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Abstract— The EU-funded project CoCoRo studies a het-
erogeneous swarm of AUVs used for monitoring and search
purposes. CoCoRo is planned to be an underwater swarm
system that mixes bio-inspired motion principles with biology-
derived collective cognition mechanisms in a blended manner.
This way a novel robotic system will be designed that will
be scalable, reliable and (in parallel) flexible concerning its
behavioural potential. We will use self-awareness on swarm-
level, which is an emergent result of bio-inspired mechanisms
derived from fish, honeybees, immune-systems and neurons.
Information will be processed at low levels on a local basis
generating collective-level memory and cognition. Another novel
aspect will be a bio-inspired operating system that — as default
behaviour — allows the swarm to shoal and to maintain coher-
ence. Collective discrimination of environmental properties will
be processed on an individual or on a collective level given the
cognitive capabilities of the AUVs. Collective self-recognition
will be experimented by bio-inspired experiments allowing the
quantification of collective cognition.

I. MOTIVATION, BACKGROUND AND
INTRODUCTION

A. Why underwater?

The ocean is still the most unexplored habitat on earth.
It holds abundant numbers of unknown organisms, it holds
undiscovered resources and it holds a magnitude of processes
that are not finally understood. In short, ocean exploration is
one of the most prominent ‘hot topics’ in science today.

In CoCoRo, we suggest a swarm-based robotic system that
allows to efficiently and autonomously search areas of the
ocean for specific, hard to find targets. Such targets could
be black boxes of sunken planes, valuable resources or toxic
waste dumps. The challenge of finding such targets is that
they are often hard to locate from the water surface and thus
require extensive scouting of the sea bed. Toxic waste, for
example in the form of leaking barrels on the sea bed, could
produce a very weak and irregular toxin gradient that is very
hard to follow for a single autonomous underwater vehicle
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Fig. 1. Figure 1(a) depicts the CoCoRo system, comprising the base station
on the water surface, a relay-swarm that communicates information to this
base station and a ground-swarm that searches the sea bed for a specific
target. Figure 1(b) shows the CoCoRo ‘base station’ design. It has many
sensors on-board such as GPS communication, sonar, compass, anemometer,
inertial sensors. It is able to recharge the AUVs platform. Figure 1(c) shows
the CoCoRo ‘AUV’ design. The platform is able to swim in 3D, to achieve
zero-power diving, to perform obstacle avoidance. The AUV speed is up to
one body length per second. It has on-board many sensors such as distance,
pressure, compass and inertial sensor.

(AUYV, see Fig. 1(c)) in order to find the source. However,
whereas a single AUV would need to utilize a complex and
time-consuming search pattern to detect such a gradient, a
swarm of AUVs could act as a distributed sensor network
(see Fig. 1(a)) and quickly comb through the area. The swarm
then could follow such a weak and irregular toxin gradient,
find the source and send its location to the base station (see
Fig. 1(b)) which could use GPS coordinates to mark the place
for the cleanup team.

We think that swarm systems require a 3-dimensional
environment (underwater or air) to unfold their full potential.
This is due to the scaling issues with increasing swarm
size. On the one hand, swarm systems tend to increase their
efficiency with increasing swarm size as the number of agent-
to-agent interactions increases with swarm density (size). On
the other hand, higher swarm densities lead to an increase
of blocking (traffic jams) of the moving agents. In 3D envi-
ronments the number of interactions between agents that can
locally communicate is higher, as each agent can have more
neighbours around. Thus, the collective computation can be
more intense than in a 2D environment. On the other hand,



traffic jamming is not so frequent in 3D, as there are more
possible directions that an agent can escape from a jammed
position. Thus, we suppose, that swarm intelligence and
swarm robotics can show collective cognition and collective
intelligence more prominently in a 3D environment than in a
2D world (like epuck robots in a planar arena). The fact that
motion in water is usually slow and that buoyancy combined
with thruster-driven propulsion offers interesting steering and
motion capabilities, will allow this underwater swarm system
to exhibit high levels of ‘swarm intelligence’.

B. Why swarms?

A ‘swarm’ is a system of loosely coupled units that
interact and interfere with each other by (mostly) simple
mechanisms. However, although these interactions can be
described by simple rules, the system as a whole is able to
exhibit complex behaviours. A coherent group of AUVs may
coordinate their motion and collectively process their motion.
This has several advantages which are usually attributed by
the term ‘swarm intelligence’ [19], [7], [11], its physical
manifestation in autonomous robots is usually referred to
as ‘swarm robotics’ [5], [6]. Such robotic systems exploit
the principles of self-organization in a similar way as their
natural counterparts do, allowing collective decision making
and group-level homoeostasis [8].

Often such systems are scalable, thus adding swarm
members does not impair the efficient functionality of the
collective system. Such systems are also often flexible, as
swarms are not easily trapped in local optima and they are
able to exhibit many variants of collective behaviour. In
addition, they tend to be robust: it does not matter if some
swarm members get lost, the system can still achieve (some
of) its tasks. Most prominently, it is a characteristic of such
systems that the collective system is able to solve problems
that each individual cannot solve alone.

C. Why self-awareness?

In real-world underwater environments, sensors of AUVs
are much more subject to noise than land robots’ sensors,
even under typical laboratory conditions. Imprecise sensor
information, coupled with the constraint of not being able
to communicate over large distances narrows down the
capabilities of single AUVs. Using swarms of AUVs is our
way to extend the capabilities of AUVs. However, being an
autonomous member of a swarm requires special abilities
from an AUV, namely it has to be aware of its own state
and the state of its swarm. It should, for example, know
which swarm it belongs to (ground swarm vs. relay swarm),
it should know the size of its swarm and it should also know
the status of the swarm (target status, energy status, etc.).
After combining these information with the knowledge of
its own status (e.g. depth, battery status, etc.) each single
AUV should then make the right decision that contributes
the most to the swarm’s efficiency. This kind of generated
self-awareness of each swarm member is a key aspect of
the CoCoRo project and should help the swarm to meet the
following challenges.

II. CHALLENGES, TASKS AND EXPERIMENTS

A. Which tasks does the swarm have to solve?

1) Deploy the swarm to the water: Due to their very small
size the CoCoRo AUVs can be deployed by hand from a
boat or from the shore. At first the base station is deployed
in the mission area, then the AUVs have to stay near this
base station without losing contact with it.

2) Search for a target on the seabed: The CoCoRo AUVs
should search the seabed for a specific target. Finding such
a target will only be efficient if the AUVs work together.

3) Discriminate between multiple targets: If multiple tar-
gets are found by the same group of AUVs, the AUVs have
to be a able to discriminate between these targets.

4) Select the best of these targets: If several targets
are detected, AUVs have to evaluate criteria that allow to
discriminate between targets of different quality. The swarm
has to be able to select the target of highest quality.

5) Communicate search success to the water surface:
After the swarm has located a target on the seabed the swarm
should report the target’s position and quality to the base
station.

B. Which challenges do these tasks pose for the swarm?

1) Do not get lost in the ocean: AUVs can easily get
lost in the vast ocean. To prevent this the base station will
create a ‘virtual fence’ by emitting an acoustic signal that
indicates the distance to the base station. This is used to let
the AUVs know when they are too far away from the base
station and when they should turn back. The AUVs should
also be able to automatically get back to the surface in case
of malfunction or low batteries.

2) Join multiple AUVs to one functional unit: A group
of AUVs that is responsible for a given function within the
swarm has to build a sub-swarm. The coherence of this sub-
swarm is based on local communication channels.

3) Utilize group-level interaction to increase perfor-
mance: Within a swarm, different autonomous groups of
AUVs (sub-swarms) have to interact in a coordinated manner.
These interactions on the group-level can be based on local
and on global communication channels.

4) Cope with a noisy and heterogeneous environment:
On all levels (swarm level, group level, individual level) the
AUVs have to deal with problems like sensor noise, changes
in buoyancy due to external changes (e.g. water temperature
or salinity), delocation of individuals by underwater currents,
and interaction with marine flora and fauna (fields of sea-
weed, small fish schools near objects on the seabed). These
sensor noise can be compensated by using the AUV swarm
as a distributed sensor network.

5) Compensate unavoidable losses of swarm members:
If an AUV gets lost due to unforeseeable events, the swarm
has to detect and to compensate for this. The AUVs will be
able to continue their tasks on all levels, with only a small
decrease in efficiency, due to the self-organised nature of the
used swarm algorithms.
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Fig. 2. Collective discrimination between two environmental choices by a
CoCoRo swarm system.

C. How can experiments benchmark swarms in these tasks?

We have devised a generic experimental setup which will
allow us to benchmark the CoCoRo system in the tasks
aforementioned. The setup will consist of a water tank
approximately 3 m deep and of at least 10 m? of surface. The
bottom of the pool will be covered with seabed-like patterns
for more realism. This way robots may use optical flow to
estimate their displacement and roughly localize themselves.
We will use specific objects for detection by the AUVs.
These objects should be seen as a metaphor for toxic waste
or flight data recorder that must be located in the ocean. First,
these objects will be actively emitting signals detectable by
AUVs. Later on, we will also experiment with passive objects
which may only be distinguished by their colour.

With this experimental setup, we will be able to use a
CoCoRo system composed of one surface station and a
swarm of AUVs. We plan to make experiments of incre-
mental difficulty, because the tasks of the robots are related
and interdependent: In a first experimental series we will
drop a single target on the tank’s bottom. The AUVs will
shoal and explore the tank to locate the target, simultaneously
maintaining a connected topology to avoid losing any AUV
and maintaining a physical chain to stay in touch with the
base station. A second series of experiments (see Fig. 2)
builds upon the first one. We will introduce a target object
together with distractor objects that resemble the target.
The system will have to discriminate between these objects
and process information from multiple noisy measurements
to select the target object. These experiments will provide
quantitative results on the performance of the swarm in
various tasks. Indicators and statistics of interest will notably
include the ability of the system to maintain its operational
state, the robustness to failure or loss of AUVs, as well as
speed and precision of the system.

III. BEHAVIOURAL CONTROL AND
ALGORITHMS CREATE AWARENESS

A. How can awareness be used on the individual level?

Todays AUVs are strongly limited in performance and
abilities by the fact that they operate with pre-programmed
tasks that specify platform parameters during the entire mis-
sions. To overcome these limitations it becomes necessary to

produce a robotic system able to take autonomous decisions
in order to react to unforeseen and changing events. This
kind of situational awareness, that can be reached thanks
to a dense net of sensors, actuators and data processing
properly coordinated by the algorithms of the control system,
is the core for developing vehicles that are able to recognize
themselves and take decision autonomously. At individual
level this fusion of sensors, actuators and data processing will
allow to have modules able to manage internal malfunctions
and, at the same time, unpredictable events. In fact, in tasks
that require long time to be achieved, the ability to self-
determine the capacity to carry there tasks out (in terms
of autonomy, failures, ability and environmental conditions)
is of vital importance, not only for reaching objectives but
also for the safety of the system. This suggests that a
conservative approach is fundamental for handling critical
errors or abnormal events: in such situations an emergency
ascent will guarantee the survivability of the robot.

B. How can awareness be used on the group level?

One of the ‘big vision’ scenarios for CoCoRo is the search
for toxic dumping places on the seabed. Such places are
generally hard to find for single AUVs which are rather
inefficient at combing through suspected dumping areas.
A swarm of AUVs, on the other hand, can quickly and
efficiently comb through such areas. However, just combing
through the area and logging the position and local toxin
levels is not the goal of our swarm. Instead, we will program
our AUVs to use group-level awareness to locate the actual
dumping place. This will be done by letting the AUVs
interact in a certain way that will generate an emergent taxis
behaviour where the swarm as a whole will move uphill
the toxin gradient until the source is found. This emergent
taxis behaviour is a swarm behaviour that usually increases
in efficiency with swarm size. Preliminary simulations have
shown that such a behaviour is even possible without explicit
communication between the AUVs.

Another aspect of work in CoCoRo will be the exploitation
of group level awareness to initialise and achieve self-
repair. Our work will take inspiration from immunology in
providing algorithms capable of detecting errors in individual
AUVs, and at the group level within a swarm, and then afford
a recovery mechanism from such errors. This recovery mech-
anism will allow the swarm to re-organise in such a manner
as to allow the swarm to maintain operation despite the oc-
currence of faults. As our inspiration for this, we will exploit
a self-recovering mechanism observed in the immune system.
The murine autoimmune disease experimental autoimmune
encephalomyelitis (EAE) is a model for multiple sclerosis
in humans. Many mice induced into EAE spontaneously
recover from autoimmunity [16]. This is mediated through
a regulatory network of cells that recognise, monitor and
respond to the actions of autoimmune T cells. By adopting
algorithmic principles from the manner in which these mice
are able to recover from autoimmunity, CoCoRo AUVs will
monitor one another, detect behaviours of individual swarm
members which are detrimental to the overall performance



or goal of the swarm, and react accordingly. Such corrective
responses may be limited to individual AUVs, or may spread
across several robots to constitute a collective response. To
illustrate, the failure of an individual robot in a chain-like
group which relays information between two locations may
be perceived by several other individuals that recognise a
loss in quality of this group’s performance. Each of them
may generate an appropriate response maybe even affect its
neighbours: As a collective, some robots alter their behaviour
to restore the swarm’s quality of service.

C. Generating and using awareness on the swarm level

On the swarm level, self-awareness allows the swarm as a
whole to monitor and to regulate its own collective activity.
Mechanisms for creating (self-)awareness may be distributed
over several groups, depending on the capabilities of agents
to perform computation, communication, or more generally,
to maintain the required level of interactions.

In CoCoRo we will use following approaches for creating
awareness at the swarm level. One method is ’self-adapting
Artificial Neural Networks’ (ANNSs), which are modulated
by global or local information spread throughout the self-
organised AUV swarm. These modulations can be interpreted
as ‘moods’ or ‘emotions’. The messages that are spread
throughout the swarm can be quite simple compared to the
communication required to coordinate a group of agents
conventionally. In CoCoRo, a single AUV (or a group of
AUVs) can modulate behaviours of other AUVs by spreading
messages via local or global information channels. The mod-
ulation of these individual behaviours will lead to a change
of behaviour of the whole swarm due to the self-organised
nature of the AUV “superorganism”. The advantage of this
approach is to re-use neural structures that are necessary in
all modes of operation, while only those parts of the ANN are
modulated that are relevant for the given task. Such systems
allow to interweave nodes which are modulated with nodes
that are not modulated. This way the awareness about the
current situation of the swarm is coded in the distribution
of behaviour-modulating messages within the swarm. Due
to an unequal distribution of information (e.g., due to usage
of local communication channels) members of the swarm
behave differently in different parts of the swarm, which
results in a division of labour. Examples of such modulatable
ANNSs are found in [23]. See [10] for an overview of artificial
emotions and swarms and see [9], [2] for an overview of
modelling emotions and neuro-modulation.

Another closely related approach is based on nonlinear os-
cillators coupled by means of an electrostatic field [14].This
is efficient for small underwater vehicles due to a small
required computational effort able to generate multiple col-
lective phenomena [12], e.g., in collective decision mak-
ing [15]. The water is a shared communication medium,
thus this approach can naturally involve globally coupled
systems (e.g. mean field) [3]. Achieving self-awareness in
such systems can be based on well-known dynamical systems
such as travelling waves in spatially excitable media (e.g.,
FitzHugh-Nagumo systems [24]), on the introduction of

delayed feedbacks [18] or on other methods to reflect the
global status locally. Such dynamical processes represent
collective models that can handle distributed sensor data and
perform reasoning about common activities [13].

Although single swarm members may not have access
to information at the global level (i.e. information about
the group’s activity) the swarm itself can process such
information in a decentralized manner in order to regulate
and adjust its common activities. We consider, for instance,
a task of collective discrimination: The system is confronted
with two or more objects and has to identify and select a
target object. Single AUVs have limited sensory capabilities,
thus they are not able to monitor the activity of the group in
its entirety.

One first problem that would be alleviated from swarm-
level self-awareness is the detection of task completion. The
swarm must know whether it has completed its task in
order to transmit information about its findings to the base
station, or simply to switch to a new task. This metacognitive
information may be obtained by implementing a mechanism
of quorum sensing to have the AUVs gather information and
collectively agree on when their objective is attained.

A second problem arises when the objects detected by the
swarm are rather similar. Discrimination is more difficult
to accomplish in that case, and the swarm is more likely
to make errors, and in the worst case to choose randomly
between the alternatives because they are too hard to dis-
tinguish. If the swarm realizes the difficulty of the task,
it can report about its uncertainty rather than making a
mistake. For instance, if the opinion of the AUVs oscillates
between several alternatives without stabilizing, the swarm
may trigger a specific response indicating uncertainty, which
would in turn improve the correctness of its decisions.

IV. FOUNDATIONS OF AWARENESS: HARDWARE,
ELECTRONICS AND OPERATING SYSTEM

A. Which hardware constraints do exist?

The design of an AUV platform needs to take into
account different aspects since vehicles have to be truly
autonomous and, in the meantime, have to operate in an
underwater environment. Concerning the size of the platform,
a small robot would be the ideal solution for improving
the system dynamics (less inertia) and performing tasks in
extreme environments. However, size is strictly related to the
onboard volume necessary to allocate batteries, electronics
and mechanical systems. It is therefore necessary to find a
good compromise between size, technology constrains and
autonomy. The latter plays a fundamental role in underwater
robots and depends on many factors such as shape, hardware
requirements, processing and sensing. In fact, hardware and
software complexity affects the required power, in turn
changing significantly the efficiency of the system. For
this reason it becomes vital to find ad-hoc solutions for
developing hardware systems with high efficiency and to
avoid sensing and processing redundancy.

For exchanging data wireless communication will support
swarm control and self-awareness. From this point of view



there are many aspects that must be taken into account in the
designing such as: bandwidth, range, power and communi-
cation protocol. It is also important to consider that wireless
communication in underwater environments is not efficient,
thus new kinds of communication are to be considered.
Finally, the embedded CPU and operative system needs to be
defined as a compromise between boards, size, computational
burden and power consumption. This choice is fundamental
for ensuring the feasibility of required computations (data
processing) and for ensuring AUV’s autonomy.

B. Hardware design maximizes awareness on all three levels

High-level behavioural algorithms need information about
AUVs to plan and actuate control strategies. These data have
to be shared between modules and for this purpose wireless
communication plays a fundamental role. Since the amount
of data that have to be exchanged is high, in order to maintain
the minimum bandwidth necessary for communication, an
efficient communication protocol has to be implemented.
Having a swarm of small AUVs distributed over a wide area
allows that some tasks can be performed more accurately
and quickly than with one bigger vehicle. In fact, onboard
sensors allow to achieve global vision of the environment
and to plan autonomous swarm control strategies. Sensors
for interacting with the environment must be defined based
on each task the swarm — and in turn also each robot — has to
accomplish. For instance in flocking, it is essential to sense
the intensity and the direction of water currents in order to
plan the trajectory of the entire swarm and avoid collisions.
Onboard sensors (e.g. battery energy check, inertial and
distance sensors) are dedicated to support the behavioural
algorithms of single AUVs, giving them the capability to
plan their work autonomously.

C. Sensors & communication support high-level behaviours

Local sensing allows distance measurements, colour detec-
tion, detection of the spatial position of a signal, robot-object
and object-object discrimination, and recognition of object
shapes. It also includes other sensing systems such as 3D ac-
celerometer, compass, pressure sensor, humidity/temperature
sensors, energy sensors. Distance measurement can be based
on absorption properties of water (for example 1dB/m for op-
tic, 40 dB/m for RF100MHz and 100dB/m for electric field),
which depends on frequency/wave-length, salt concentration,
pressure and several other parameters.

When the distance measurement system is calibrated in the
test conditions, attenuation of the signal provides information
about the distance between sender and receiver. Due to a
lower absorption, optical system is the most suitable for this
purpose. Maximal distance can be calculated from the condi-
tion that an analog blue light LED at 40-60mW and 10 degree
opening angle can be sensed by a photodiode (with amplifier)
at the distance of 1.2-1.4m. Provided the surface reflect 80%
of a signal, the sensing range (based on reflection) is about
0.4-0.5m. Thus, active distance measurement, when an object
is equipped with an emitting LED, is more preferable, since
this allows a larger sensing radius R,. Sensing range can

be improved by emitting more light energy, however this
does not always effectively increase the sensing radius. For
instance the approach discussed in [22] leads only to 2.1m
direct sensing for 400mW cyan LED.

Another approach for distance measurement can be based
on the flying time (between sending a signal and receiv-
ing its reflection), so-called active acoustics. The relatively
low sound travel speed of roughly 1500 m/s (this requires
measurement of time in us scales, which can be easily
implemented by e.g. phase-detection approach) makes hydro-
acoustic waves well suitable for these purposes. Hydro-
acoustic approach is well researched, however it requires
computation-intensive noise-cancelling and reconstruction
techniques, especially in case of hydro-acoustic arrays [4].

Optical systems with integrated optics allow focusing
the light and so increase the sensitivity. There are several
works which describe application of cameras for underwater
navigation [20], however also point out a complexity of
image processing tasks [21]. For the development of a small
platform, the optic distance measurement system is more
preferable due to simpler electronics and unsophisticated sig-
nal processing. To provide directional sensing, the platform
can be equipped with multi-channel systems. Application of
an active acoustic approach can be investigated when a long
range of sensing distances is required.

Local directional communication can be established by
analog and modulated light; omni-directional by electric field
and low-frequency RF (frequency or emitting power affect
the communication radius R.). The communication distance
and bandwidth are co-dependent values, increasing one of
them decreases the other one. The best tested transfer rate
for a local optical communication is 119 kbps with IrDA
QAM modulation. Acoustic and ultra-low-frequency RF can
provide global omni-directional communication (max. range
of hundreds of meters). Sonic waves travel very well under
water and the energy and build-space required for generating
and receiving them is relatively low. This approach is used
in acoustic modems [1]. Drawbacks of this approach are
multiple reflections causing distortions in the signal. There-
fore, acoustic signals can be used as a global communication
system for very short analog signals.

RF systems represent a trade-off between the frequency
(i.e. communication distances) and the size of integrated
antennas (i.e. the size of platform). Due to water connec-
tivity, the attenuation of radio waves depends on the used
frequency, which in turn results in the size of antenna. High
frequencies (> 100 MHz) only need a small antenna (0.1 m)
while their range is restricted to 2.5 m. Lower frequencies
(100 kHz) have a long range (100 m), but need a large an-
tenna (100 m). Communication ranges of standard 900 Mhz
(GPS) and 2.4 GHz (ZigBee) are only of 10 cm and 2.5 cm
correspondingly. For such systems, the control circuits are
more complex than those for optic or acoustic approaches.
Since bandwidth for low-frequency RF is not sufficient for
application of standard protocols (e.g. ZigBee), global RF
communication has still some open problems. Depending on
requirements for global communication, both, acoustic and



low-frequency RF S&C can be implemented (acoustic one
is more favourable due to less complex hardware).

D. Operating system supports awareness of the system

The self-aware properties of swarms that CoCoRo seeks to
investigate all emerge from the perceptions and behaviours
of individual members of the swarm. Successful operation of
these algorithms requires that individual swarm members can
perceive and compute in real-time. CoCoRo will investigate
the role of light-weight artificial immune system algorithms,
which have a proven track record in anomaly detection
problems, in fault detection in individual swarm members.
For example, these algorithms can be used to predict and
manage processor schedule overruns [17]. We will also
embed a default behaviour in the operating system: all robots
that are running the operating system will boot up into a state
such that their default behaviour is to school.

V. CONCLUSIONS

In this article we argue for cognition and self-awareness as
a crucial prerequisite for a functioning swarm of underwater
vehicles. Cognition on all levels (individual, group & swarm)
is necessary because such swarms have to act autonomously,
environment is harsh and sensor data is very limited. The key
issue is to design AUVs in a way that collective cognition-
generating mechanisms can work efficiently and that the
most individually collected data is exploited by the system.
We discussed in detail the constraints on AUV design as well
as limitations and possible workarounds in underwater com-
munication and sensing. Without a certain level of cognitive
capabilities a collective system of AUVs will not be able
to stay together and to ’understand’ the environment. Self-
awareness, self-monitoring and self-control are important
to prevent malfunctioning of the robotic system in harsh
underwater environments. We have chosen to go for a swarm
system in CoCoRo, as these systems are usually robust,
scalable, flexible and operating with limited actuation and
sensing capabilities. However, the swarm approach forces
us to make each individual AUV small and cheap, in turn
limiting sensor and actuation potential. At the end, we will
have to find a good compromise between size and costs
on the one hand and equipment and capabilities on the
other hand. Self-awareness and cognition is nothing that can
be simply measured. Instead, the domains of ethology and
psychology have developed a set of experimental setups to
measure cognitive functionality in living organisms, because
brains are more or less a black-box for the experimenter. We
took over these approaches and will measure the collective
capabilities of our robotic system with similar experimen-
tation. This might surprise the engineering community but
is well reasoned by the fact that we will strongly exploit
bio-inspiration and self-organization to generate collective
cognition in our system. Thus, cognition and self-awareness
will be emergent phenomena, thus they will be black-boxes
to us. By investigating such distributed cognition systems,
not only a set of engineering problems will be solved but
also basic research in cognitive science will be performed.
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