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Computational agent-based simulation (ABS) is increasingly used to comp-

lement laboratory techniques in advancing our understanding of biological

systems. Calibration, the identification of parameter values that align simu-

lation with biological behaviours, becomes challenging as increasingly

complex biological domains are simulated. Complex domains cannot be

characterized by single metrics alone, rendering simulation calibration a

fundamentally multi-metric optimization problem that typical calibration

techniques cannot handle. Yet calibration is an essential activity in simu-

lation-based science; the baseline calibration forms a control for subsequent

experimentation and hence is fundamental in the interpretation of results.

Here, we develop and showcase a method, built around multi-objective

optimization, for calibrating ABSs against complex target behaviours requir-

ing several metrics (termed objectives) to characterize. Multi-objective

calibration (MOC) delivers those sets of parameter values representing opti-

mal trade-offs in simulation performance against each metric, in the form of

a Pareto front. We use MOC to calibrate a well-understood immunological

simulation against both established a priori and previously unestablished

target behaviours. Furthermore, we show that simulation-borne conclusions

are broadly, but not entirely, robust to adopting baseline parameter values

from different extremes of the Pareto front, highlighting the importance of

MOC’s identification of numerous calibration solutions. We devise a

method for detecting overfitting in a multi-objective context, not previously

possible, used to save computational effort by terminating MOC when no

improved solutions will be found. MOC can significantly impact biological

simulation, adding rigour to and speeding up an otherwise time-consuming

calibration process and highlighting inappropriate biological capture by simu-

lations that cannot be well calibrated. As such, it produces more accurate

simulations that generate more informative biological predictions.
1. Introduction
Computational modelling and simulation has emerged as a tool for investi-

gating a wide range of biological systems, spanning immunology [1,2], drug

and intervention design [3,4], developmental biology [5] and ecology [6].

Biological simulation is particularly insightful when used to complement

traditional methods, such as wet-lab in vivo and in vitro work; laboratory

work generates experimental data and suggests hypotheses that can be evalu-

ated by way of their integration with simulation, which in turn can suggest

further experiments or highlight areas of lacking knowledge [7,8]. Well-

designed, biologically accurate simulations provide detailed spatio-temporal

insight, facilitating observations and assays not possible in the real system;

simulation experiments are unhampered by the ethical, practical and financial

considerations inherent in biological experimentation. Research programmes

integrating wet-lab and simulation methods can offer a greater return on

animal experimentation by generating additional insight, and hence easing
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the burden on experimental animals, in line with the ‘3Rs’

principles (replacement, reduction and refinement).

The agent-based simulation (ABS) paradigm permits

detailed and nuanced simulation of biological systems [3,9].

Simulation components are represented as explicit individual

entities, agents, with unique states that exist within a spatial

environment. Rules specifying agent dynamics and the

consequences of interaction are provided, and simulation

execution allows the system-level consequences of agent-level

manipulations to be observed. ABS incorporates stochastic

events, and therein reflects the heterogeneity of real-world

natural systems. There is scope for specifying very detailed

interactions using ABS, at the expense of generating large

numbers of parameters: 50þ is not uncommon.

Drawing biologically meaningful conclusions from simu-

lation requires that the mapping of the simulation to the

biology is known. This can prove problematic for two

reasons. First, simulations are abstract representations of

their corresponding real-world systems. For example, there

exist at least 19 varieties of T cell, a vital component of the

immune system [10]. However, rather than fully capture all

their nuanced differences, a simulation is more likely to rep-

resent an abstracted subset thereof. As such, experimental

measurements on a real-world T cell cannot be assumed to

translate directly to its simulation counterpart. Second, com-

plex biological systems are the subject of simulation precisely

because they are incompletely understood, meaning that the

real-world data supporting simulation design decisions and

corresponding parameter values may not exist. Calibration

is a critical activity in establishing the link between simu-

lation and biology; parameter values that align simulation

and real-world dynamics are identified. Furthermore, an

inability to provide a good alignment points to simulation

design that does not appropriately capture the biology.

Calibration is used to establish a baseline simulation dynamic

used as a control in subsequent experimentation, and find-

ing appropriate values is important. Different parameter

values will yield different simulation dynamics, and as

such influence the conclusions drawn from experiments.

A number of approaches to calibration exist, including

manual calibration [11], evolutionary algorithms [12,13],

maximum-likelihood estimation and various forms of

regression [14]. These techniques identify parameter values

by employing a single metric to align simulation dynamics

with those of the real-world system. However, complex

biological system dynamics are not well characterized by

single metrics alone. They constitute many different types

of interacting component, and encompass both positive and

negative feedbacks. They are highly redundant: a single com-

ponent can perform many functions and any one function

can be performed by several components [15,16]. As such,

calibration of a complex system simulation is fundamentally

a multi-metric optimization problem; several metrics of a

simulation’s alignment with the biology must be simul-

taneously considered when evaluating putative parameter

values. Consider, for example, cellular motility, which

underlies many biological processes arising from cellular

interaction. Which targets a given cell interacts with depends

on both its speed and directional persistence; accurately mod-

elling this process requires that metrics of both be considered.

In this paper, we position multi-objective optimization-based

calibration (MOC, multi-objective calibration) as an impor-

tant enabling technology for simulation-based biological
investigation. Given its abstractive nature, a simulation under-

going calibration will not perfectly replicate all aspects of the

biology. As such, putative simulation parameter value sets will

exhibit trade-offs in their reproduction of aspects of the biology,

excelling in some at the expense of others. In this context, a metric

quantifying a simulation’s capture of a specific aspect of the

biology is termed an objective. Through the use of Pareto fronts

(defined in §3), MOC explicitly tracks the collection of simulation

parameter sets exhibiting optimal trade-offs between objectives.

It is unknown if adopting baseline parameter values from differ-

ent regions of the Pareto front will deliver fundamentally

different conclusions from simulation-based experiments. The

answer to this question is likely to be problem-specific, and the

use of MOC allows this issue to be addressed by exposing a

full range of Pareto-equivalent solutions.

Here we investigate multi-objective optimization, specifi-

cally the NSGA-II algorithm [17], in calibrating an established

immunological simulation: ARTIMMUS (artificial murine

multiple sclerosis simulation) [18]. ARTIMMUS simulates

experimental autoimmune encephalomyelitis (EAE), a

mouse model of multiple sclerosis [19,20]. It is a complex

simulation, encompassing seven distinct cell populations

that interact across five organs, and constituting 72 par-

ameters. Its successful prior manual calibration renders it

an effective test case for evaluating MOC’s applicability to

simulation calibration. We demonstrate the successful

calibration of ARTIMMUS using five objectives (§4): a

range of solutions to the calibration problem, offering optimal

trade-offs against calibration objectives, are generated.

Furthermore, we demonstrate that conclusions drawn from a

simulation-based experiment can vary depending on exactly

which calibration solution is adopted (§5). Hence, different

calibration solution parameter values can vary downstream

conclusions, highlighting MOC’s value in making these

multiple solutions explicit. We show that MOC is equally

applicable in generating simulation initial condition values:

cellular population sizes as simulation launch. We proceed to

demonstrate that MOC can identify parameter and initial

condition values that deliver previously unknown simulation

dynamics, highlighting its potential beyond this well-

understood test case (§6). Lastly, we consider strategies for

formulating stopping criteria for MOC, thereby preventing

overfitting and wasted computational expense when apparent

improvements in simulation calibration are probably due to

stochastic sampling rather than genuinely superior parameter

values (§7). We begin by introducing ARTIMMUS (§2) and

the MOC methodology (§3).
2. A test bed for calibrating biological
simulations

ARTIMMUS is an ABS of an EAE protocol wherein mice

induced into autoimmunity undergo a natural recovery

from disease and are thereafter resistant to disease re-

induction [18,21,22]. ARTIMMUS was created, in part, to

further probe the cellular interactions mediating this recovery

[23,24]. It has been used to explore the mechanisms through

which splenectomy, the removal of the spleen, a primary

immune organ, exacerbates disease severity and predict

the outcome of T-cell interaction-blocking drugs [18]. It was

conceived through a collaboration of immunologists and

computer scientists, and developed through a principled
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Figure 1. The ARTIMMUS used as a test case for evaluating MOC. (a) The
major cell types represented in ARTIMMUS and their key influences on
one another. Red and green arrows, respectively, indicate activities that per-
petuate autoimmunity and mediate recovery. (Adapted from [11].) (b) The
baseline dynamic of ARTIMMUS, depicting four T-cell population sizes over
time. The simulation behaviour depicted here forms a calibration target for
MOC in §4. Lines correspond to like-coloured cells in (a); these colours are
maintained throughout the article. Error bars capture 90% of the data derived
from 500 simulation executions; time series lines indicate median population
sizes at each time point.
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approach focusing on documenting how biological concepts

are translated into computer code: the CoSMoS process

[25]. It is written in the Java programming language.

ARTIMMUS has previously undergone a by-hand,

manual calibration [11], and was shown to reflect the dyna-

mics of the real-world disease [18]. The process demanded

close collaboration between the simulation developer and

an immunologist who informed the work, helping bridge

biological data and concepts to simulation constructs and

output. This manual calibration took two weeks, and entailed

an iterative process through which simulation code and

parameter value changes that might explain perceived discre-

pancies between simulation and biological system dynamics

were identified and explored in turn. Those best aligning

simulation with biological dynamics were adopted before

repeating the process. This calibration approach is akin to a

non-population, manual, greedy local search wherein the

best immediate improvement is always adopted.

Despite delivering a well-calibrated result for ARTIMMUS,

this calibration search strategy presents several potential

pitfalls. It is entirely plausible that the manual search does

not find the global optimum parameter set that best aligns

simulation dynamics with those of the biological system.

As a greedy search strategy, its result is highly dependent

on the search’s starting position, and complex landscapes

where one parameter’s influence on simulation dynamics

critically depends on the values held by others are particu-

larly challenging. The existence of multiple solutions to

the calibration problem can go entirely undetected. Lastly,

manual calibration is time-consuming, and ABS’s stochas-

tic nature further compounds these challenges. It is these

issues that collectively motivated the present automated

MOC approach.

Here we provide a brief summary of EAE and ARTIM-

MUS to aid understanding of the sections that follow; a

comprehensive description may be found in the supplemen-

tary materials of [18]. Figure 1a provides an abstract overview

of the major cell types involved in EAE, and their relation-

ships to one another. EAE is induced through injection of

neuronal fragments which are internalized by dendritic

cells (DCs) which then direct the growth of a T-cell popu-

lation (CD4Th1, abbreviated to Th1) targeting these

fragments. These Th1 cells enter the central nervous system

(CNS), where they stimulate CNS-resident macrophages

into secreting TNF-a, which in turn damages neurons. The

resultant neuronal fragments are internalized by further

populations of DCs, which direct further Th1 activities,

perpetuating the autoimmune cycle. Recovery from auto-

immunity is through the actions of two populations of

regulatory T cell, CD4Treg and CD8Treg cells, so named as

they regulate the activities of other T cells. The natural life

cycle of a Th1 cell results in its eventual death and internaliz-

ation by DCs, which derive fragments therefrom and direct

the growth of CD4Treg and CD8Treg cells targeting the

Th1 cell population. CD4Tregs play an essential role in facil-

itating the development of CD8Treg cells. CD8Treg cells

can directly kill Th1 cells, interrupting their natural life

cycle and preventing the perpetuation of autoimmunity.

Th2 cells directly compete with Th1 cells, as both arise from

a common progenitor and they each perform downstream

activities that promote their own development. The reduced

severity of the autoimmune environment arising from the

action of CD8Treg cells favours the growth of Th2 cells
over Th1 cells, which do not directly harm neurons and

hence do not contribute to this autoimmune process.

Figure 1b shows a time series graph of T-cell population

sizes in ARTIMMUS.
3. Multi-objective calibration methodology
We present here an overview of the MOC concept, detailing

how we employ multi-objective optimization technology

to calibrate simulation parameters and initial conditions.

A graphical overview is supplied in figure 2.

Firstly, we define the desired (target) ARTIMMUS

dynamics (figure 2a). In this paper, targets are expressed as

peak cell population sizes, the times at which those peaks

occur, or the cell population sizes at a given time. Target

dynamics might represent known biological results to be

reproduced, or hypothetical outcomes of interest. In this

study, we adopt the dynamics of a previous manual

calibration of ARTIMMUS, so as to evaluate MOC on a
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Figure 2. Overview of the multi-objective calibration (MOC) concept. (a) The desired (target) simulation dynamics are defined as distributions (only two shown): the
desired distributions of peak cell number and the times at which these occur. Distributions are depicted as histograms, or the corresponding cumulative distribution
functions describing the proportion of samples in the distribution ( y-axis) that hold a given value or less (x-axis). (b) The capacity for putative simulation parameter
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strategically sample parameter space. (c) Solutions representing optimal trade-offs in performance against each objective are identified, collectively termed the
Pareto front (i). These solutions are Pareto equivalent ( pink): no solution has been found that represents an improvement in one objective without a worsening
in another. Suboptimal candidate solutions are discarded (blue). Pareto-equivalent solutions may reside in disparate regions of parameter space (ii).
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well-understood problem; thereafter we employ MOC to

obtain hypothetical dynamics not known possible a priori.
We note that many other aspects of simulation performance

can constitute target dynamics, depending on the context

and simulation being calibrated. The expression of targets

as distributions reflects the stochastic nature of biological sys-

tems and ABSs, wherein repeat experiments can yield slightly

different results.

MOC seeks to identify parameter values that best align

simulation with target dynamics. As such, we define metrics,

termed objectives, that quantify the alignment between the

two. As illustrated in figure 2b(i), we employ the non-

parametric Kolmogorov–Smirnov (KS) statistic in our objec-

tives, which quantifies the difference in target and

simulation dynamics for a given set of simulation parameter

values. Rather than contrasting the medians of two distri-

butions, as many statistics do, the KS statistic quantifies

the biggest distance between two distributions’ cumulative

distribution functions. As such, its use here facilitates the cali-

bration of a distribution’s shape, not simply its median or

mean. We consider this a strength of our approach; as may

be seen in the sections that follow, MOC is capable of repro-

ducing distributions of behaviour, not simply averages. Each

set of simulation parameter values is termed a ‘candidate

solution’, and its corresponding simulation performance is

evaluated against each objective individually. By evaluating

many candidate solutions, we identify regions of parameter

space providing close alignment with target dynamics

(figure 2b(ii)). Importantly, the regions that satisfy each objec-

tive differ. In practice, it is computationally intractable to

fully explore parameter space as suggested by the heat

maps in this figure, particularly when many parameters are

investigated. Instead, a heuristic (guided) search strategy is

employed that samples parameter space, evaluates perform-

ance and decides from where to extract the next candidate

solutions based on the results. In this study, we employ

NSGA-II as our guided search engine [17], but we believe

other multi-objective optimization technologies could be

successfully substituted. NSGA-II maintains a population of

candidate solutions, and employs (heavily abstracted) prin-

ciples of genetic recombination, mutation and natural

selection to generate and evaluate successive generations of

superior candidate solutions. Hence, NSGA-II is an iterative

algorithm. We refer readers to [17] for more detail on

NSGA-II. Here we have employed the ‘inspyred’ python

module NSGA-II implementation.

We identify those candidate solutions that constitute opti-

mal trade-offs in performance against each objective, referred

to simply as solutions (figure 2c). The set of solutions is

termed the Pareto front. These solutions are Pareto equivalent:
no solution has been found that offers an improvement

in one objective without a worsening in another. Pareto-

equivalent solutions may reside in disparate regions of

parameter space, and the ability to recognize this is a key

strength of MOC. Though these regions of parameter space

may be Pareto equivalent for the given target simulation

behaviour, they could yield very different behaviours

when subjected to further downstream experimentation,

and as such lead to different simulation-borne conclusions.

In this study, we investigate this phenomenon for a given

experiment in ARTIMMUS.

We note that it is possible to derive a great many targets

and objectives for complex system simulations. Increasing the
number of objectives increases the difficulty of the calibration

problem, and the computational resource required to address

it; in the field of optimization this is known as the ‘curse

of dimensionality’. Hence, employing fewer, uncorrelated

objectives is considered good practice: it encourages the

identification of good quality solutions, while minimizing

the resources required to do so.
3.1. Selecting candidates from the Pareto front
Upon completion MOC delivers a Pareto front of Pareto-

equivalent solutions, representing optimal trade-offs between

the calibration objectives. Deciding which solution adopts as

the baseline simulation parameter values is an application-

specific problem. For this study we have developed a

function, L(c), which assesses candidate solution c against

the criteria below. We select the candidate with the lowest

L value when presenting the results of calibration below.

L is calculated as follows.

Let V represent the set of calibration objectives, and

KSoðcÞ, o [ V the corresponding KS score for candidate c
on objective o. KSðcÞ represents the mean objective score for

candidate c. The L score is calculated as

LðcÞ ¼ a � KSðcÞ2 þ
X

o[V

ðKSoðcÞ � KSðcÞÞ2: ð3:1Þ

Low L scores are achieved through low mean objective

KS scores, and balanced KS scores across all objectives. a

specifies the relative importance of these two components.

When a ¼ 1, both measures contribute equally to L.

Lower mean KS scores are prioritized with a . 1 and vice

versa. We employ a ¼ 1 throughout. We note that L is

unit-less, and as such is not explicitly reported here; it is

used only to extract one candidate solution from a Pareto

front, presented as the chief result of calibration in the

results that follow.
4. Successful re-calibration of ARTIMMUS
We demonstrate MOC by re-calibrating ARTIMMUS, taking

as target dynamics those of the previous manually calibrated

simulation dynamics [18]. As these dynamics are known to

be obtainable, and at least one set of parameter values that

produces them is known, we are able to evaluate MOC’s

performance.

With five objectives MOC successfully reproduced the

manually calibrated ARTIMMUS dynamics, as demonstrated

in figure 3. The objectives used were

— the peak Th1 cell population size (figure 3b),

— the time at which the peak occurred (figure 3c),

— the Th2 population size at 30 days (figure 3d ), and

— the peak population sizes of both CD4Treg and CD8Treg

cells (figure 3e,f ).

The corresponding target distributions of values are also

shown in figure 3.

Each candidate solution generated by NSGA-II was

assessed through 200 replicate simulation executions.

The target distributions against which candidates are con-

trasted are derived from 500 replicates generated with

the previous manual-calibration parameter values. The
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manual-calibration’s replicates need be executed once only

and stored; they do not change. By contrast, assessment of

candidates is computationally costly because so many are

generated; a figure of 200 replicates per candidate was
selected to strike a balance between experimental sensitivity

and computational cost. A previous analysis of parametric

perturbation in ARTIMMUS established that contrasting dis-

tributions comprising 200 replicate executions was sufficient

http://rsif.royalsocietypublishing.org/


Table 1. The ARTIMMUS parameters (a) and initial conditions (b) subject
to calibration, their baseline (manually calibrated) values, and the lower
and upper bounds of values they may be assigned during MOC.

(a) parameters calibrated

parameter

baseline

value

lower

bound

upper

bound

APC_immatureDuration 48 0 96

APC_matureDuration 110 0 220

APC_phagocytosisToPeptide 0.02 0 0.04

CNSM_MBPExpressionProbability 0.2 0 0.4

DCT1_cytokineSecretionRate 10 0 20

DC_T2CytokineRatio 0.17 0 0.34

Th1_diff00 0.05 0 0.1

Th1_diff80 0.85 0 1.0

(b) initial conditions calibrated

initial condition

baseline

value

lower

bound

upper

bound

numTh 40 0 80

numCD4Treg 30 0 60

numCD8Treg 30 0 60

numCNS 500 0 1000

numCNSMacrophage 75 0 150

numDC 10 0 20

numDCCNS 40 0 80

numDCSpleen 100 0 200
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to detect ‘small’ changes in two-thirds of simulation behav-

iour metrics, and ‘medium’ in the remainder [11]. Hence,

we consider 200 replicates to offer sufficient sensitivity in

differentiating candidate performances. These effect size

categories arise from the analysis’s use of the Vargha–

Delaney A test [26], which provides interpretation guidelines.

For reference, the A test is a non-parametric effect magnitude

test representing the probability that a randomly selected

member of one distribution is larger than a randomly selected

member of the other. An A test score of 0.5 indicates that the

two distributions are indistinguishable (using this test).

Values of 1 and 0 indicate no overlap in the two distributions.

A single calibration exercise required around 5 days on a

dedicated computational cluster able to execute 120 simu-

lations simultaneously; each single simulation replicate

takes around 2–10 min to execute, depending on the

parameter values used.

We have successfully applied MOC to both ARTIMMUS

parameter values and initial conditions, but focus here on

the former. Initial condition calibration results are reported

in the electronic supplementary material. Calibration was

performed over eight ARTIMMUS parameters which all per-

tain to presentation of substances to T cells, particularly Th1

and Th2 cells, and their resultant development. The biology

captured in these parameters is outlined in the electronic

supplementary material, figure S1, and we note that a

thorough understanding of this biology is not required to

appreciate our results. These parameters were selected for

the reasons that ascertaining their values experimentally

would be challenging and they all relate to a critical aspect

of the biology: the perpetuation of autoimmunity and (for

some) its amelioration (as Treg cell development is also

directed by DCs). Hence, by successfully calibrating par-

ameter values that are highly influential on simulation

dynamics we demonstrate MOC’s potential. Parameters

were given a constrained range of values that the MOC pro-

cess could assign, being zero to twice their manually

calibrated range, as shown in table 1. In exploring the

space of putative parameter values, NSGA-II maintained a

population of 64 candidate solutions which were subject to

genetic recombination and mutation [17] over 32 generations

of natural selection, wherein only the best 64 solutions

(i.e. those on or near the Pareto front) were retained in the

successive generation.

This calibration exercise was repeated three times for both

parameters and initial conditions. Figure 3 shows the solution

with the lowest L score from one such parameter calibration.

The remaining two are shown in the electronic supplemen-

tary material, figures S2 and S3. The calibrated simulation

dynamics closely resemble the target distributions in all

cases. The three parameter calibration exercises generated,

respectively, Pareto fronts constituting 82, 87 and 112

Pareto-equivalent solutions. The ranges of parameter values

represented across the Pareto fronts’ solutions in each inde-

pendent calibration exercise are shown in figure 4, as are

the baseline manually calibrated values. In all but one case,

the baseline parameter value sat within the range of non-

outlier MOC-derived values, the exception being Th1_diff80
in exercise 3. Hence, we conclude that MOC is an effec-

tive means of calibration: it has repeatedly reproduced

ARTIMMUS dynamics that were known possible, and has

identified similar solutions, in the form of parameter

values, that do so.
Next, we investigated how the space of ARTIMMUS

parameter values relates to the space of successful

target dynamic reproductions, i.e. trade-offs in objective

values. We find statistically significant ( p , 0.01) differences

between calibration exercises’ distributions of calibrated

parameter values for seven of eight parameters (figure 4).

This corresponds to 19 of 24 (79%) pairwise comparisons.

Furthermore, 75% (18/24) pairwise comparisons register a

KS � 0.3. For context, a KS value of 1.0 indicates no overlap

between two distributions. By contrast, this degree of vari-

ation is not observed in Pareto fronts’ objective values,

depicted in figure 5. Here, we instead find statistically signifi-

cant differences in only 27% (4/15) of pairwise calibration

comparisons, and only 27% (4/15) of comparisons register

KS � 0.3. We find no evidence of objectives that are harder

to calibrate than others; the smallest objective values are

less than 0.05 in all cases, and the median objective values

all lie under 0.17.

Together, these data suggest a redundancy in the ability

for parameter values to deliver particular objective scores.

This corresponds to a landscape wherein parameter values

mapped to objective values is relatively flat, as a wide range

of ARTIMMUS parameter values deliver relatively similar

objective scores. The results of using MOC to calibrate ARTIM-

MUS initial conditions are reported in the electronic

supplementary material, section S1, and figures S4, S5 and

S6. They are qualitatively identical to our findings in calibrating

parameters and support the conclusions drawn here.
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An obvious question is: why does MOC not deliver any

perfectly calibrated solutions, wherein all objective scores

are 0.0? The best solutions, determined by their minimal

L values, in each calibration exercise are shown in

table 2. Objective KS values ranged from 0.05 to 0.14
(and from 0.03 to 0.12 for initial conditions). We attribute

the inability to deliver a perfect calibration to the stochastic

nature of ARTIMMUS, wherein 200 replicate executions for

a given candidate yields sufficient variation so as to deliver

objective KS scores of greater than or equal to 0.05. There is

http://rsif.royalsocietypublishing.org/
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a risk that improvements in objective KS values that are

already so small cannot be confidently attributed to an

actual improved simulation calibration, as opposed to sto-

chastic variation between simulation replicates. Section 7

explores a method for terminating the MOC process on

the premise that further effort will not deliver better quality

solutions.

These data collectively highlight the challenges in exactly

calibrating (i.e. KS ¼ 0.0) simulations to several objectives

simultaneously. As such, we consider in the next section
the implications on experimental results of adopting baseline

simulation values from different extremes of the Pareto front.
5. Scientific significance of imperfect calibration
As demonstrated above, MOC delivers a host of solutions to a

given calibration problem, each representing an optimal trade-

off in calibration criteria (figure 2). It falls on the simulation

developer to decide which baseline parameter values to

http://rsif.royalsocietypublishing.org/


Table 2. The best solution, being that with the lowest L value, arising from each of three independent calibration exercises. Shown are each of the five
objective KS values. We independently investigated the calibration of both ARTIMMUS parameters (a) and initial conditions (b). High-quality calibrations, as
indicated by low KS values, were obtained in all cases.

calibration exercise

objective KS value

Th1Peak Th1Time Th2at30d CD4TregPeak CD8TregPeak

(a) calibration on parameters

1 0.06 0.10 0.08 0.06 0.07

2 0.08 0.06 0.06 0.05 0.07

3 0.05 0.08 0.14 0.08 0.05

(b) calibration on initial conditions

1 0.06 0.08 0.04 0.03 0.06

2 0.04 0.08 0.10 0.11 0.12

3 0.06 0.06 0.06 0.07 0.05
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adopt in subsequent experimentation. There is a risk that,

while calibration solutions lying in different regions of par-

ameter space give rise to Pareto-equivalent solutions, they do

not behave in a consistent manner when further experiments

are performed. In such a case, a simulation-based experiment

would lead to different conclusions depending on which cali-

bration result was adopted as the baseline. In this section, we

investigate the extent to which this phenomenon holds.

The manually calibrated ARTIMMUS was previously

used to elucidate the effect of removing a central immune

organ, the spleen (a splenectomy), in EAE-induced animals

[18]. Previous experiments had demonstrated that splenect-

omy in rats prior to the induction of EAE increased the

mortality rate and hampered recovery [27]. Simulating sple-

nectomy in ARTIMMUS revealed the spleen as a primary

site for the generation of autoimmunity-combating CD4Treg

and CD8Treg cells. The reduced Treg populations resulting

from the spleen’s removal prior to EAE induction were

unable to completely abrogate the autoimmunity-inducing

Th1 populations, allowing for their re-expansion, and thus

facilitating increased disease severity and relapses.

Here we explore whether the results of splenectomy in

ARTIMMUS differ when baseline parameter values are

adopted from disparate extremes of the Pareto front. The exper-

imental procedure is highlighted in figure 6. First, Pareto front

solutions representing the extreme values, both low and high,

of objective KS measures are identified. These solutions

represent extremes in the range of simulation dynamics encap-

sulated within the Pareto front. For each solution 200 simulation

replicates are performed for both control and splenectomy

groups. Key performance indicators (KPIs) are extracted from

the resultant distributions of 200 simulation executions in

each group. The performance indicators used are identical to

those of the original ARTIMMUS splenectomy experiment

[18]: the peak population sizes for each T-cell population in

the simulation, the times at which these peaks are reached,

and the number of Th1 cells remaining at day 40 (giving a

total of nine). For each KPI, the distributions of values obtained

for control and splenectomy groups are contrasted using the

Vargha–Delaney A test [26], as per the original experiment

[18]. This procedure is repeated for each of the three calibration

exercises reported in §4. The resultant A test scores are shown in
figure 6b. Also shown, for context, are the A test scores of the

original ARTIMMUS experiment [18].

Broadly speaking, the splenectomy results generated by

Pareto-equivalent solutions are consistent with one another,

and with the original experiment. There are exceptions, however,

wherein differences in A test scores reported for solution and the

original experiment differed substantially: g23c60 in exercise 1,

and g6c35 and g30c58 in exercise 2. These differences occurred

for ‘Th1 @ 40d’, ‘Th2 peak’ and ‘Th2 Time’ KPIs. Of interest,

three of these solutions were obtained from the region of the

Pareto front where alignment with target Th2 peak population

size was poorest. In the case of g23c60 and g6c35, exercises 1

and 2, respectively, the parameter values where sufficient to

return Th1 population size at 40 days to control group levels,

despite the splenectomy (A¼ 0.58 and 0.56; 0.5 indicates no

difference). This is significant, as the principal conclusion of the

original experiment was that splenectomy reduces Treg popu-

lation sizes to levels unable to suppress Th1 cell populations

and abrogate autoimmunity. The time-series T-cell population

dynamics of both these solutions under control and splenectomy

are shown in the electronic supplementary material, figure S9. In

both cases, the peak Th1 population sizes are smaller than in the

original experiment (figure 6), and the Th2 population sizes are

substantially larger. Based on this, we hypothesize that, despite

reduced Treg population sizes resulting from splenectomy,

the altered balance between Th1 and Th2 populations which

compete with one another is sufficient to abrogate the Th1

population at day 30 in these solutions.

Supporting the notion that solutions’ results are relatively

consistent, the direction of change in solutions’ KPIs resulting

from splenectomy differs from the original experiment in only

a minority of cases. Furthermore, this occurs only in KPIs for

which the original experiment reports a comparatively small

change between splenectomy and control, the largest being

in exercise 2 when the original experiment reports a change

of A ¼ 0.66, which was not interpreted as significant.

We have conducted the same investigation on Pareto-

equivalent solutions generated under the three independent

initial condition calibration exercises (electronic supple-

mentary material, section S1). Detailed analysis is reported

in the electronic supplementary material, section S2 and

figure S10; briefly, divergences between the initial condition
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solution and the original experiments were smaller than

reported here for parameters. We take this to indicate that

the initial parameters investigated were less influential on

simulation behaviour than the parameters investigated here.

In summary, the conclusions that would be drawn

from adopting baseline parameter values from disparate

Pareto-equivalent solutions are mostly, but not completely,

consistent with one another and with the original splenect-

omy experiment. There were two notable exceptions, and

they underscore the importance of considering the range of

simulation performances that satisfy a calibration exercise.

Making these explicit through Pareto fronts is a strength of

the MOC approach. It remains important to, where possible,

further evaluate Pareto-equivalent solutions in the context of

domain knowledge and expertise, which might have ruled

out the two exceptions noted above, as the Th2 population

size is abnormally large compared with the Th1 population.

Where this is not possible, where no grounds to discard

some Pareto-equivalent solutions exist, we advise that exper-

iments are performed in replicate, adopting a wide range of

calibration solutions, and that conclusions are drawn after

taking stock of the full range of results generated. This is par-

ticularly important if quantitative, rather than qualitative,

results are sought; our present data show more divergence

between calibration solutions and original experiment in

the quantitative case.
6. Multi-objective calibration delivers previously
unseen disease phenotypes

In §4, MOC successfully reproduced simulation dynamics

known to exist by virtue of a prior manual calibration. To

further demonstrate MOC’s generality and utility, we now

derive simulation dynamics not known to exist a priori.
The baseline behaviour of ARTIMMUS constitutes a

period of autoimmunity followed by recovery, reflecting typi-

cal biological disease [21,22]. However, disease susceptibility

and severity vary considerably between mouse strains and

between mice within a given strain [28,29]. Furthermore,

depletion or incapacitation of CD4Treg and CD8Treg cells

leads to exacerbated disease symptoms [30,31]. Here we

investigate the capacity for ARTIMMUS to reproduce persist-

ing disease symptoms of varying severity. To reflect potential

genetic differences between mouse strains, we calibrate over

initial conditions specifying cell population sizes, and a par-

ameter controlling the efficiency of Th1 killing by CD8Treg

cells; together comprising nine variables. In this experiment,

we are implicitly investigating whether variation in these

basal population sizes and the efficiency of the CD8Treg–

Th1 killing pathways could explain the differences in

autoimmune phenotypes observed between mouse strains

and individuals therein.

Three persisting disease severities are investigated, ran-

ging from mild to severe. These are captured by defining the

distribution of Th1 cells remaining at 60 days as a target for

calibration, captured as a Gaussian distribution. Mild, moder-

ate and severe disease are represented with mean (m) and

standard deviation (s) values of m ¼ 50 and s ¼ 10, m ¼ 200

and s ¼ 100, and m ¼ 500 and s ¼ 200, respectively. To

ensure an aggressive onset of autoimmunity, consistent with

animal models, a second calibration target distribution of

m ¼ 1000 and s ¼ 200 Th1 cells at 15 days is employed.
Each persisting autoimmunity severity is independently

calibrated three times, representatives of which are shown in

figure 7 (the remainder are shown in the electronic supplemen-

tary material, figures S11, S12 and S13). Automated calibration

successfully delivers the required median number of cells in

most cases, with KS � 0.2 in six of the nine calibrations. How-

ever, the spread of the ‘Th1 cells at 60 days’ distribution for

mild persisting disease is notably less well calibrated, with

all three calibrations delivering KS . 0.3.

Together, these data support the general applicability of

MOC to problems where a simulation’s ability to deliver a

desired dynamic is not known a priori. These data also

suggest that the heterogeneity in disease severities observed

in experimental animals could be attributed to differences

in basal population sizes and regulatory pathway efficiency.
7. When to stop multi-objective calibration
A key consideration in any optimization task is the stopping

criteria. For MOC, underpinned by the NSGA-II optimiza-

tion algorithm, this equates to determining when to stop

calibration.

Overfitting describes the case where the simulation being

calibrated starts to capture the noise in the target distri-

butions, rather than the trends those distributions represent.

This is a particular issue when target distributions do not

contain many samples, as might be the case if they represent

biological experiments (figure 8a). For example, studies invol-

ving experimental animals can require their sacrifice to collect

data. As such, it is considered unethical (and is practically

cumbersome) to collect hundreds of samples, and 5–10 is

more typical. These smaller sample sizes are unlikely to per-

fectly capture the underlying distribution that would emerge

if thousands of samples were available. Overfitting is said to

have occurred when the calibrated simulation better reflects

these 5–10 samples than their underlying distribution, as

illustrated in figure 8b.

A common strategy in single-objective (not MOC, which is

multi-objective) problems for determining when to terminate

an optimization process is to segregate the available data into

two parts, termed ‘training’ and ‘validation’ datasets. The train-

ing dataset is used as normal to search for improved solutions,

akin to MOC’s target data. The validation dataset is used as an

independent check for overfitting of solutions to the training

dataset. Such a case of overfitting is depicted in figure 8c.

Both the training and validation data roughly reflect the

underlying distribution from which they were sampled. The

candidate solution more closely resembles the training dataset

than either the underlying distribution or the validation dataset;

hence, it is overfitted. As illustrated in figure 8d, in the earlier

stages of optimization successive candidate solutions that

better capture the training dataset will also better capture

the validation data. It is only when overfitting starts to occur

that performance against the validation data worsens while

performance against training data continues to improve. It is

at this point that the optimization process is best terminated.

MOC is, however, a multi-objective optimization pro-

blem, and it is unclear in the literature how this overfitting

detection strategy ought to be applied. We propose here a

novel strategy for detecting overfitting in multi-objective pro-

blems based on co-membership of solutions to both training

and validation dataset Pareto fronts (Pt and Pv), maintained

http://rsif.royalsocietypublishing.org/
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throughout the calibration process (figure 8e). The overfitted-

ness at a given point in the optimization process is reflected

in the proportion of Pt members that are not members of

Pv. The following algorithm performs the calculation:

m 0

for all i [ Pt do

if i [ Pv then

m m þ 1

end if

end for

return 12(m/size(Pt))

A proportion of 0 indicates that all training dataset Pareto

solutions are also members of the validation Pareto front.

At the other extreme, a value of 1 indicates that the training

dataset Pareto front has been completely overfitted, as none

of its members are Pareto optimal with respect to the vali-

dation dataset. A threshold level of overfitting at which the
optimization process (i.e. MOC) is to be terminated can be

selected by the simulation experimenter.

We investigated different overfitting thresholds for MOC

termination in the three ARTIMMUS parameter recalibration

exercises reported in §4. An additional 214 simulation repli-

cates using manually calibrated parameter values were

acquired to use as a validation dataset, constituting a 70–30

(500–215) training–validation data split. The validation data-

set Pareto front for each iteration of the MOC algorithm

(generation) was determined, and the overfittedness calcu-

lated. Figure 9a shows how, as MOC progresses, the

proportion of overfitted candidate solutions on the training

(target) dataset increases for each of the three calibration exer-

cises. Figure 9b shows the point at which MOC would have

been terminated should a given overfittedness threshold

have been selected. Had we employed an overfittedness ter-

mination threshold of 0.5, wherein half of the training

dataset Pareto front is overfitted, calibration would have

http://rsif.royalsocietypublishing.org/
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terminated at generation 14, 15 or 23 (for exercises 1, 2 or 3,

respectively) instead of 32. Given that each of these cali-

bration exercises required around 7 days to complete on a

dedicated computing cluster, this speed-up is substantial.

We note that these combined training and validation datasets

constitute 714 data points, considerably exceeding what

might be obtained from real biological experiments. We

anticipate that with fewer data points overfitting will occur

sooner in the MOC process.
8. Discussion
Simulation represents a powerful tool to advance the

investigation of biological systems, particularly when used

in tandem with traditional approaches. As more complex
biological systems become the subject of simulation a chal-

lenge in their calibration emerges: complex biological

systems cannot be characterized by single metrics alone.

There exist technologies capable of identifying parameter

values that align simulation dynamics with some desired

target, but these operate on single metrics. Even in cases

where parameter values can be ascertained experimentally,

seemingly avoiding the need for calibration, the abstract

nature of simulation can complicate their direct adoption.

Here, we have demonstrated how biological ABS parameter

values can be derived using multi-objective optimization,

an approach we have termed MOC. Multi-objective optimiz-

ation algorithms find solutions to problems simultaneously

described by more than one metric. In MOC the desired

characteristics of the simulation, which can represent either

established biological data to be reproduced or some desired
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hypothetical simulation outcome, are expressed as distri-

butions. Importantly, several such characteristics can be

expressed, and MOC identifies those sets of parameter

values that deliver optimal trade-offs against each.

We evaluated MOC on a well-understood simulation,

using it to reproduce a previous manual calibration effort

and therein delivering a solution that was known to be pos-

sible. The ARTIMMUS was used, which simulates a mouse

multiple sclerosis disease model [18]. MOC delivered

around 90 unique parameter value combinations, each of

which provided an optimal trade-off in performance against

the five target ARTIMMUS characteristics specified. This

range of possible calibration solutions was unknown

a priori; the previous manual calibration of ARTIMMUS

having delivered only one such solution [11]. It would ordi-

narily fall on the simulation user to select one solution

(set of parameter values) to adopt as a baseline for sub-

sequent simulation experimentation. We investigated the

significance of selecting solutions representing different

extremes of trade-offs in delivering target simulation

characteristics. A previous experiment with ARTIMMUS

determined that removing the spleen, an important immune

system organ, resulted in exacerbated autoimmune symptoms.

The results of re-performing this experiment with different

MOC solutions adopted as baseline parameter values were

broadly, but not absolutely, similar. Hence, adopting different

calibration solutions can lead to different experimental

conclusions. It a strength of MOC that this range of solutions

is made explicit. Where possible, we recommend that MOC

solutions be evaluated against biological data to discard

those that represent biologically unrealistic parameter values

or behaviours. Where this is not possible, we advocate

performing experiments in replicate using multiple MOC

solutions such that the full range of possible results be

established before conclusions are drawn.

We demonstrated MOC in deriving simulation beha-

viours that were not known possible a priori: varying

degrees of persisting autoimmunity in ARTIMMUS. MOC

can be applied to both parameters and initial conditions, at

the same time, as demonstrated in these calibration exercises.

We do not consider simulation parameter values and initial

conditions as independent; a poor selection of initial con-

dition values coupled with appropriate parameter values

can still fail to deliver the desired simulation dynamic.
MOC’s successful delivery of these previously unknown

simulation dynamics presents an interesting use case for

MOC. It could be used to identify which parameters, and

hence components and pathways, need to be manipulated

to resolve a simulated disease state, therein highlighting can-

didate therapeutic targets. Furthermore, for disease

simulations that incorporate potential interventions, MOC

can be used to determine optimal intervention strategies

that exploit synergies between several treatment options.

We surmise that MOC can support model selection and

development. Accurately simulating a biological system

requires both an appropriate model of the biology and appro-

priate parameter values for that model. There typically exist

several options for how to represent a biological concept in

simulation, the most suitable of which is often unclear.

Models must strike a balance between including sufficient

complexity to accurately reflect the biology’s dynamics

while remaining sufficiently simplistic to offer insight. The

unsuccessful calibration of a given model of the biology can

lead to two conclusions: first, that the calibration process

was simply unsuccessful in finding a solution that does

exist, a risk we argue is greatly lessened through MOC; or

second, that the model is incapable of replicating the biologi-

cal dynamics in question. In this latter case, MOC can inform

simulation design, where a succession of putative models can

be evaluated until calibration is successful. The possibility of

directly applying MOC to the space of biological abstractions,

rather than parameter values, is intriguing, though extremely

challenging technically. Here, MOC would search for which

cells were represented, and how. This would encompass

their interactions with one another, opting to ignore some

found to be irrelevant to the biological phenomenon of inter-

est or vice versa. The level of detail through which molecular

secretions and expressions where represented could also be

determined: is a variable expression level necessary, or does

simply ‘present’ versus ‘not’ suffice? The challenge herein

lies in building an ABS infrastructure capable of capturing

all these possibilities and allowing the automated optimiz-

ation process to manipulate them. The aforementioned

point still applies—for each possible model, the space of par-

ameter values must also be investigated, as an accurate

reflection of biology requires both an appropriate model

and corresponding parameter values. Hence, MOC would

be applied in a nested fashion, first over the space of
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biological representations, and therein over the space of

parameter values for each model.

Although our present investigation has employed an ABS,

MOC is applicable to other simulation paradigms also, such

as ordinary differential equations (ODEs). Application to

non-stochastic simulations, such as ODEs, requires signifi-

cantly less computational power, as there is no need to

obtain simulation replicates in assessing a candidate

solution’s fitness. We note that, from our experience in building

them, not all biological simulations are as computationally

costly to execute and calibrate as ARTIMMUS. Each MOC exer-

cise has taken up to a week of time on a dedicated

computational facility. In this regard, terminating the MOC

process when a threshold level of overfitting is detected is per-

tinent (see figure 8). Overfitting was detected in all three of our

ARTIMMUS parameter recalibration exercises, and selecting a

threshold of 0.5, wherein half of the MOC solutions at a given

point no longer represent optimal performance trade-offs in an

independent test, could as much as halve the computational

effort required.

The ability to detect overfitting in a multi-objective

context is a novel contribution of this work. Although a

common strategy for stopping a single-objective optimization

process, it was previously unclear how to deploy this strategy

in a multi-objective context [32]. There is another condition

under which we feel it pertinent to terminate the MOC pro-

cess. The goal of MOC is to find parameter values yielding

simulation dynamics that closely resemble some target. As

this alignment increases, and differences in solutions’ simu-

lation performances reduce, it is possible that seemingly

better alignments in fact represent sampling artefacts arising

from the stochastic simulation, rather than genuinely superior

parameter values. We note that detecting this in a statistically

robust manner is challenging, and as such we highlight it as

potential further work.

This work fits within the context of a wider framework

for supporting complex system simulation, the CoSMoS

framework [25]. CoSMoS advocates explicitly recording, typi-

cally through graphical modelling [33], how real-world

concepts are translated into computer code, and the implicit

assumptions therein. In this context, MOC can help in relat-

ing simulation results to biological data. The case where a

distribution of results emerges from a given biological exper-

iment, even to the point where replicates or individuals
within an experiment exhibit completely different outcomes,

can be handled in MOC by defining bi-modal (or

multi-modal) target distributions. A scenario wherein MOC

unexpectedly delivers several distinct and unconnected simu-

lation phenotypes, rather than a continuum of points on the

Pareto front, is interesting. This either can suggest the exist-

ence of additional phenotypes to look for in the biology or,

if this can be ruled out, suggests instead that the model

being calibrated fails to accurately capture the biology. This

latter case is an example of how MOC could drive simulation

design and development, as covered above. Related work on

supporting the link of simulation to biology proposes the

construction of an argument wherein a claim such as ‘this

simulation is an adequate representation of the biology’ is

supported by explicitly cited evidence [34]. In this context,

application of MOC can raise confidence that appropriate

parameter and initial condition values have been identified.

The range of possible values can be contrasted against

biological literature and data, excluding those deemed

implausible. Subsequent simulation experiments can be

performed in replicate with those that remain, therein high-

lighting the full range of results that are plausible in the

absence of a better reason to rule out particular parameter

values. We argue that drawing conclusions from this nature

of simulation experimentation, and making explicit the full

range of parameter values that satisfy the calibration

problem, leads to more robust conclusions.

In summary, our novel application of multi-objective

optimization in MOC presents the multi-objective optimiz-

ation community with a new field of application, and one

we feel has considerable scope for growth. Importantly,

it provides fundamental support for a critical aspect of

simulation-based biological experimentation: identifying par-

ameter values and initial conditions that align simulations

with a complex target behaviour.
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