour WhenStimulated 0.8865 0.8865 . 100 100.9(+) 1
CNSCell_apoptosisTNFaThreshold 0.9662 0.9662 4.952(+) 5 . 2
Molecule_molecularHalflife 1.227 1.227 . 0.5 0.5061(+) 3
Simulation.-num CNSMacrophage 1.714 1.714 . 75 76.29(+) 4
CNS_height 1.822 | 1822 19.09(+) 50 5
CNS_width 1.874 | 1.874 49.06(+) 50 . 6
Simulation-numCNS 5.405 5.405 . 500 527(+) 7
TCell_ AICDMean 10.26 10.26 60 66.15(+) 8
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Table C.22 — Continued

Parameter Name I RI(%) [ LI (%) UI %) ] LB DV UB | Rank
APC_timeOfDeathMean 11.76 11.76 110 122.9(+) 9
Simulation_immunizationLinearDCO 14.13 . 14.13 . 2 2.283(+) 10
Simulation_immunizationLinearFreq 16.67 16.67 . 5(+) 6 . 11
CNSMacrophage_phagocytosisProbabilityMature 25.25 25.25 . 0.3 0.3758(+) 12
TCell_timeLocalActivationInducedEffectorFunctionFor 31.35 . 31.35 . 48 63.05(+) 13
CNSMacrophage_typel RequiredForActivation 35.39 35.39 . 1.615(+) 2.5 . 14
Simulation_immunizationLinearGradient 37.75 37.75 -0.005 -0.003113(+) 15
ThiPolarization_typelSecreted PerHour WhenA ctivated 48.21 48.21 100 148.2(+) 16
Simulation_.numDCCNS 55.11 . 55.11 . 40 62.05(+) 17
Simulation_numCD8Treg 97.46 97.46 0.7634(+) 30 . 18
ThiPolarization_mhcUnExpressionDelayMean 97.7 97.7 0.1842(+) 8 19
Simulation_numCD4Treg 97.94 97.94 0.6187(+) 30 20
CD8Treg_cd8TregToCD4ThelperSpecificity Drop Off 99.82 99.82 . 0.001759(+) 1 . 21
Simulation_numCD4Th 243.8 243.8 . 40 137.5(+) 22
CNSMacrophage_basalMBPExpressionProbability 285.7 285.7 0.2 0.7714(+) 23
DendriticCell_typelSecreted PerHourImmunized 604.8 604.8 10 70.48(+) 24
CD4THelper_diff08 0.85 72
TCell_proliferationMean 19.2 72
TCell_cellsPerGridspace 7 72
TCell_becomeEffectorMean 60 72
TCell AICDStdDev 56 72
Circulation_height 50 72
CNSMacrophage_phagocytosisProbabilitylmmature 0.7 72
TCell_apoptosisNaiveMean 30 72
Circulation_timeToCrossOrgan 5 72
DendriticCell_phagocytosisProbabilityImmature 1 72
TCell_timeLocalActivationDelay 10 72
SLO_width 50 72
SLO_height 50 72
Molecule_decayThreshold 0.01 72
CLN_height 50 72
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] Parameter Name | RI (%) | LI (%) UI (%) | LB DV UB | Rank |
APC_probabilityPhagocytosisToPeptide 0.02 72
APC_immatureDurationMean 48 72
Simulation_.numDCSpleen 100 72
Th2Polarization_type2Secreted PerHour When A ctivated 100 72
Circulation_width 50 72
Spleen_height 50 72
DendriticCell_cytokineType2PolarizationRatio 0.17 72
CD4THelper_diff00 0.05 72
Spleen_width 50 72
TCell_specificityLowerLimit 0.5 72
TCell_proliferationStdDev 9.6 72
DendriticCell_typel RequiredForActivation 2 72
Th2Polarization_proliferationMean 28.8 72
TCell_specificity UpperLimit 0.9 72
CLN_width 50 72
DendriticCell_phagocytosisProbabilityMature 0.3 72
Simulation_numDC 10 72
TCell_becomeEffectorStdDev 56 72
Simulation_immunizationLinearInitial 14 72
APC_immatureDurationStdDev 24 72
APC_timeOfDeathStdDev 48 72
CDA4Treg_typelSecreted PerHour WhenA ctivated 10 72
CD8Treg_typelSecretedPerHour WhenA ctivated 10 72
CLN_timeToCrossOrgan 12 72
CNS_timeToCrossOrgan 20 72
DendriticCellMigrates_lengthOf TimeMovingFollowingMigration 3.5 72
SLO_timeToCrossOrgan 12 72
Spleen_timeToCrossOrgan 5 72
TCell_apoptosisNaiveStdDev 17 72
TCell_apoptosisPartialMaturityMean 12 72
TCell_apoptosisPartialMaturityStdDev 6 72

Continued on Next Page. ..
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Table C.23: Robustness indexes for parameters with respect to the Max FAFE A Test response. RI, robustness index; LI, lower index; Ul, upper index; LB,

Table C.22 — Continued

Parameter Name I RI(%) [ LI (%) UI %) ] LB DV UB Rank
ThlPolarization_mhcUnExpressionDelayStdDev 2 72
Th2Polarization_proliferationStdDev 19.2 72

lower boundary; DV, default value; UB, upper boundary. Results indicating no significant deviation in behaviour are marked with a period.

y Parameter Name | RI (%) | LI (%) UI (%) | LB DV UB | Rank |
CNSCelLapoptosisTNFaThreshold 1452 | 1452 1472 1.027(+) 5 5.074(—) 1
CNSMacrophage_tnfaSecretedPerHour WhenStimulated 1.549 1.604 1.549 98.4(—) 100 101.5(+) 2
Molecule_molecularHalflife 2.22 2.352 2.22 0.4882(—) 0.5 0.5111(+) 3
Simulation_-numCNSMacrophage 3.411 3.456 3.411 72.41(-) 75 77.56(+) 4
CNS_height 3.664 | 3.827  3.604 18.09(1) 50 51.83(0) 5
ONS_width 3.806 | 3.896  4.093 48.05(+) 50 52.05(—) 6
Simulation_.numCNS 6.915 6.915 8.834 465.4(—) 500 544.2(+) 7
TCell_ AICDMean 9.797 | 9797  13.17 54.12(~) 60 67.9(+) 8
APC_timeOfDeathMean 1179 | 1179 1635 97.03(0) 110 128(+) 9
Simulation_immunizationLinearDCO 13.94 13.94 17.24 1.721(-) 2 2.345(+) 10
CD4THelper_diff08 16.58 16.58 . 0.7091(-) 0.85 . 11
TCell_proliferationMean 18.24 . 18.24 . 19.2 22.7(-) 12
TCell_cellsPerGridspace 22.03 22.03 . 5.458(—) 7 . 13
TCell_timeLocalActivationInducedEffectorFunctionFor 22.52 22.52 98.96 37.19(—) 48 95.5(+) 14
Simulation_immunizationLinearFreq 23.16 23.16 35.75 4.611(+) 6 8.145(—) 15
CNSMacrophage_phagocytosisProbabilityMature 24.24 24.24 34.52 0.2273(-) 0.3 0.4036(+) 16
ThiPolarization_typelSecretedPerHour WhenActivated 26.07 26.07 61.19 73.93(—) 100 161.2(+) 17
TCell_becomeEffectorMean 28.88 28.88 57.06 42.67(—) 60 94.24(—) 18
TCell AICDStdDev 31.36 31.36 . 38.44(-) 56 . 19
Simulation_immunizationLinearGradient 33.83 33.83 42.12 | -0.006691(—) -0.005 -0.002894(+) 20

Continued on Next Page. ..
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Table C.23 — Continued

Parameter Name | RI (%) | LI (%) UI (%) | LB DV UB | Rank |
CNSMacrophage_typel RequiredForActivation 34.7 42.87 34.7 1.428(+) 2.5 3.367(—) 21
Circulation_height 46.44 46.44 . 50 73.22(—) 22
CNSMacrophage_phagocytosisProbabilityImmature 46.66 46.66 . 0.3734(-) 0.7 . 23
Simulation_numCD4Th 6224 | 6224  267.2 15.1(—) 40 146.9(+) 24
Simulation_numDCCNS 6501 | 6501  80.51 14(-) 40 72.21(+) 25
TCell_apoptosisNaiveMean 65.05 65.05 . 10.48(—) 30 . 26
Circulation_timeToCrossOrgan 69.59 . 69.59 . 5 8.48(—) 27
CNSMacrophage_basalMBPExpressionProbability 83.73 83.73 264.4 0.03254(—) 0.2 0.7289(+) 28
DendriticCell_phagocytosisProbabilityImmature 92.48 92.48 . 0.07523(-) 1 . 29
DendriticCell_typelSecreted PerHourImmunized 93.41 93.41 620.2 0.6591(—) 10 72.02(+) 30
TCell_timeLocalActivationDelay 93.46 93.46 265.5 0.6538(—) 10 36.55(—) 31
SLO_width 119.5 119.5 . 50 109.7(—) 32
SLO_height 140 140 50 120(—) 33
Molecule_decayThreshold 1317 1317 0.01 0.1417(—) 34
Thi1Polarization_mhcUnExpressionDelayMean 8 . 72
CLN_height 50 72
APC._probabilityPhagocytosisToPeptide 0.02 72
Simulation_numCD8Treg 30 72
APC_immatureDurationMean 48 72
CD8Treg_cd8Treg ToCD4ThelperSpecificity DropOff 1 72
Simulation_numDCSpleen 100 72
Simulation_numCD4Treg 30 72
Th2Polarization_type2Secreted PerHour When A ctivated 100 72
Circulation_width 50 72
Spleen_height 50 72
DendriticCell_cytokineType2PolarizationRatio 0.17 72
CD4THelper_diff00 0.05 72
Spleen_width 50 72
TCell_specificityLowerLimit 0.5 72
TCell_proliferationStdDev 9.6 72
DendriticCell_typel RequiredForActivation 2 72

Continued on Next Page. ..
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Table C.23 — Continued

’ Parameter Name H RI (%) \ LI (%) UI (%) \ LB DV UB Rank
Th2Polarization_proliferationMean . . . . 28.8 . 72
TCell_specificity UpperLimit . . . . 0.9 . 72
CLN_width . . . . 50 . 72
DendriticCell_phagocytosisProbabilityMature . . . . 0.3 . 72
Simulation_-numDC . . . . 10 . 72
TCell_becomekEftectorStdDev . . . . 56 . 72
Simulation_immunizationLinearInitial . . . . 14 . 72
APC_immatureDurationStdDev . . . . 24 . 72
APC_timeOfDeathStdDev . . . . 48 . 72
CD4Treg_typelSecreted PerHour WhenA ctivated . . . . 10 . 72
CD8Treg_typelSecretedPerHour WhenA ctivated . . . . 10 . 72
CLN_timeToCrossOrgan . . . . 12 . 72
CNS_timeToCrossOrgan . . . . 20 . 72
DendriticCellMigrates_lengthOfTimeMovingFollowingMigration . . . . 3.5 . 72
SLO_timeToCrossOrgan . . . . 12 . 72
Spleen_timeToCrossOrgan . . . . 5 . 72
TCell_apoptosisNaiveStdDev . . . . 17 . 72
TCell_apoptosisPartialMaturityMean . . . . 12 . 72
TCell_apoptosisPartialMaturityStdDev . . . . 6 . 72
Th1Polarization_.mhcUnExpressionDelayStdDev . . . . 2 . 72
Th2Polarization_proliferationStdDev . . . . 19.2 . 72

Table C.24: Robustness indexes for parameters with respect to the FAE at 40d A Test response. RI, robustness index; LI, lower index; Ul, upper index; LB,
lower boundary; DV, default value; UB, upper boundary. Results indicating no significant deviation in behaviour are marked with a period.

y Parameter Name |RI (%) [LI (%) UI(%)| LB DV UB | Rank |

CNSMacrophage_tnfaSecreted PerHour WhenStimulated 1.862 . 1.862 . 100 101.9(+) 1
CNSCell_apoptosisTNFaThreshold 2.041 2.041 . 4.898(+) 5 2
Continued on Next Page. ..
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Parameter Name IRI (% |[LI(%) UI (% | LB DV UB | Rank |
Molecule_molecularHalflife 2.577 2.577 0.5 0.5129(+) 3
Simulation_numCNSMacrophage 3.599 3.599 . 75 T7.7(+) 4
CNS_height 3.827 3.827 48.09(+) 50 5
CNS_width 3.934 3.934 . 48.03(+) 50 . 6
Simulation_numCNS 11.51 11.51 . 500 557.5(+) 7
TCell_ AICDMean 17.71 17.71 60 70.62(+) 8
APC_timeOfDeathMean 24.68 24.68 110 137.1(+) 9
Simulation_immunizationLinearDCO0 24.95 . 24.95 . 2 2.499(+) 10
Simulation_immunizationLinearFreq 33.2 33.2 . 4.008(+) 6 . 11
Simulation_immunizationLinearGradient 50.24 50.24 -0.005 -0.002488(+) 12
CNSMacrophage_phagocytosisProbabilityMature 56.55 . 56.55 . 0.3 0.4696(+) 13
CNSMacrophage_typel RequiredForA ctivation 58.82 58.82 1.029(+) 2.5 . 14
Simulation_ numCD4Treg 98.98 98.98 0.3068(+) 30 15
Simulation_ numCD8Treg 99.01 99.01 . 0.2977(+) 30 . 16
Simulation . numDCCNS 138 138 40 95.22(+) 17
Th1Polarization_typelSecretedPerHour WhenActivated 141.3 141.3 100 241.3(+) 18
DendriticCell_typelSecreted PerHourImmunized 889.5 889.5 10 98.95(+) 19
CD4THelper_diff08 0.85 . 72
TCell_proliferationMean 19.2 72
TCell_cellsPerGridspace 7 72
TCell_timeLocalActivationInducedEffectorFunctionFor 48 72
TCell_becomeEffectorMean 60 72
TCell_ AICDStdDev 56 72
Circulation_height 50 72
CNSMacrophage_phagocytosisProbabilityImmature 0.7 72
Simulation_-numCD4Th 40 72
TCell_apoptosisNaiveMean 30 72
Circulation_timeToCrossOrgan 5 72
CNSMacrophage_basalMBPExpressionProbability 0.2 72
DendriticCell_phagocytosisProbabilityImmature 1 72
TCell_timeLocalActivationDelay 10 72

Continued on Next Page. ..
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Table C.24 — Continued

Parameter Name IRI(%) |LI(%) UI (%) | LB DV UB Rank
SLO_width 50 72
SLO_height 50 72
Molecule_decayThreshold 0.01 72
Thi1Polarization_mhcUnExpressionDelayMean 8 72
CLN_height 50 72
APC_probabilityPhagocytosisToPeptide 0.02 72
APC_immatureDurationMean 48 72
CD8Treg_cd8TregToCD4ThelperSpecificity Drop Off 1 72
Simulation_.numDCSpleen 100 72
Th2Polarization_type2Secreted PerHour WhenA ctivated 100 72
Circulation_width 50 72
Spleen_height 50 72
DendriticCell_cytokineType2PolarizationRatio 0.17 72
CD4THelper_diff00 0.05 72
Spleen_width 50 72
TCell_specificity LowerLimit 0.5 72
TCell_proliferationStdDev 9.6 72
DendriticCell_typel RequiredForActivation 2 72
Th2Polarization_proliferationMean 28.8 72
TCell_specificity UpperLimit 0.9 72
CLN_width 50 72
DendriticCell_phagocytosisProbabilityMature 0.3 72
Simulation_numDC 10 72
TCell_becomeEffectorStdDev 56 72
Simulation_immunizationLinearInitial 14 72
APC_immatureDurationStdDev 24 72
APC_timeOfDeathStdDev 48 72
CD4Treg_typelSecretedPerHour WhenA ctivated 10 72
CD8Treg_typelSecretedPerHour WhenA ctivated 10 72
CLN_timeToCrossOrgan 12 72

Continued on Next Page. ..
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Table C.24 — Continued

Parameter Name IRI (% |[LI(%) UI (% | LB DV UB | Rank |
CNS_timeToCrossOrgan 20 72
DendriticCellMigrates_lengthOfT'imeMovingFollowingMigration 3.5 72
SLO_timeToCrossOrgan 12 72
Spleen_timeToCrossOrgan 5 72
TCell_apoptosisNaiveStdDev 17 72
TCell_apoptosisPartialMaturityMean 12 72
TCell_apoptosisPartialMaturityStdDev 6 72
ThilPolarization_mhcUnExpressionDelayStdDev 2 72
Th2Polarization_proliferationStdDev 19.2 72

SAHNOINHOHJ, TVOILSILVLS Y04 TVIYALVIN ONITYOddNS D)



Glossary of Terms

Adaptive immune system. The specific arm of the immune system, capable of recognising
structures and components of individual pathogens and responding accordingly. The
adaptive immune system is responsible for long lasting immunity against a pathogen.

Adjuvant. A substance that stimulates the immune response to antigen, but which does not
itself confer immunity.

Anergy. A state of un-responsiveness in lymphocytes. This is triggered if a lymphocyte re-
ceives signal 1 in absence of subsequent signal 2.

Antibody. A soluble form of the B cell receptor, secreted by effector B cells.

Antigen. Any substance that is recognised through the TCR or T cells or the BCR (B cell
receptor) receptors.

APC. Antigen Presenting Cell. Any cell that is able to present MHC-peptide complexes to T
cells. Note that professional APCs present MHC-II, whereas most cells of the body do
not.

Apoptosis. A controlled cellular death.

Autoimmunity. The phenomenon whereby the immune system targets elements of the host,
manifesting as a disease in severe cases.

B cell. A cell of the adaptive immune system, originating from the bone marrow. Effector B
cells secrete a soluble form of their receptor called the antibody.

Circulatory system. An organ system that transports cells and substances between the or-
gans and tissues of the body. ARTIMMUS contains a circulatory system compartment,
an abstraction for the circulatory system in the body.

CDAT cell. A T cell expressing the CD4 receptor. These are typically T helper cells.
CDST cell. A T cell expressing the CD8 receptor. These are typically cytotoxic T cells.

CD4Thl. A polarisation of CD4THelper cell, which expresses pro-inflammatory type 1 cy-
tokines. These cells typically promote the cytotoxic immune response. In ARTIMMUS
the CD4Th1 cell is an abstraction of EAE causing MBP-specific type 1 effector T helper
cells.

CD4Th2. A polarisation of CD4THelper cell, which expresses type 2 cytokines. These cells
typically promote the humoral immune response. In ARTIMMUS the CD4Th2 cell is an
abstraction of MBP-specific type 2 effector T cells, which do not cause EAE disease.

CDA4Th cell. A type of T cell, expressing CD4 receptors, and hence a T helper cell (see entry
on T helper cell).

CD4THelper. In ARTIMMUS the term CD4THelper cell can refer to any MBP-specific T
helper cell, regardless of state of activation of polarisation.
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CDA4Treg. A CD4 receptor expressing regulatory T cell. These cells are T helper cells. In
ARTIMMUS they are specific for MHC-II:Fr3 complexes, and responsible for licensing
dendritic cells for the expression of Qa-1 complexes.

CD8Treg. A CDS8 receptor expressing regulatory T cell. These cells are cytotoxic T cells. In
ARTIMMUS, they are specific for Qa-1:CDR1/2 complexes.

CDR1/2. Complementarity Determining Region 1/2. The complementarity determining re-
gion is part of the TCR receptor that interacts with antigen, and determines specificity.
In ARTIMMUS, CDR1/2 refers to a peptide derived from the TCRs of CD4THelper
cells, which binds with Qa-1 to form Qa-1:CDR1/2, for which CD8Treg cells are specific.

Chemokine. A subset of cytokines that influence the migration of cells around the body.

CLN. Cervical Lymph Node. These lymph nodes are found in the neck, and drain the tissues
of the brain. In ARTIMMUS, the CLN compartment drains the CNS compartment.

CNS. Central Nervous System. Part of the nervous system, containing a large quantity of
neurons. ARTIMMUS contains a CNS compartment as an abstraction of the brain and
spinal cord.

CNS cell. An abstract representation in ARTIMMUS of neurons and associated cells in the
CNS compartment. CNS cells are induced into apoptosis by sufficiently high concentra-
tions of TNF-a.

CNS macrophage. An abstraction used in ARTIMMUS to represent microglia and macroph-
ages found in the CNS compartment. These cells can locally activate infiltrating CD4Th
cells, and secrete TNF-a upon stimulation.

Complete Freund’s adjuvant. A type of adjuvant. Often shortened to CFA.

Co-stimulatory molecule. A receptor expressed by professional APCs that provide an es-
sential signal in the activation of T cells. This signalling pathway is often referred to as
signal 2.

Cytokine. Cell signalling protein molecules, secreted by cells.

Cytotoxic immune response. A type of adaptive immune response, mediated through cy-
totoxic T cells.

Cytotoxic T cell. A type of T cell, expressing the CD8 receptor. Cytotoxic T cells are
specific for MHC-I:peptide? complexes. Effector cytotoxic T cells can induce apoptosis
in cells expressing MHC:peptide complexes for which they are specific, though this is not
considered to include the dendritic cell in this thesis.

Disease. An abnormal condition affecting the body, to the detriment of its function.

Dendritic cell. A cell of the innate immune system. Dendritic cells are highly phagocytic,
are able to express MHC-I, MHC-II and Qa-1 complexes, and are the main primers of
naive T cells. They often exist in the peripheral tissues as immature cells, migrating
to the lymph nodes upon maturation. They influence whether naive T helper cells are
polarised in a type 1 or type 2 direction upon priming.

EAE. Experimental Autoimmune Encephalomyelitis. An autoimmune disease whereby the
immune system targets the tissues of the central nervous system. It is used as an animal
model for multiple sclerosis.

Effector T cell. A T cell existing in a state able to carry out effector functions such as cy-
totoxic activity or cytokine secretion. T cells reach the effector stage of their life cycles
in the lymph nodes or spleen in which they were primed, leave these compartments and
migrate through the tissues, typically towards to sites of inflammation.

Encephalitogenic. Tending to cause inflammation of the brain (encephalitis).

2This includes Qa-1:peptide.
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Fr3. Framework Region 3. This is a part of the TCR receptor, not responsible for determining
specificity. In ARTIMMUS, Fr3 refers to a peptide derived from the TCRs of CD4THelper
cells. It binds with MHC-II to form MHC-II:Fr3, for which CD4Treg cells are specific.

Humoral immune response. A type of adaptive immune response, mediated through anti-
bodies secreted by B cells.

Immune System. A collective term given to the cells, molecules, processes and organs that
maintain the health of an organism.

Immunity. The biological state whereby the immune system is able to protect the host from
a particular infection or disease.

Immunize. To cause an immune response to a particular antigen.
Inflammation. The promotion of immune cell migration towards the sites of bodily damage.

Innate immune system. The non-specific arm of the immune system, responding to
pathogens in a generic manner. Unlike the adaptive immune system, the innate immune
system does not confer long-lasting immunity against a pathogen. It plays a critical role
in the activation of T cells.

In silico. A latin term referring to experimentation carried out using computers, typically as
simulations.

In vivo. A latin term referring to experimentation carried out using a whole, living organism.
In this thesis the term also encompasses in vitro studies.

In vitro. A latin term referring to experimentation carried out in a test tube or petri dish.

Licensing. The phenomenon whereby a dendritic cell must first interact with an effector
CDA4Th cell before it is able to prime CD8T cells.

Lymph node. An immune system organ, small and spherical in shape. Lymph nodes are
situated throughout the body, and drain the interstitial fluid (lymph) found in the body’s
tissues. They specialise in providing a compartment where cells of the innate and adaptive
immune system interact, and where the adaptive immune response originates.

Lymphocyte. A cell of the adaptive immune system.

Macrophage. A cell of the innate immune system. Macrophages are capable of phagocytosis,
express MHC-I and MHC-II complexes, and secrete a range of cytokines.

MBP. Myelin Basic Protein. A derivative of myelin. In ARTIMMUS MBP represents a
peptide that is derived by APCs through the phagocytosis of CNS cells. It binds with
MHC-IT to form MHC-II:MBP complexes for which CD4THelper cells are specific.

MHC. Major Histocompatability Complex. A receptor that binds with TCRs, subject to TCR
specificity. It is expressed by APCs. MHC can be loaded with peptides, hence presenting
peptides to T cells. MHC comes in two major forms, MHC-I to which CD8 T cells bind,
and MHC-II to which CD4 T cells bind.

MHC-II:Fr3. In ARTIMMUS, this complex comprises an Fr3 peptide presented by an MHC-
IT molecule. CD4Treg cells are specific for this complex.

MHC-II:MBP. In ARTIMMUS, this complex comprises an MBP peptide presented by an
MHC-II molecule. CD4THelper cells are specific for this complex.

Microglia. Specialised macrophages that reside in the CNS compartment.

Model. An abstract depiction of a target system, theory or phenomenon, either mathematical
or diagrammatic in nature.

Multiple sclerosis. An autoimmune disease in which the immune system targets the central
nervous system.

Murine. Pertaining to rats and mice.
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Myelin. A protein comprising the insulator sheath that surrounds the neurons, necessary for
their function.

Naive T cell. A T cell that has yet to bind with antigen for which it is specific.

Neuron. Cells of the nervous system, responsible for transmitting electrical signals around the
body.

Pathogen. A disease causing agent. For example, a virus, parasite or bacterium.

Peptide. A string of amino-acids. Their relevance to the present immunology is that peptides
are derived by cells from endogenous and, in the case of phagocytes, exogenous material
and presented on MHC complexes.

Pertussis toxin. An adjuvant, also referred to as PTx.
Phagocyte. A cell capable of phagocytosis.

Phagocytosis. A cellular process of engulfing foreign objects, for example inter-cellular debris
or bacteria, though the cell membrane.

PRCC. Partial Rank Correlation Coefficient. A measure of correlation between two random
variables, with the effects of a set of other controlling variables removed. The mea-
sure employs ranks, rather than raw data values, and as such is better able to discern
associations where non-linear relationships between variables exist.

Proliferation. Cell division in adaptive immune system cells. A lymphocyte that has been
activated through receipt of signals 1 and 2 enters the proliferative phase of its lifecycle
and produces naive daughter lymphocytes.

Qa-1. A form of non-classical MHC-I molecule that presents a substantially smaller repertoire
of peptides than classical MHC-I can. In ARTIMMUS, Qa-1 presents CDR1/2 peptides
as Qa-1:CDR1/2 complexes for which CD8Treg cells are specific.

Qa-1:CDR1/2. In ARTIMMUS, this complex comprises a CDR1/2 peptide presented by a
Qa-1 molecule. CD8Treg cells are specific for these complexes.

Receptor. A molecule found on the surface of a cell that receives signals from receptors found
on other cells, or soluble factors such as cytokines.

Regulatory T cell. A type of T cell that suppresses the activities of other T cells, either by
moderating their proliferation, suppressing their effector activities, or directly inducing
apoptosis in them.

Sensitivity analysis. An umbrella term given to a statistical procedure that quantifies the
effects that a system’s inputs has on its outputs. In the present thesis the system is
a simulation, the inputs are its parameters, and its outputs are particular metrics of
behaviour termed responses.

Signal 1. Necessary for the activation of a lymphocyte, signal 1 refers to the successful binding
of the lymphocyte’s receptor (be it a TCR or BCR) with antigen.

Signal 2. Necessary for the activation of a lymphocyte, signal 2 refers to receipt of co-
stimulatory molecule signalling by the lymphocyte.

Simulation. An instantiation and execution of a model on a computer.

SLO. Secondary Lymphoid Organ. These organs specialise in the interaction of innate and
adaptive immune system cells, examples include the spleen and the lymph nodes. In
ARTIMMUS the SLO is a compartment representing a single lymph node at the site of
immunization for EAE.

Specificity. Refers to the antigen(s) to which a lymphocyte is able to successfully bind.

Spleen. An immune system organ. The spleen performs a similar function to the lymph node,
but drains the blood rather than the interstitial fluids of the tissues.
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T cell. A cell of the adaptive immune system, the T cell originates from the thymus. It comes
in two forms, the T helper cell and the cytotoxic T cell. T cells express TCR receptors,
and interact with MHC:peptide complexes.

T helper cell. A form of T cell that plays a critical role in the generation of the humoral and
cytotoxic adaptive immune responses. These cells express the CD4 molecule, and bind
with MHC-II:peptide complexes. They come in two forms: CD4Thl and CD4Th2 cells
(see entries above).

TCR. T Cell Receptor. Every T cell expresses large quantities of these receptors. TCRs may
differ between T cells, but are identical on any particular T cell. The TCR determines
the specificity of a T cell, that antigen to which it is responsive. TCRs interact with
MHC molecules, as expressed on APCs.

TNF-a. Tumor Necrosis Factor a. A type of cytokine, secreted by CNS macrophages, and
harmful to neurons above a threshold concentration.

Type 1 cytokine. An abstraction used in ARTIMMUS that represents cytokines secreted by
CD4Th1 cells and dendritic cells, favouring their expansion and suppressing the prolifer-
ation of CD4Th2 cells.

Type 2 cytokine. An abstraction used in ARTIMMUS that represents cytokines secreted by
CD4Th2 cells, favouring their expansion and suppressing the proliferation of CD4Thl
cells.

Vaccine. A preparation, often comprising adjuvant and attenuated micro-organism as antigen,
that aims to provide long lasting immunity to a particular disease or pathogen.
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