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Combination ICIs that block PD-1 and CTLA-4 are highly 
effective against metastatic melanoma and many other 
advanced cancers1, leading to more-effective responses 

compared to either treatment alone2–6. Recently, this combination 
has also shown promise as a neoadjuvant treatment for stage III 
melanoma, with high pathological response rates and a low rate of 
recurrence7–9. At present, the broad application of this dual thera-
peutic approach for many patients is limited by the high rate of 
irAEs3–5,10. The ability to predict responses to immunotherapy and 
to prevent the development of severe toxicities would allow this 
therapy to be implemented in a larger, diverse cohort of patients 
and at earlier stages of disease and would reduce life-altering 
morbidities due to toxicity. The intestinal microbiota has a 
systemic role in immune regulation11–16 and is known to influ-
ence the development of a variety of inflammatory disorders17. 

Although there is growing evidence highlighting a role for the 
gut microbiome during immunotherapy, previous studies have 
lacked agreement as to the key microbial drivers of response and 
resistance18–25. Various statistical approaches have been utilized to 
highlight the discord between geographically distinct cohorts26,27. 
However, the biology underpinning this discordance remains 
unclear. Common microbial ecosystem features linking responses 
across studies are yet to be identified28, and the delineation of 
irAE-protective microbial patterns are lacking, particularly in the 
neoadjuvant setting. Here, we study the associations between the 
gut microbiota and immunotherapy response and irAE develop-
ment using a clinically homogenous trial cohort of patients in 
Australia and the Netherlands who presented with melanoma 
treated with neoadjuvant combination ICIs. We also validate 
the intercontinental discordance in the data from patients in 
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The gut microbiota shapes the response to immune checkpoint inhibitors (ICIs) in cancer, however dietary and geographic 
influences have not been well-studied in prospective trials. To address this, we prospectively profiled baseline gut (fecal) 
microbiota signatures and dietary patterns of 103 trial patients from Australia and the Netherlands treated with neoadju-
vant ICIs for high risk resectable metastatic melanoma and performed an integrated analysis with data from 115 patients with 
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in Bacteroidaceae-dominated microbiomes. Poor response was associated with lower fiber and omega 3 fatty acid consumption 
and elevated levels of C-reactive protein in the peripheral circulation at baseline. Together, these data provide insight into the 
relevance of native gut microbiota signatures, dietary intake and systemic inflammation in shaping the response to and toxicity 
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NATURE MEDICINE | VOL 28 | NOVEMBER 2022 | 2344–2352 | www.nature.com/naturemedicine2344

mailto:georgina.long@sydney.edu.au
http://orcid.org/0000-0002-3726-3790
http://orcid.org/0000-0002-1481-4780
http://orcid.org/0000-0002-3354-806X
http://orcid.org/0000-0001-8538-3132
http://orcid.org/0000-0002-6395-4499
http://orcid.org/0000-0003-2130-3118
http://orcid.org/0000-0003-3438-7576
http://orcid.org/0000-0003-0835-851X
http://orcid.org/0000-0002-7945-5846
http://orcid.org/0000-0002-8991-0013
http://orcid.org/0000-0001-8894-3545
http://crossmark.crossref.org/dialog/?doi=10.1038/s41591-022-01965-2&domain=pdf
http://www.nature.com/naturemedicine


ArticlesNATUrE MEDICINE

Australia and the Netherlands with previously published datasets 
from patients in the United States.

Results
Patients and treatment. To assess the relationship between micro-
biome metrics and patient outcomes after combination PD-1 and 
CTLA-4 blockade, we first characterized pre-treatment fecal micro-
biomes collected as a part of a prospective clinical trial from 71 
Australian and 32 Dutch patients with melanoma receiving neoad-
juvant ipilimumab and nivolumab in a clinical trial (OpACIN-neo 
and PRADO extension cohort, NCT02977052)7. All data were 
collected prospectively, including stool samples, dietary surveys, 
tumor response and ICI-associated toxicity. Given the strict trial 
eligibility, the patient characteristics were highly homogeneous; all 
had RECIST-measurable stage III cutaneous melanoma, with local 
lymph node involvement only, no in-transit disease, no previous 
immunotherapy, normal lactate dehydrogenase (LDH) and Eastern 
Cooperative Oncology Group (ECOG) 0-1 (Supplementary Table 
1). All patients were treated with nivolumab (anti-PD-1) com-
bined with ipilimumab (anti-CTLA-4) (as per dosing strategies in 
Supplementary Tables 1 and 2). Fecal samples were collected prior 
to treatment and affected lymph nodes were resected (either com-
plete lymph node dissection or index lymph node resection) at the 
end of the 6-week treatment program (Methods and Extended Data 
Fig. 1). Patients were characterized to enable categorization into 
three clinically relevant dichotomies: responders (R) (complete, 
near-complete or partial pathological response) or non-responders 
(NR) (pathological non-response) based on the pathological 
assessment of resection specimens after neoadjuvant therapy 
(Supplementary Table 3)29,30; mild (grade 0–2) or severe irAEs (had 
at least one serious irAE grade ≥ 3) (Supplementary Tables 2 and 3)7; 
and beneficial or benign (all R or NR with mild irAEs) or adverse 
(NR with severe irAEs). This latter group is important since irAEs 
can also indirectly impact the efficacy of treatment by leading to 
discontinuation of therapy and administration of immunosuppres-
sive drugs. The identification of such patients prior to treatment is 
therefore highly clinically relevant and represents an urgent unmet 
clinical need, so that unnecessary toxicity and a futile therapy may 
be avoided, and therapies with a higher chance of success are not 
delayed.

Gut microbiome associations with response and toxicity. This 
study examines associations between the gut microbiome with ICI 
treatment outcomes in a homogenous trial population across two 
continents. This is particularly relevant given the apparent lack of 
consensus across previous studies, in which both clinical hetero-
geneity and geography may confound outcome associations with 
the microbiome. Notably, when clinical factors that could poten-
tially confound the relationship between outcome response and the 
gut microbiome were assessed in the present study, no significant 
association was identified (Supplementary Table 4). Furthermore, 
these parameters were also not significantly different between the 
Australian and Dutch patients (Supplementary Table 5). To further 
study geographical effects, analysis was expanded to a third continent 
using published United States cohorts of patients with metastatic 
melanoma treated with ICIs (n = 115) (Fig. 1a). We first performed 
16S-amplicon-based community profiling of all Australian patient 
baseline fecal microbiomes (n = 71) (Extended Data Fig. 2a,b). In 
a previous study of anti-PD-1-treated stage IV patients with mela-
noma, low microbiome diversity was linked to non-response19. No 
significant differences were identified in alpha-diversity metrics 
between R and NR groups (Fig. 1b) or between mild, severe, benign 
and adverse irAE groups (Extended Data Fig. 2c). However, patients 
that were NR that developed severe irAEs (adverse) had signifi-
cantly lower microbiome diversity at baseline (P = 0.0157) (Fig. 
1c and Extended Data Fig. 2d). Data from patients who developed  

severe gastrointestinal (GI) irAEs (colitis and gastritis) contrib-
uted most to this effect (P = 0.0605) (Extended Data Fig. 2e). When 
stratifying patients using tumor mutational burden (TMB) as a 
tumor-intrinsic biomarker associated with response, we found that 
NR with high TMB had significantly lower diversity than R with 
high TMB (P = 0.0049) (Extended Data Fig. 2f–h), suggesting the 
potential importance of tumor-extrinsic mechanisms, such as the 
gut microbiome, in determining response to immunotherapy.

We next assessed the association between total bacterial load and 
clinical outcomes using quantitative PCR (qPCR) targeting the 16S 
rRNA gene. We observed a reduction in total bacterial load per mg 
of feces in NR (P = 0.0170) (Fig. 1d and Extended Data Fig. 2i–k). 
Compositional differences between the three clinical dichotomies 
(response, irAE grade, and combined response and toxicity) were 
assessed using linear discriminant analysis effect size (LEfSe) and 
validated using taxa-specific qPCR (Extended Data Fig. 3a–h). 
Taxa that were significantly enriched in the gut microbiome of R 
included Faecalibacterium prausnitzii, Butyricicoccus pullicaeco-
rum and Akkermansia muciniphilia (P = 0.0066, P = 0.0049 and 
P = 0.0309, respectively, Fig. 1e–g), which overlap with those that 
have been identified in previous immunotherapy studies19,20,22,24,31,32. 
Our data indicate that there is an overlap between microbes linked 
with response and microbes linked with protection from develop-
ing irAEs. For example, F. prausnitzii abundance was also reduced 
in patients that developed severe irAEs (P = 0.0526), particularly in 
those patients that were both NR and that developed severe irAEs 
(adverse) (P = 0.0200) (Extended Data Fig. 3g). Patients in the 
adverse outcome group had a reduced relative abundance of taxa in 
the Clostridiales order (Extended Data Fig. 3e,f). This pattern was 
largely due to the reduced relative abundance of amplicon sequence 
variants (ASVs) classified to taxa within the Ruminococcaceae 
(Faecalibacterium prausnitzii, Oscillospira and Ruminococcus bro-
mii) and Lachnospiraceae families. A similar association with 
reduction in these microbial features has also been reported for 
inflammatory bowel disease33,34.

The 16S amplicon sequencing also identified two archaeal 
ASVs, both Methanobacteriaceae, that appeared to be differen-
tially represented within the Australian cohort. This was explored 
further using qPCR, and we found that patients tended to fall into 
high-methanogen-abundance or low-methanogen-abundance 
groups. Notably, all patients in the adverse outcome group had low 
methanogen abundance, and, overall, methanogens were signifi-
cantly reduced in patients who developed severe irAEs (Extended 
Data Fig. 4a–d). A keystone community process for optimal bacte-
rial fermentative metabolism [for example- breakdown of dietary 
carbohydrates by members of the Ruminococcaceae family] is 
removal of the byproduct hydrogen. Methanogens are important 
contributors to this process, facilitating the maintenance of a diverse 
intestinal tract ecosystem35,36. We found that all patients in the 
adverse group had both low diversity and low abundance of metha-
nogens, and both metrics were also overrepresented in the severe 
irAEs group. We postulate that this pattern might reflect fundamen-
tal differences in community level metabolic output in the presence 
or absence of methanogens that influence the host-microbiome 
relationship in the context of immunotherapy.

Nutritional input and microbial metabolism. Given that diet is a 
key factor that shapes the composition and function of the microbi-
ome37,38, food frequency questionnaires were prospectively collected 
and used to estimate nutritional input. Nutritional data were col-
lected from 60 of the 71 Australian patients. Key macronutrients 
and micronutrients were assessed in accordance with Australian 
dietary recommendations. Analysis indicated that most patients, 
irrespective of response, consumed suboptimal diets that do not 
meet the nutritional guidelines, as evidenced by low fiber consump-
tion and high sugar and saturated fat consumption (Extended Data 
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Fig. 5a–i). Notably, significantly lower omega 3 consumption was 
observed in both NR (Fisher’s exact test, P = 0.0139) (Fig. 2a,b) and 
adverse outcome groups (Fisher’s exact test, P = 0.0259)39 (Fig. 2b,c). 
Indeed, microbial diversity correlated with omega 3 consumption 
(P = 0.0429) (Fig. 2e) to a greater extent than fiber consumption 
(P = 0.0764) (Fig. 2f). Fiber consumption positively correlated with 
the abundance of Ruminococcaceae (P = 0.0309) (Fig. 2g). Fiber and 
omega 3 are both dietary components that have previously been 
linked to promoting intestinal integrity, enhancing short chain 
fatty acid (SCFA) production and altering the inflammatory state 
of the gut14,38,40–43. While causality of the fiber and omega 3 effects 
will require dedicated prospective trials, our data suggest that these 
nutrients are associated with a diverse microbiome that exhibits the 
hallmarks of health and intestinal homeostasis, and that is associ-
ated with a response in the absence of severe toxicities.

Given that differences in microbiome composition and diet 
are suggestive of altered microbial ecosystem function, we inves-
tigated the metabolic potential of patient microbiomes. We per-
formed metagenomic shotgun sequencing on a subset of 38 fecal 
DNA samples from Australian patients (OpACIN-neo trial), 

with metabolic pathways defined based on the MetaCyc hierar-
chy of pathways. Microbial functional pathways that were sig-
nificantly differentially represented between beneficial or benign 
and adverse outcome groups were identified (Extended Data 
Fig. 6a,b). Pathways that were reduced in the adverse outcome 
group included those pertaining to SCFA butyrate (butanoate) 
production, B vitamin synthesis, purine degradation and amino 
acid synthesis (Fig. 2h–k). Notably, changes to purine metabo-
lism and recycling have recently been suggested to be important 
for the efficacy of immunotherapy44, and B vitamin synthesis has 
been associated with protection from colitis45. Pathways were also 
identified as overrepresented within the adverse outcome group 
(Extended Data Fig. 6a); however, upon inspection in individual 
patients, the relative abundance of genes in these pathways were 
highly heterogenous (Extended Data Fig. 6b). These data support 
the hypothesis that the risk of adverse outcome is associated with 
reduced representation of beneficial metabolic capabilities of the 
microbiome. Butyrate is a primary colonocyte energy source that 
is important for maintaining epithelial integrity and intestinal 
homeostasis14,46. Three specific butyrate production pathways 
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Fig. 1 | Associations between gut microbiota and treatment response and irAEs in Australian patients with melanoma. a, Schematic overview of the 
study54. b,c, Bacterial community profiling of patient baseline fecal samples via 16S rRNA gene amplicon sequencing (AUS, n = 71). Inverse Simpson’s 
index of alpha-diversity for individual patients grouped by R and NR (b) and beneficial or benign (all R or NR irAEs < G3) and adverse (NR, irAEs ≥ G3) 
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were significantly associated with beneficial or benign outcomes 
(Extended Data Fig. 6a). Combining these into a single metabolic 
indicator revealed that the prevalence of butyrogenesis was signif-
icantly reduced in adverse outcome patients (Fig. 2h). This aligns 
with the observed reduction in known key butyrate-producing 
Ruminococcaceae and Lachnospiraceae family taxa (Extended 
Data Fig. 3e,f). Fecal butyrate levels determined using nuclear 
magnetic resonance spectroscopy (NMR) correlated with the 
relative abundance of CENTFERM butyrate synthesis pathway 
genes (Extended Data Fig. 7a). Serum butyrate levels, however, 
were not significantly different between adverse and beneficial or 
benign groups, or in NR overall (Extended Data Fig. 7b,c). Serum 
butyrate levels are impacted by both microbial production in the 
gut and consumption by colonocytes, and excess SCFA in the  

systemic circulation (in contrast to the gut) may be linked to sub-
optimal immunotherapy responses, as observed in a recent study23.

Effects of geography on the microbiome. To validate which micro-
biome outcome associations might be generalized to independent 
cohorts, microbial signatures associated with response and irAE 
development in the Australian cohort were assessed in a cohort of 
Dutch patients with melanoma (n = 32) participating in the same 
prospective international neoadjuvant clinical trial (PRADO, 
NCT02977052). No significant differences in diversity between out-
come groups were identified (Fig. 3a). Furthermore, F. prausnitzii, 
B. pullicaecorum and A. muciniphilia were not present in reduced 
abundance in Dutch NR (Fig. 3b). A similar difference in the taxa 
associated with response and irAEs was identified when LEfSe was 
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used to identify compositional differences between clinical outcome 
groupings (Extended Data Fig. 7d–g and Supplementary Table 6). 
For example, some taxa classified within the Ruminococcaceae genera  

that were observed in R and associated with protection from 
adverse outcomes in Australian patients (Extended Data Fig. 3) 
were enriched in Dutch patients who developed severe toxicities 
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(Extended Data Fig. 7f,g). This issue of geography-dependent out-
come associations has been reported in previous studies27,47. Such 
heterogeneity severely limits the utility of microbiome signatures in 
the clinic and intervention management.

Increasing evidence supports the concept that intrinsic proper-
ties of an individual’s microbiome constrains relationships with host 
traits (for example, immune tone) and selective pressure, such as 
diet48. We therefore explored whether differences in microbial com-
munity assembly could explain the observed differences in microbial 
associations with clinical outcomes between patients from Australia 
and the Netherlands. Across the combined cohort (n = 103), we 
found no significant clustering of microbiomes by treatment 
response or irAE status at the whole-community level (Fig. 3c,d). 
There was also no significant separation between the Australian and 
Dutch patient microbiomes at a whole-community level (Fig. 3e and 
Extended Data Fig. 8a). Therefore, to stratify patient microbiomes 
(n = 103), the dirichlet multinomial mixtures (DMM)49 was used to 
assess the optimal number of clusters present in the overall dataset. 
This method identified three microbial ‘community types’ which 
formed significant clusters in ordination space, independent of geo-
graphical origin (Fig. 3f and Extended Data Fig. 8a,b). This indi-
cates that intrinsic assembly pattern, rather than country of habitat, 
is a stronger determinant of microbial community structure. Of 
the three gut microbial ‘community types’ identified, community 
type 1 is characterized by high alpha-diversity and a high ratio of 
Ruminococcaceae to Bacteroidaceae, whereas community type 3 is 
characterized by low diversity and a low ratio of Ruminococcaceae to 
Bacteroidaceae (Extended Data Fig. 8c–l). Further supporting this, 
the relative abundance of Ruminococcaceae positively correlated 
with diversity, whereas Bacteroidaceae negatively correlated with 
diversity (P < 0.0001, P = 0.0630) (Fig. 3g and Extended Data Fig. 
9a–c). Notably, there was a marked difference in the distribution 
of these community types between the countries (χ2 P = 0.0001) 
(Fig. 3h). Gut microbiomes of Dutch patients were predominantly 
community type 1, whereas those of Australian patients were more 
evenly distributed. This highlights the fundamental difference in 
distribution of microbial community compositions between the 
Australian and Dutch patients. Given the links between long-term 
diet and microbial ecosystem structure50,51, dietary intake probably 
contributes to this effect, with evidence of higher fiber consumption 
being associated with community type 1 (P = 0.0044) compared to 
community type 3 (P = 0.0519) in both countries (Extended Data 
Fig. 9d,e). Furthermore, Australian patients had significantly higher 
relative abundances of Bacteroidaceae compared to Dutch patients 
(P < 0.0001) (Fig. 3i), which has previously been associated with 
a more ‘Western-style’ diet (high animal fat and protein and low 
fiber)52. Indeed, Dutch patients had significantly lower BMIs than 
Australian patients (P = 0.0278) (Fig. 3j).

These observations suggest that variance in the assemblage of 
microbial communities confounds the identification of general-
izable associations between the gut microbiome and treatment 

response and irAE development. To further assess this, we employed 
machine learning to generate microbial signatures of response and 
severe irAE development, derived from baseline 16S rRNA gene 
profiles. In the total cohort (n = 103), these could correctly iden-
tify outcomes with a mean prediction accuracy of 61.2% (response) 
and 63.6% (irAEs), respectively (Extended Data Fig. 9f,g). Notably, 
however, stratifying patients into latent classes based on commu-
nity types, but not countries, prior to conducting machine learn-
ing increased the prediction accuracy and robustness of the models 
assessed via randomization testing (leave-one-out cross validation) 
in most cases (Extended Data Fig. 9f,g). This is despite these models 
being based on only approximately one-third of the patient cohort 
in each case, which normally would be expected to significantly 
reduce model performance53. In addition, the microbial signatures 
indicative of response and irAE development within each ‘commu-
nity type’ were unique (Supplementary Tables 7–12), suggesting an 
ecological context dependency.

Diet-driven microbial ecology and immunotherapy response. 
Given that Ruminococcaceae and Bacteroidaceae families were 
the key taxa driving the DMM clusters, we stratified individuals 
according to the comparative relative abundance of these two taxa. 
Consistent with this, microbiomes with a higher relative abun-
dance of Ruminococcacae also had significantly higher diversity 
(P < 0.0001) and methanogen abundance (P = 0.0029) and were asso-
ciated with significantly higher fiber consumption (P = 0.0331) (Fig. 
4a,b). Enhanced relative abundance of mucin degradation genes was 
observed in patients with Bacteroidaceae-dominated-microbiomes 
(P = 0.0001) (Fig. 4a). Furthermore, we also observed that 
Bacteroidaceae-dominated-microbiomes were associated with sig-
nificantly higher levels of C-reactive protein (CRP) in patients at 
baseline (P = 0.0180) (Fig. 4c), suggesting a link between micro-
bial community ecology and local and systemic inflammatory tone 
prior to ICI treatment.

This simplified and robust stratification approach allows fur-
ther comparison of our cohort to previously published 16S data-
sets. Analysis of data from patients with metastatic melanoma 
in the United States treated in both neoadjuvant and non–neo-
adjuvant settings (n = 31, ref. 54; n = 84, ref. 19 and ref. 18)18,19,54 
confirmed that marked differences in community structure 
occur in cohorts from Australia, the Netherlands and the United 
States (χ2 P < 0.0001) (Fig. 4d). Of note is the near absence of 
high-diversity Ruminococcacae-dominated gut microbiomes in 
the United States cohort and the near absence of low-diversity 
Bacteroidaceae gut microbiomes in the Dutch cohort (Extended 
data Fig. 10a–d). Given these observations, we next assessed 
whether differences in overall microbial community structure 
correlate with clinical outcomes. Higher rates of response to ICI 
therapy were associated with Ruminococcacae-dominated gut 
microbiomes compared to Bacteroidaceae-dominated gut micro-
biomes across the combined Australian, Dutch and United States 

Fig. 4 | Ruminococcaceae-associated microbial signatures support the response to checkpoint inhibitor immunotherapy. Individuals were stratified 
according to the comparative relative abundance of Bacteroidaceae (Ba) and Ruminococcaceae (Ru). a, Differences in community ecology between 
microbiomes dominated by Ba or Ru. Inverse Simpson’s diversity (top), methanogen load expressed as copy number per mg feces (middle) (Austraian and 
Dutch, n = 103), and relative abundance of mucin degradation pathways identified in metagenomics sequencing (Australian, n = 38) (bottom). Box plots 
are shown as a median bar and box indicating minimum and maximum values. b, Estimated fiber (g day-1) (top) and omega 3 (mg day-1) consumption 
from food intake surveys (Australian, n = 63) grouped by dominant taxa grouping. c, Baseline CRP by dominant taxa grouping (Ba or Ru) (Australian, 
n = 71). d, Distribution of Ba and Ru dominated microbiomes by country (n = 218). Data from the United States containing previously published 16S 
amplicon datasets of metastatic melanoma (n = 31 neoadjuvant cohort (ref. 54) and n = 84 non-neoadjuvant (ref. 19 and ref. 18)). Chi-squared test 
(conducted on total number of patients per group). e, Distribution of response or non-response within dominant taxa groupings (Ba or Ru) (Australian, 
Dutch, and US, n = 218). Fisher’s exact test (conducted on total number of patients per group). f, Relative abundance of F. prausnitzii for individual patients 
by response (R versus NR) within dominant taxa groups (Ba and Ru) (Australian, Dutch, and US, n = 218). Each symbol represents data from an  
individual patient; bars indicate the median. For a-c and f, Mann-Whitney U rank sum test was used. All statistical tests are two-sided where appropriate. 
g, Summary and proposed model of diet-microbiome-host interactions during immunotherapy. AUS, Australian; NL, Dutch.
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cohorts (Fisher’s exact test, P = 0.0030) (Fig. 4e). Interestingly, 
stratifying the patients in this way also indicated that a significant 
reduction in the relative abundance of Faecalibacterium prausnitzii 
(P = 0.0056) and Ruminococcacae (P = 0.0006) occurred in NR, but 
only within Bacteroidaceae-dominated gut microbiomes. In con-
trast, higher levels of F. prausnitzii did not offer further benefit in 
Ruminococcacae-dominated microbiomes (Fig. 4f, Extended data 
Fig. 10e,f). These differential associations were also observed for the 
group of patients with adverse outcomes (Extended data Fig. 10h,i). 
Together, these data highlight that the overall assembly of microbial 

communities, influenced by diverse environmental inputs such as 
diet, is an important factor in ICI therapy outcome (Fig. 4g) and 
may help to explain the differences in taxa associations observed 
across various cohorts18–20.

Discussion
We have used a highly homogeneous prospective clinical trial 
cohort to show that a gut microbiome associated with higher fiber 
and omega 3 consumption is beneficial to facilitating optimal 
anti-tumor immune responses and minimizing the risk of irAEs 
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during immunotherapy. Microbial diversity and relative abun-
dances of Ruminococcaceae family taxa, Akkermansia muciniphilia 
and methanogenic archaea were significantly reduced in NR as well 
as in patients that developed severe toxicities. These features repre-
sent markers of robust symbiosis enriched with beneficial microbial 
functions and have been linked with homeostatic mucin turnover 
and the maintenance of epithelial integrity14, which are critical for 
the regulation of immune processes both locally and systemically.

Furthermore, by exploring the biology underpinning the micro-
biomes of patients across three continents, we demonstrate that 
variance in microbial signatures of immunotherapy response and 
irAE development between countries could be explained by the 
underlying differences in gut microbial community ecology, inde-
pendent of geography. Notably, higher response rates were associ-
ated with Ruminococcaceae-dominated microbiomes, which had 
significantly higher microbial alpha-diversity and correlated with 
higher fiber consumption, reduced abundance of mucin degrada-
tion genes and lower levels of baseline CRP. This highlights the 
influence of diet and underlying microbial community structure 
on the relationship between gut microbes, the generation of opti-
mal anti-tumor immune responses and the risk of irAEs during 
immunotherapy. Consistent with this, higher dietary fiber was 
associated with significantly improved progression-free survival in 
a cohort of ICI-treated patients from the United States54. Recurrent 
links have been observed between Ruminococcaceae family taxa or 
microbial community structures with higher relative abundance of 
Oscillospiraceae and Ruminococcaceae, and improved immunother-
apy response25,26,54. In addition, a recent study suggested that micro-
biomes enriched with lipopolysaccharide synthesis and mucus 
degradation genes were associated with higher levels of systemic 
inflammation (neutrophil to lymphocyte ratio) and a poor response 
to anti-PD-1 immunotherapy26. Together, this suggests that the gut 
microbiome plays a role in establishing local and systemic immune 
tone prior to and during immunotherapy.

These findings are highly relevant because individual responses 
to a particular dietary intervention have been shown to be dependent 
on the baseline microbiome55,56. Additionally, the ability of probiotic 
strains or fecal microbiota transplants (FMTs) to successfully engraft 
is strongly influenced by the native microbiome57. Accounting for 
differences in the assemblage of microbial communities will there-
fore be important to reproducibly target the microbiome in the 
clinic to improve immunotherapy outcomes. We present a frame-
work to overcome interindividual variation by accounting for eco-
logical context, which could allow for the design of interventions to 
improve clinical outcomes that are more targeted. We hypothesize 
that increasing the dietary fiber intake of patients will have greater 
clinical benefit for those with Bacteroidaceae-dominated microbi-
omes, such as individuals from Australia and the United States, than 
for those who already have fiber-imprinted microbiomes, such as 
individuals from the Netherlands. Promisingly, a recent preclinical 
study showed that modulating the microbiome with a high-fiber 
diet could trigger innate cell reprogramming in the tumor microen-
vironment and induce type I interferon production, promoting the 
efficacy of immunotherapy58.

Attempts to identify specific microbial taxonomic biomark-
ers and develop predictive models based on microbiome data are 
frequently underpinned by the assumption that all microbiomes 
belong to a single class that respond according to the same ‘rules’. 
This is poorly justified and has frustrated efforts to use microbial 
data in the clinical setting55,56. Previous studies of microbial associa-
tions with response to immunotherapy in metastatic patients with 
melanoma have lacked consensus18–20,22,31. These studies were also 
highly clinically heterogeneous in terms of disease stage, line of 
therapy and the type of immunotherapy received, which may have 
confounded the findings regarding the microbiome. Notably, recent 
studies have further illustrated that no single microbial taxon alone 

could be regarded as a fully predictive biomarker across cohorts26,27, 
even within a single country (United States), but instead that dis-
tinct community clusters may be favorable or unfavorable26. This 
supports our theory that microbial community ecology affects both 
treatment outcomes and the role and predictive power of various 
microbes. Together, these findings prompt further investigation, in 
the immunotherapy setting, of the relationship between microbial 
community structures, their impact on local and systemic immune 
responses and the ability to integrate stratification of patient micro-
biomes reproducibly in the clinic.

Although there is growing evidence, including the findings in 
the present work, that supports a role for the gut microbiome in 
determining outcomes during immunotherapy, the gut microbiome 
is only one of many factors that influence the efficacy of treatment. 
Some individuals, despite having a ‘healthy’ gut microbiome, will not 
respond to ICIs; this is also evident from recent phase I FMT trials in 
refractory patients with melanoma59,60. This suggests that modulating 
the microbiome via diet, FMT or probiotics and antibiotics to induce 
an immune and microbiome landscape that is more conducive to 
response will be of clinical benefit to those patients whose tumors 
are intrinsically capable of responding. Personalized approaches 
guided by an individual’s microbiome will probably be necessary to 
optimize the utility of microbial interventions, along with integration 
with other tumor-intrinsic and tumor-extrinsic factors.

We analyzed gut microbiota composition and diet, and their 
associations with ICI treatment outcomes, in patients from three 
countries on different continents. Notably, the study uses a large pro-
spective homogeneous cohort of patients with stage III melanoma 
enrolled in clinical trials in Australia and the Netherlands. The find-
ings highlight that despite the clinical homogeneity of the cohort, 
individual taxa are not generalizable predictors of clinical outcomes. 
Exploring the biology underpinning the differences between cohorts 
and their association with response, we found that diet-driven micro-
bial ecology underpins associations between gut microbes and clini-
cal outcomes and may help to explain discordant findings of previous 
studies18–20. Critically, we show that Ruminococcaceae-dominated 
microbiomes are beneficial in facilitating responses to immunother-
apy and emphasize that a fiber-imprinted microbiome in isolation 
is not sufficient to induce a response. Overall, our data demonstrate 
a path to optimizing the utility of the microbiome in the clinic and 
development of more targeted interventions to reshape the microbi-
ome and improve treatment outcomes.
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Methods
Study design and participants. All patients were participants in the investigator-led 
open-label phase 2 randomized, controlled OpACIN-neo or PRADO extension 
trials (NCT02977052)7 who were enrolled at the Melanoma Institute Australia 
or Netherlands Cancer Institute. The medical ethics review committee of the 
Netherlands Cancer Institute and ethical committees at the Melanoma Institute 
Australia approved the trial. The trial was conducted in accordance with the 
protocols and good clinical practice guidelines of the International Conference on 
Harmonization and the Declaration of Helsinki. All participating patients provided 
written informed consent before enrollment. Samples were collected under the 
Melanoma Institute Australia Biospecimen Bank for Melanoma Research Protocol 
(X15-0454, HREC/11/RPAH/444), and clinical data were collected under the 
Melanoma Institute Australia: Melanoma Research Database Protocol (X15-0311, 
HREC/10/RPAH/530). Analysis was conducted under the Melanoma Institute 
Australia Molecular Pathology, Genomics and Clinical Outcomes Of Melanoma And 
Related Skin Tumor Protocol (X17-0312, HREC/11/RPAH/32).

Eligible patients were 18 years or older with cytologically or histologically 
confirmed resectable stage III melanoma with one or more macroscopic lymph node 
metastases that were measurable according to the Response Evaluation Criteria in 
Solid Tumors (RECIST) v1.1 (>15 mm short axis). A WHO performance status 
of 0 or 1, normal organ function and normal lactate dehydrogenase levels were 
required. Exclusion criteria included in-transit metastasis within the past 6 months, 
autoimmune disease, HIV infection, hepatitis B or C infection, previous radiotherapy, 
previous immunotherapy targeting CTLA-4, PD-1, or PD-L1, or immunosuppressive 
medication within the 6 months directly prior to study inclusion.

Patient fecal samples were collected at baseline, before treatment with 
ipilimumab and nivolumab (Bristol-Myers Squibb), over a 6-week period 
according to the dosing schedule outlined in Supplementary Table 1. All dosing 
arms were grouped together in this study for increased statistical power.

Patients enrolled in the PRADO extension trial had an index node (largest node 
involved with melanoma) identified at baseline, and resected at week 6, followed by a 
therapeutic lymph node dissection on a separate occasion if there was a partial or no 
pathological response in the index node. Patients enrolled in the OpACIN-neo trial 
underwent a therapeutic lymph node dissection at week 6, regardless of pathological 
response. Pathological response was determined by pathologists experienced in 
judging response upon neoadjuvant checkpoint inhibition in stage III melanoma, 
using the International Neoadjuvant Melanoma Consortium scoring system28,29 
(complete pathological response, no viable tumor; near-complete pathological 
response, ≤10% viable tumor compared with baseline tumor bed; partial pathological 
response, ≤50% viable tumor compared with baseline tumor bed; no pathological 
response, >50% viable tumor compared with baseline tumor bed).

irAEs were scored according to the NCI Common Terminology Criteria for 
Adverse Events (CTCAE) 4.0, and immune-relatedness to CICB therapy (‘possible’, 
‘probable’, ‘definite’ association) was assigned based on the consensus opinion 
of at least two independent clinical investigators. irAEs rated as ‘probable’ or 
‘definite’ were included. Patients were classified based on the highest grade of 
irAEs experienced, with patients classified as ‘severe’ if they had at least one serious 
irAE ≥ grade 3 (G3) (as per7). The remaining patients were classified as ‘mild’ 
(Supplementary Tables 2 and 3).

Fecal DNA preparation. Fecal samples were self-collected using the EasySampler 
Stool collection kit (GP Medical Devices) according to the manufacturer’s 
instructions. Fecal samples were returned in person, aliquotted and stored at 
−80 °C within 48 h of collection. DNA was isolated using the FastDNA Spin Kit for 
Feces (MP Biomedicals) and stored at −80 °C. DNA concentration was measured 
using the Qubit dsDNA BR assay kit (Invitrogen). Mock preparations covering all 
steps of the procedure were conducted as contamination process controls.

16S rRNA gene amplicon sequencing and analysis. 16S rRNA gene amplicon 
sequencing was used to classify bacterial and archaeal components of fecal 
microbiomes. Barcoded amplicon libraries spanning the V4 hypervariable 
region of the gene encoding 16S rRNA (515F-806R primer set) were prepared, 
and samples were sequenced using the Illumina MiSeq v2 2 × 250 bp platform 
at the Ramaciotti Centre for Genomics, University of New South Wales, Sydney, 
Australia. Raw sequence reads were processed using the DADA2 R package, 
which involves using error profiles to define ASVs61. ASVs were assigned to 
taxonomy using a pre-trained naïve Bayes classifier trained on the curated 16S 
rRNA gene database Greengenes v13_8 (99% OTUs, 515F-806R region). Any ASV 
that was present in fewer than 5% of samples or that was observed less than 100 
observations in total, and ASVs that had less than 0.01% of total reads were filtered 
from the final dataset prior to downstream analysis. Sequencing depth analyses and 
rarefaction were performed with the phyloseq R package62.

Analysis and graphical presentation of the resultant ASV data were performed 
in R using the packages phyloseq, vegan, microbiome and ggplot2. Alpha-diversity 
metrics (Inverse Simpson’s) were calculated on rarefied ASV counts. Beta diversity 
was assessed on centered-log-ratio-transformed ASV counts, using Bray-Curtis 
dissimilarity and principal coordinate plots generated from the resultant dissimilarity 
matrix. The LEfSe method63 was used to identify taxa that were most likely to explain 
differences between groups, using relative abundance (total-sum-scaled) data.

Microbiome community typing. Patient microbiomes were stratified into 
community types using Dirichlet Multinomial Mixtures48, based on the filtered 
ASV table generated above from 16S rRNA gene amplicon sequencing. This 
method assesses a range of values to determine the optimal number of clusters 
in the provided dataset. Dominant taxa groups (Ba or Ru) were assigned from 
family-level relative abundances according to the comparative abundance of 
Bacteroidaceae and Ruminococcaceae.

Metagenomic sequencing. Metagenomics shotgun sequencing was conducted on 
fecal samples from the Australian patients enrolled in the OpACIN-neo clinical trial 
(n = 38). Metagenomic shotgun sequencing was performed utilizing the same DNA 
from the same preparations as for the 16S rRNA gene analysis. Individual libraries 
were prepared using Nextera XT, and sequencing was performed on the Illumina 
NovaSeq 6000 S1 (2 x 150bp; Xp workflow) at the Ramaciotti Centre for Genomics. 
An average of 22.2 million reads were generated per sample, ranging from 5.1 to 34.8 
million reads (only 3 samples had fewer than 15 million reads). The sequence reads 
(forward reads) were processed using KneadData (v0.7.2; http://huttenhower.sph.
harvard.edu/kneaddata) with reads mapping to the human genome and bacterial 
16S rRNA genes filtered out from the dataset using the human genome (GRCh37/
hg19) and ribosomal RNA (SILVA) databases, respectively. The resultant high-quality 
reads were then mapped against a database of clade-specific marker sequences to 
assign reads to microbial clades (taxonomic assignment) using MetaPhlAn2 (ref. 64). 
The HUMAnN2 (ref. 65) pipeline was utilized for functional profiling to identify gene 
families and metabolic pathways. In brief, using taxonomic profiles identified using 
MetaPhlAn2, sequence reads were mapped at the nucleotide level to species-specific 
pangenome databases (generated from the NCBI microbial reference genome 
collection), with additional translated searches performed against the UniRef90 
(ref. 66) protein database. Metabolic pathways were mapped based on MetaCyc67. 
Gene family and pathway abundance were calculated based on reads per kilobase 
and normalized to relative abundance. The LEfSe method63 was used to determine 
functional pathways that were most likely to explain differences between groups.

Quantitative PCR. Targeted bacterial qPCR reactions were conducted using the 
KAPA SYBR FAST qPCR Master mix (2X) kit (Kapa Biosystems) according to the 
manufacturer’s protocol. 0.5 ng of DNA template was used for patient samples. All 
qPCRs were validated in previous publications, and cycling protocols can be found 
in the publications cited in Table 1. All primers and probes are also listed in Table 
1. No template controls were set up across all PCRs conducted. All reactions were 
run in triplicate on a Lightcycler 480 instrument (Roche).

Taxon-specific standard curves were run in triplicate on each plate, using 
templates with overhanging sequences prepared by PCR followed by gel purification. 
Copy number was calculated from DNA concentration using the ThermoFisher 
Scientific DNA copy number calculator. Overhanging primers consisted of the qPCR 
primer of choice with an ‘overhang’ that included the M13 primer sequence (see 
Table 1). Standards were amplified from participant DNA samples. Serial dilutions of 
taxa-specific PCR standards were in the range of 102 to 1010 copies. Total taxa-specific 
gene copies per ng of DNA were calculated for each patient sample and normalized to 
total DNA yield per mg feces to determine the absolute load of each taxon.

Table 1 | Quantitative PCR primers
Target group Primer name Sequence (5' to 3') Ref.

Bacterial 16S rRNA 1114-Forward CGGCAACGAGCGCAACCC 73

1221--Reverse CCATTGTAGCACGTGTGTAGCC

F. prausnitzii FPR-2F GGAGGAAGAAGGTCTTCGG 74

Fprau645R AATTCCGCCTACCTCTGCACT

Oscillospira OSCI-RV-Fmod ACGGTACCCCTTGAATAAGCC 75, 
76OSC-808mod TCCCCGCACACCTAGTATTG

Cluster IV 
Ruminococcus spp.

Rflbr730F GGCGGCYTRCTGGGCTTT 74

Clep866mR CCAGGTGGATWACTTATTGTGTTAA

Methanogens Met630F GGATTAGATACCCSGGTAGT 77

Met803R GTTGARTCCAATTAAACCGCA

Megasphaera Mega-142F GATGGGGACAACAGCTGGA 78

Mega-X GACTCTGTTTTTGGGGTTT

Alistipes AlisF TTAGAGATGGGCAT GCGTTGT 79

AlisR TGAATCCTCCGTATT

A. muciniphila AkkF CAGCACGTGAAGGTGGGGAC 80

AkkR CCTTGCGGTTGGCTTCAGAT

B. pullicaecorum BpullF GAGGCAGCAGTGGGGAA 81

BpullR TCTTCAGGTACCGTCATTTGTT

Enterobacteriaceae EbactF CGTCGCAAGCCCAAAGAG 82

EbactR TTACCGCGGCTGCTGGCAC

M13 M13-Forward TGTAAAACGACGGCCAGT

M13-Reverse CAGGAAACAGCTATGAC
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Machine learning. For machine learning, ASVs that compromised less than 
0.05% of total reads were filtered from the final dataset prior to downstream 
analysis. Data were transformed using centered-log-ratio transformations to 
account for the compositional nature of microbial sequencing data68. Principal 
component analyses (PCA) and sparse partial least square discriminant analysis 
(sPLS-DA) were performed using the mixomics R package69. We determined 
whether samples exhibited statistically significant clustering by experimental 
groups as previously described70. Briefly, the Aitchison metric (Euclidean distance 
between centered-log-ratio transformed data) was used to calculate the pairwise 
distance between all samples. Thereafter, the distributions of within-group and 
between-group sample distances were contrasted using a one-sided Kolmogorov–
Smirnov statistic; if the between-group sample distances exceeds the within-group 
sample distances, then the groups have statistically significantly different 
microbiota compositions. P values were corrected for multiple comparisons using 
the Bonferroni method.

To assess model accuracy and generalizability, and make maximal use of 
available patient data, we employed the ‘leave-one-out-cross-validation (LOOCV)’ 
methodology to build predictive models with sPLS-DA. The available data 
were repeatedly partitioned into a ‘training’ portion used in model building 
and a ‘validation’ portion used to assess model performance. Under LOOCV, 
each sample was retained as the sole validation portion member exactly once, 
with all remaining data forming the training portion; hence, all available data 
were ultimately used (once) in assessing model performance. We employed the 
Mahalanobis distance when using the model to predict the experimental group 
(class) of the validation data points. Classification accuracies are reported for each 
class individually. As the number of samples differed across experimental groups, 
models were trained to minimize the balanced error rate (the average error rate 
across classes; each class is equally important) rather than the overall error rate 
(% of total errors; biased towards larger classes). Note that the error rate is 1 - 
accuracy. For taxa contributing to signatures that distinguish experimental groups, 
we report only those that were included in >90% of models built under LOOCV.

The statistical significance of sPLS-DA model classification accuracy was 
estimated through permutation testing. The available samples were randomly 
reassigned into classes of equal number and size as the original (unperturbed) 
data. The sPLS-DA training pipeline (including selecting sPLS-DA parameters 
for the maximum number of components investigated and the number of features 
to include in each) was then applied to the permuted data, and the most accurate 
result recorded. This process was repeated 50 times. The estimated P value 
corresponds to the count of permuted dataset accuracies surpassing that of the real 
data; 50 replicates yields a P value granularity of 0.02.

Additional datasets. Data from publicly available 16S rRNA gene sequencing 
datasets from previous microbiome and immunotherapy studies of patients from 
the United States18,19 were used to validate the framework. Additionally, the 16S 
rRNA gene sequence data and dietary intake data from n = 31 patients receiving 
neoadjuvant therapy in the United States54 were provided by the authors. The 
16S dataset from ref. 18 was obtained from The NCBI Sequence Read Archive 
(SRA) (accession number SRP116709) and data from ref. 19 were obtained from 
the European Nucelotide Archive (accession number PRJEB22894). Raw 16S 
sequence reads were combined with our dataset and processed together using the 
DADA2 R package, as reported above, with forward reads only. Any ASV that was 
present in fewer than 5% of samples or that was observed less than 100 times in 
total, and ASVs that compromised less than 0.01% of the total reads were filtered 
from the final dataset prior to downstream analysis, as per the above ASV analysis 
pipeline.

Nuclear magnetic resonance spectroscopy. Quantitative measurements of 
butyrate in feces and serum were determined by NMR. Feces were homogenized 
in deuterium oxide, the homogenate was filtered through a 3-kDa membrane 
and then metabolites in the filtrate were extracted from the aqueous phase of a 
deuterium methanol and deuterium chloroform mixture. Serum was prepared 
for NMR using the same filtration and extraction steps. The samples, containing 
4,4-dimethyl-4-silapentane-1-sulfonic acid as an internal standard, were analyzed 
on a Bruker 600 MHz NMR.

Nutritional input. To assess dietary patterns in the Australian patients (n = 63), 
nutrient intake data covering a 6 to 12-month period was collected using the 
Cancer Council Victoria Dietary Questionnaire for Epidemiological Studies (DQES 
v3.2). Analysis of questionnaires for assessment of dietary intake was undertaken 
by the Nutritional Assessment Office, Cancer Council Victoria, Australia. The 
questionnaire covers 80 items across five types of dietary intake: cereals; dairy, 
meat and fish; fruit; vegetables; and alcoholic beverages. From the dietary intake 
data, 55 macronutrient and micronutrient intakes are calculated. To assess dietary 
patterns in the Dutch patients (n = 32), nutrient intake data were collected using 
the Food Frequency Questionnaire (FQ18N) developed by Wageningen University 
and Research71. As different food intake surveys were used to calculate nutrient 
intake for Australian and Dutch patients, dietary results from each country cannot 
be combined. Nutritional data were analyzed according to clinically defined groups 
and correlated (Spearman’s Rank) with microbial data. Dietary questionnaires were 
unable to be completed by a subset of patients.

Statistical analysis. Graphs were generated using GraphPad Prism v7. Heatmaps 
were generated using Clustvis72. Significance of univariate comparisons was 
tested using the Mann-Whitney U test, and multiple pairwise group comparisons 
were tested using the Kruskal-Wallis test with post-hoc Dunn test in GraphPad 
Prism v7. P values were corrected for multiple comparison testing using the 
Benjamini-Hochberg method (BH). The Spearman’s rank test was used for linear 
regression.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Sequencing data are available from the European Nucleotide Archive under 
accession number PRJEB54666. Supporting de-identified metadata have been 
provided. Publicly available datasets were attained from The NCBI Sequence Read 
Archive (SRA) under accession number SRP116709 and the European Nucleotide 
Archive under accession numbers PRJEB22894 and PRJNA770295. Further details, 
data and code are available upon request from the authors.

Code availability
No unique software or computational code was created for this study. 
Implementation of established tools and pipelines are described in the methods.
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Extended Data Fig. 1 | Cohort and project schematic outlining clinical trial timeline and analyses conducted at baseline.
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Extended Data Fig. 2 | (a) Rarefaction analysis shows sequencing depth was sufficient to comprehensively catalogue the unique microbial strains present. 
(b) Composition of each Australian patient sample classified at the ‘family’ taxonomic level (n = 71). (c-e) Inverse Simpson’s index of alpha diversity for 
individual patients grouped by (c) maximum irAE grade experienced by each patient split by severe irAEs, (d) response/low irAE (R/G0-G2) (pink) and 
non-response/severe irAE (NR) (NR/G3- G5)) (orange) or (e) maximum irAE grade experienced by each patient split by severe gastrointestinal irAEs 
and non-gastrointestinal irAEs (NR with severe irAE ‘Adverse’ indicated in orange). (AUS, n = 7) (f & g) Tumour mutational burden (TMB) and tumour 
IFN-gamma signature split by response. Subset of patients Rozeman etal (2021)17 (n = 25). (h) Inverse Simpson’s index of alpha diversity for individual 
patients with high TMB grouped by response and non-response. (i-j) Absolute bacterial/archaeal faecal loads assessed using qPCR, with patients grouped 
by irAEs and ‘Adverse’ outcome groups (n = 71). (k) Correlation of diversity with 16 S rRNA gene number/mg faeces for each patient (n = 71). Each 
symbol represents an individual patient, bars indicate the median. Mann-Whitney U rank sum test (c-j). For linear regressions, p value was calculated on 
Spearman’s rank correlation (k). All statistical tests are two-sided where appropriate.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | (a-f) Linear discriminant analysis (LDA) scores for differentially abundant taxa in (a) response, (c) irAE or (e) ‘Benefical/benign’ 
and ‘Adverse’ outcome groupings, as determined by LEfSe analysis (Australian cohort n = 71). LDA score indicates the confidence of the association, 
p < 0.05 for the Kruskal-Wallis H statistic, LDA score >3. (b, d & f) Dot plots show the relative abundance of sequence reads corresponding to each taxa 
for individual patients, where each dot represents a patient, colours correspond to the legend as indicated. (g-h) Quantitative PCR using taxa specific 
primers was used to determine bacterial copy number per mg faecal matter grouped according to response, irAEs and ‘Adverse’ outcome groups (n = 71). 
(g) Taxa associated with response or mild irAE based off LefSe analysis (h) taxa associated with non-response or severe irAE. Each symbol represents an 
individual patient, bars indicate the median. Mann-Whitney U rank sum test (g-h). All statistical tests are two-sided where appropriate.
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Extended Data Fig. 4 | (a-c) Archaeal ASV in pre-treatment faecal samples were classified using 16 S rRNA gene sequencing. Relative abundance of 
Archaeal ASVs (Methanobacteriaceae) from 16 S rRNA amplicon sequencing was compared by response, maximum irAE grade and ‘Beneficial/benign’ vs 
‘Adverse’ outcomes (n = 71). (d) Quantitative PCR on faecal DNA using methanogen specific primers, grouped by response (left) or maximum irAE grade 
(right) (‘Adverse’ patients are indicated in orange). Each symbol represents an individual patient, bars indicate the median. Mann-Whitney U rank sum 
test (a-d). All statistical tests are two-sided where appropriate.
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Extended Data Fig. 5 | (a-e) Consumption of key dietary nutrients were estimated from food intake surveys. Patients were categorised as low or high 
according to the Australian dietary recommendations and grouped according to response. (f-i) Estimated total (f) protein (g/day), (g) fat (g/day), (h) 
carbohydrates (g/day) and (i) fibre (g/day) consumption from dietary surveys of food intake grouped by response (responder = R (yellow), non-responder 
= NR (green)) (AUS, n = 63). Each symbol represents an individual patient, bars indicate the median. Mann-Whitney U rank test (f-i). All statistical tests 
are two-sided where appropriate.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | (a) MetaCyc pathways were predicted in the metagenomes of faecal samples of a subset of 38 Australian patients. Linear 
discriminant analysis (LDA) scores for differentially abundant pathway in the ‘Beneficial/benign’ (all R or NR irAE < G3) verses ‘Adverse’ (NR, irAE≥3) 
outcome group was determined by LEfSe analysis. LDA (log10) score on the left-hand side of the panel indicates the confidence of the association. The 
heat map indicates relative abundance (%) of each outcome-associated pathway in individual patients. Clinical groupings are indicated by coloured bars 
at the top. (b) Dot plots show the relative abundance of metabolic pathways identified by LefSe analysis as indicative of ‘Beneficial/benign’ or ‘Adverse’ 
outcome groups, where each dot represents a patient (subset of Australian cohort n = 38).
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Extended Data Fig. 7 | (a) Correlation of the relative abundance of outcome-associated butyrate pathways (metagenomic data) versus faecal butyrate 
concentrations, as assessed by NMR. For linear regressions, p values were calculated on Spearman’s rank correlation. (b-c) Serum butyrate levels (uM) 
detecting using NMR grouped according to (b) Beneficial/benign’ or ‘Adverse’ outcome or (c) response groupings (subset AUS, n = 38). Mann-Whitney U 
rank test. (d-g) Linear discriminant analysis (LDA) scores for differentially abundant taxa in (d) response and (f) irAE groupings (Dutch cohort, n = 32), as 
determined by LEfSe analysis. LDA score indicates the confidence of the association, p < 0.05 for the Kruskal-Wallis H statistic, LDA score >3. (e & g) Dot 
plots show the relative abundance of sequence reads corresponding to each taxa for individual patients, where each dot represents a patient. All statistical 
tests are two-sided where appropriate.

NATURE MEDICINE | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


ArticlesNATUrE MEDICINE

Extended Data Fig. 8 | (a-b) Assessing clustering of samples (a) by country or (b) by DMM community type (combined AUS & NL, n = 103), by 
contrasting distances between samples within the same groups and between groups; distribution of distances shown. Significance assessed through the 
Kolmogorov-Smirnov statistic (D = effect magnitude value); p-values were corrected for multiple comparisons using the Bonferroni method. (c) Average 
relative abundance of Bacteroidaceae and Ruminococcaceae per community type. (d) Inverse Simpson’s index of alpha diversity for individual patients 
grouped by DMM community type (combined AUS & NL, n = 103). Each symbol represents an individual patient, bars indicate the median. (e-l) Relative 
abundance of genus level taxa by DMM community type (combined AUS & NL, n = 103). Each symbol represents an individual patient, bars indicate the 
median. Kruskal-Wallis with post hoc Dunn test. FDR adjusted p-values presented (d-l). All statistical tests are two-sided where appropriate.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | (a) Correlation between Bacteroidaceae with Diversity in the Australian cohort (n = 71). (b-c) Correlation between (b) 
Bacteroidaceae or (c) Ruminococcaceae with Diversity in the Dutch cohort (n = 32). Each symbol represents an individual patient. For linear regressions, p 
value was calculated on Spearman’s rank correlation. (d-e) Estimated fibre consumption (g/day) from food intake surveys for (d) Australian (n = 63) and 
(e) Dutch patients (n = 32), grouped by DMM community type. Each symbol represents an individual patient, bars indicate the median. Mann-Whitney 
U rank sum test. (f-g) Baseline microbial signatures that distinguish patient outcomes (‘classes’) were determined based on microbial variables through 
sparse partial least squares discriminant analysis (sPLS-DA). Models were constructed from 16 S rRNA gene profiles to discriminate (f) responders 
(R) and non-responders (NR) to immunotherapy and (g) absent/mild (G0-G2) and severe (G3-G5) irAE development. Models were developed for the 
combined cohort (n = 103) and per community type: community type 1 (n = 37); community type 2 (n = 36) and community type 3 (n = 30). Classes are 
not equally populous; thus, plots depict the classification accuracy per class, with the percentage correctly assigned in black and the mean across classes. 
Colours indicate p-values derived under permutation testing. All statistical tests are two-sided where appropriate.
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Extended Data Fig. 10 | (a-d) Estimated fibre (g/day) from food intake surveys and Inverse Simpson diversity grouped by dominant taxa grouping 
(NL cohort (n = 32) & US neo-adjuvant cohort (Spencer et al n = 31). (e) Relative abundance of Faecalibacterium prausnitzii (top) or Ruminococcaceae 
(bottom), for patients by response (R vs NR) with in dominant taxa groups (Ba & Ru) (presented by country and combined n = 218). Symbols indicate 
mean, bars indicate standard error (f) Relative abundance of Ruminococcaceae, for individual patients within dominant taxa groups (Ba & Ru) by response 
(combined AUS/NL/US, n = 218). (g-h) Relative abundance of Ruminococcaceae (left) or Faecalibacterium prausnitzii (right) for patients by (g) maximum 
irAE grade (G0-G2 vs G3-G5) or (h) ‘Beneficial/benign’ (all R or NR irAE < G3) and ‘Adverse’ (NR, irAE≥ G3) outcomes (AUS/N, n = 103). (i) Inverse 
Simpson’s index of alpha diversity for individual patients grouped by ‘Beneficial/benign’ verses ‘Adverse’ outcome groups (n = 103, AUS circle, NL square). 
Each symbol represents an individual patient, bars indicate the median. Mann-Whitney U rank sum test (a-i). All statistical tests are two-sided where 
appropriate.
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