
Susan Stepney, Fiona A. C. Polack
with
Kieran Alden, Paul S. Andrews, James L. Bown,
Alastair Droop, Richard B. Greaves, Mark Read,
Adam T. Sampson, Jon Timmis, Alan F. T. Winfield

Engineering Simulations as
Scientific Instruments:
a pattern language

28th May 2018

Springer

Preface

Computer-based simulation is a key tool in many fields of scientific research.
In silico experiments can be used to explore and understand complex pro-
cesses, to guide and complement in vitro and in vivo experiments, to suggest
new hypotheses to investigate, and to predict results where experiments are
infeasible. Simulation is an attractive, accessible tool: producing new simu-
lations of simple systems is relatively easy. But it is also a dangerous one:
simulations (and their underlying models) are often complex, buggy, and
difficult to relate to the real-world system.

A recent UK Government report on computational modelling [92] makes
several recommendations, including

Decision-makers need to be intelligent customers for models, and those that sup-
ply models should provide appropriate guidance to model users to support proper
use and interpretation. This includes providing suitable model documentation de-
tailing model purpose, assumptions, sensitivities, and limitations, and evidence of
appropriate quality assurance.

In this book we describe the CoSMoS (Complex Systems Modelling and
Simulation) approach, a pattern-based approach to engineering trustworthy
simulations: simulations that are both scientifically useful to the researcher,
and scientifically credible to third parties. The CoSMoS approach emphas-
ises three key aspects to this development of a simulation as a scientific instru-
ment: the use of models to capture the scientific domain and the simulation
platform; the use of arguments to provide evidence that the scientific instru-
ment is fit for purpose; and the close co-working of domain scientists and
simulation software engineers.

The CoSMoS approach is generic: it does not mandate a particular mod-
elling technique, a particular implementation language, or a particular real
world application domain. What it does mandate is the careful and struc-

v

vi Preface

tured use of models and arguments, to ensure that the simulation is both
well-engineered, and seen to be well-engineered.

The book is useful for domain scientists who wish to see what is needed
to build and use scientifically credible simulations, and for software engin-
eers who wish to build scientific simulations that are useful and usable. The
examples in the book focus mainly on biological simulations, to exploit the
specific experience of the authors, but the CoSMoS approach is not restricted
to this domain. The approach we describe is also useful for building simula-
tions as part of the process of building engineered systems. There are some
differences between scientific simulation (crudely, simulating the world as
it is) and engineering design simulation (simulating the world as we wish
it to be), but much of the approach is common. These differences are noted
when they occur.

What this book is not

This is not a book about software engineering. Where we advocate particu-
lar software engineering approaches and good practices for building simu-
lations, we mention them in the endnotes1 and refer to standard literature
discussing them.

Neither is this a book about specific modelling approaches or notations2,
whether mathematical, computational, or otherwise. Again, there is much
excellent literature available on specific modelling techniques, to which we
refer.

Nor is it a book about experimental methods, although the simulations
are used to perform (numerical, virtual) experiments in a way analogous to
real world experiments.

Nor is it a book about developing bio-inspired algorithms (which are ab-
stractions of biology, but not simulations of biology).

What this book is

This is a book about how to combine well established approaches in a
manner that leads to a robust and argued-trustworthy simulation: how to
combine modelling to build an appropriate scientific instrument, software
engineering to build the instrument appropriately, and experimental tech-
niques to use the instrument appropriately for scientific investigation.

Preface vii

Part I provides a managerial overview: the rationale for and benefits of
using the CoSMoS approach, and a small worked example to demonstrate
the approach in action.

Part II is a catalogue of the core CoSMoS patterns. Start your project at the
CoSMoS Simulation Project (93) pattern, and follow the guidance, using the
other referenced patterns as your specific context demands. The develop-
ment and use of a simulation as a scientific instrument will probably include
most of these core patterns.

Part III is a catalogue of “helper” patterns. These are more specific pat-
terns of use only in certain domains, for certain purposes, or with certain
modelling and implementation approaches. Use of these is not required to
develop a CoSMoS simulation, but they provide possible routes for doing
so.

Part IV is a substantial case study developed using the CoSMoS approach.

Acknowledgments

The original CoSMoS (Complex Systems Modelling and Simulation) re-
search project was funded by EPSRC, grant numbers EP/E053505/1 and
EP/E049419/1, with additional support from Microsoft Research and Celox-
ica.

A list of CoSMoS publications and associated tools is available in the end-
notes3.

We thank all our CoSMoS project partners, CoSMoS workshop contribut-
ors, CoSMoS case study domain scientists and simulation engineers, and
in particular Christopher Alexander, Frederick Barnes, Sabine Dietmann,
Philip Garnett, Teodor Ghetiu, Julianne D. Halley, Tim Hoverd, Carl G.
Ritson, Austin Smith, and Peter H. Welch.

Susan Stepney, Fiona Polack
York, UK, 2018

Contents

Part I Overview of the CoSMoS approach

1 CoSMoS: rationale and concepts . 3
1.1 Why CoSMoS . 3
1.2 Complex systems simulation . 4
1.3 Simulation as a scientific instrument . 5
1.4 Simulations in engineering . 8
1.5 Working Together . 11
1.6 Pattern Language . 13
1.7 The CoSMoS concepts . 16

2 What’s in it for me? . 25
2.1 Why this chapter, and why us? . 25
2.2 What challenges do we face . 26
2.3 What can the CoSMoS approach do to help? 29
2.4 Summary and future perspectives . 39

3 The CoSMoS approach in miniature . 43
3.1 Introduction – a running example . 43
3.2 The CoSMoS Simulation Project . 44
3.3 Discovery phase . 45
3.4 Development phase . 70
3.5 Exploration phase . 79
3.6 Argue Instrument Fit for Purpose . 82
3.7 Real world simulation . 87

ix

x Contents

Part II The Core CoSMoS Pattern Language

4 The CoSMoS Simulation Pattern . 91
4.1 Catalogue of top level patterns . 91
4.2 Phase patterns . 93
4.3 Role patterns . 99
4.4 Generic patterns . 108
4.5 Antipatterns . 115

5 Discovery Phase Patterns: building the domain model 119
5.1 Catalogue of discovery phase patterns . 119
5.2 Context setting patterns . 121
5.3 Domain modelling patterns . 131
5.4 Antipatterns . 139

6 Development Phase Patterns: developing the platform 149
6.1 Catalogue of development phase patterns 149
6.2 Platform modelling Patterns . 150
6.3 Implementation Patterns . 161
6.4 Antipatterns . 171

7 Exploration Phase Patterns: using the platform 175
7.1 Catalogue of exploration phase patterns . 175
7.2 Model and usage patterns . 176
7.3 Antipatterns . 184

8 Structured Argumentation Patterns . 187
8.1 Catalogue of argumentation patterns . 187
8.2 Argument patterns . 188
8.3 Basic Structured Argument patterns . 192
8.4 Generic Argument patterns . 202

Part III The CoSMoS Helper Patterns

9 Modelling and Documentation Patterns . 209
9.1 Catalogue of patterns . 209
9.2 Modelling approaches . 210
9.3 Communication and documentation . 219

10 Real world Simulation Patterns . 229
10.1 Catalogue of patterns . 229
10.2 Development process . 230
10.3 Engineered systems . 240

Contents xi

10.4 Large scale development . 242

Part IV CellBranch Case Study

11 Introduction to the CellBranch simulation . 251

12 CellBranch: increment 1: single transcription factor 253

13 CellBranch: increment 1: Discovery phase . 255
13.1 Research Context . 255
13.2 Domain . 261
13.3 Domain Model . 266

14 CellBranch: increment 1: Development phase 279
14.1 Revisit Research Context . 279
14.2 Platform Modelling . 279
14.3 Simulation Platform. 282

15 CellBranch: increment 1: Exploration phase . 285
15.1 Revisit Research Context . 285
15.2 Results Model . 285
15.3 Revisit Simulation Purpose . 293

16 CellBranch: increment 2: multiple transcription factors 295

17 CellBranch: increment 2: Discovery phase . 297
17.1 Research Context . 297
17.2 Domain . 300
17.3 Domain Model . 301

18 CellBranch: increment 2: Development phase 309
18.1 Revisit Research Context . 309
18.2 Platform Model . 309
18.3 Simulation Platform. 310

19 CellBranch: increment 2: Exploration phase . 315
19.1 Revisit Research Context . 315
19.2 Results Model . 315
19.3 Revisit Simulation Purpose . 326

20 CellBranch: Lessons and code . 327
20.1 CoSMoS lessons . 327
20.2 The Simulation Platform Code . 328

xii Contents

Part V Appendices

Endnotes . 331

References . 339

Index . 355

Part I
Overview of the CoSMoS approach

The first part of this book provides a managerial overview: the rationale for
and benefits of using the CoSMoS approach, and a small worked example
to demonstrate the approach in action.

Chapter 1

CoSMoS: rationale and concepts

Abstract — In which we discuss: why CoSMoS is needed; simulation as a
scientific instrument; the use of a pattern language to define CoSMoS; in-
terdisciplinary collaboration; and the underlying concepts of the CoSMoS
approach to complex systems modelling and simulation.

1.1 Why CoSMoS

Biological systems, social systems, the entire planetary system: these are
complex systems comprising large numbers of components of diverse kinds,
with complex behaviours, non-linear dynamics, and non-intuitive emergent
properties. Computer simulation provides a mechanism for exploring such
systems. In this context, a computer simulation is an executable form of a
model of a system, used to animate the dynamics implicit in the model, and
determine its consequences.

Systems that have mathematical models based on well-understood phys-
ical theories can be ‘solved’, occasionally analytically, more usually numer-
ically. However, complex systems typically do not have such a basis of
well-understood theories. Models of such systems typically have a “nest-
like” structure [148], weaving together data and sub-models from multiple
sources, incorporating hypothesised components and mechanisms, all form-
ing a more-or-less robust structure. With such a nest-like, complicated, and
potentially opaque model, it is essential to have an open and rigorous pro-
cess for developing and using simulations, in order for there to be any con-
fidence in the results, and to allow the results to be challenged in a prin-
cipled manner.

3

4 1 CoSMoS: rationale and concepts

Before embarking on any specific use of simulation, it is worth remember-
ing that a computer simulation is only as good as its underlying model and
data “nest”. A simulation is exercising the model, not reality [57]. Any predic-
tion it makes about the consequences of its model should be tested against
the real world [137]. We advocate using simulation to test the model: if model
predictions and real-world observations diverge, the model needs to be re-
vised. This may require new real-world experiments, to provide new data
and structures to update hypothesised components of the nest-like model.
Such use of simulation forms a crucial part of hypothesis-driven research
life-cycle in, for example, systems biology [138]. In this case, it is essential to
have a rigorous process for updating and clarifying the underlying models,
and ensuring the simulation is faithful to the specific model under test.

CoSMoS, Complex Systems Modelling and Simulation, provides such a
process.

The rest of this chapter describes the conceptual basis for CoSMoS: the
need for a set of rigorous models developed for a given scientific purpose, and
an associated fitness-for-purpose argument, defined using a pattern language.
Chapter 2 gives further motivation for CoSMoS from two distinct applica-
tion domains: systems biology, and robot development. Chapter 3 gives an
overview of the entire CoSMoS approach in miniature, by use of a small
example development, tailored to illustrate the core CoSMoS components.
Parts II and III form the core of the book, detailing the CoSMoS pattern lan-
guage; Part IV is a substantial case study illustrating the use of the entire
CoSMoS approach.

1.2 Complex systems simulation

We use the term model to refer to any abstraction that is made to explicitly de-
scribe or define concepts for the purpose of communication, documentation
and/or understanding. Such models are typically static and aim to capture
structures and behaviours within and among their subject components, or
data relating to those components.

This book is concerned with constructing and using “mechanistic” style
simulations, encoding a logical model of hypothesised behaviour in order to
execute and explore that model. Such a simulation can be interrogated and
observed, providing insight into the model, and the subject of the model.

Simulation can support scientific exploration in numerous ways includ-
ing communication, theory exploration, hypothesis generation, and design
of real-world experimentation. This is best achieved through close collab-

1.3 Simulation as a scientific instrument 5

oration between scientists and simulation engineers, who together shape
the purpose and use of simulation. The ideas laid out in this book provide
an approach to augmenting the traditional experimental scientific approach
through engineering a bespoke instrument, the simulation, in order to con-
tribute to the understanding of the system of study. Consequently, we must
have confidence that the simulation can actually tell us something about the
real domain.

CoSMoS addresses the issue of trusting simulation outputs by provid-
ing advice that makes explicit how the simulation platform has been en-
gineered and used to generate its outputs. This exposes the work to review
and challenge, helps to provide scientifically reproducible results, and max-
imises the impact of simulation in science. It is the duty of the simulation
engineer to make the tools they develop as accessible as possible without
trying to deceive: just because the simulation results look like the system
being modelled, does not make them correct, and certainly does not mean
that they can be extrapolated to hold in unstudied real world scenarios. Care
is required to enable the scientific audience to understand: how to use the
developed simulation technology; how it works and upon which abstrac-
tions it is built; and how to apply its outputs to real world systems of study.
Higher levels of trust are more expensive: they require more rigorous de-
velopment practices, and more rigorous argumentation. The level of trust
demonstrated for the simulation should be appropriate to the criticality of
the simulation, which largely depends on how the results are to be used.

1.3 Simulation as a scientific instrument

We take the view that computer simulations are in many ways a kind of sci-
entific instrument, like those used throughout science. Hence computer simu-
lations should be subject to the same rigour that goes into constructing other
kinds of scientific instrument. They need to be calibrated to understand how
the outputs relate to the system under study, and they should be presented
in such a way that their findings can be reproduced.

To this end, we distinguish the Simulation Platform, being the simulation
code that can be used as an instrument to explore the relevant model, from
the Simulation Experiment, being the use of that instrument to perform a spe-
cific investigation.

Simulations are based on an underlying model used to represent the sys-
tem or domain under investigation [76, 120]. Simulation results are driven
by this underlying model, and are not (directly) connected to the phys-

6 1 CoSMoS: rationale and concepts

ical reality being modelled [57]. However, that is increasingly the case with
many of the more sophisticated scientific instruments in use today, from
fMRI medical scanners to the LIGO gravitational wave detectors: meas-
ured results undergo significant processing either in the instrument, or sub-
sequently, based on some underlying (and potentially opaque) model. So
simulation as a scientific instrument can be thought of as being at one end
of a spectrum of distance from reality, not as a complete difference in kind
from other scientific instruments.

Simulations are built for a purpose; there are many different purposes.
Galton [80] outlines four potential uses for simulation: prediction (run the
simulation from present data to predict the future), explanation (run the sim-
ulation from past data to explain the present state), retrodiction (run the sim-
ulation from hypothesised past data to test the hypothesis), planning (run
the simulation from a planned near future state to test if it results in the
desired goal). Epstein [62] lists 16 reasons to build a model beyond that
of prediction, including discovering new questions, demonstrating whether
the model conforms to reality, and for training and education. For example,
one may construct a simulation to investigate the emergence of observed
natural phenomena from hypothesised underlying behavioural processes.
Such simulations may explore scientific questions about real-world phys-
ical, biological or social systems; the results may be used to inform real
world experimentation on the system being investigated, to validate such
experimentation, or simply to explore concrete or abstract hypotheses. Dif-
ferent purposes will result in different simulation instruments being built:
the purpose must be clearly articulated.

Learning takes place during both construction and manipulation of the
model that underlies the simulation. In the simplest scenario, model con-
struction results in the simulation computer code, and model manipulation
takes the form of in silico experimentation. During the former we learn about
the system and gain an idea of the questions we wish to ask of it; during
the latter we explore these questions and enhance our understanding of the
model upon which the simulator is based.

The construction of scientific instruments, like simulations, is based on a
model of our understanding of a target system. For example, in order for an
optical telescope to be constructed, we need to understand how light refracts
using lenses. Here the model is embedded within the physical construc-
tion of the lens, and by mechanical adjustment of the instrument, the hu-
man observer is presented with magnified images of the telescope’s target.
Compared to traditional scientific instruments, the model of understand-
ing embedded within a computer simulation is almost entirely logical and
achieved in software. Additionally, input from the domain of investigation

1.3 Simulation as a scientific instrument 7

to a simulation is far more indirect with regard to space and time in the
sense that no direct physical input is present. Again, we rely on logical con-
nections to the domain rather than direct physical inputs. This results in an
additional layer of interpretation required to understand how the inputs of
computer simulations map to the entities of the domain under investigation.

Understanding the relationship between an instrument and the domain
it measures is essential to interpreting its output. To achieve this, an in-
strument is calibrated to produce outputs that are meaningful to the hu-
man observer. Calibration relies on correctly observing and reproducing the
structure of known features measured by the instrument [120]. Simulators
are essentially unique bespoke instruments constructed to answer a specific
question or set of questions. The purposes of these instruments are various,
and therefore calibration is different for each individual simulator. When
changes are made to a simulator it may have to be re-calibrated.

Rigorous calibration is a first step towards achieving scientific reprodu-
cibility, the need for which is becoming apparent within scientific simula-
tion. Timmer [213] describes the beginning of a movement towards research-
ers adopting approaches to ensure that computational tools are in line with
existing scientific methods. However, whilst there may be a recognition that
nearly everyone doing science uses some form of computation, there are few
who know what is needed to make sure that documentation of approaches
is sufficient for reproducibility.

Exact reproducibility of a piece of science performed using computer sim-
ulation without access to the computer code and all the initialising variables
(parameter settings, initial states of data) is unlikely. This gives support to
the argument for complete openness of code [122]. There is another equally
crucial source of knowledge that should also be open. The simulation en-
codes a model. This model may be implicit: expressed only via its encoding
as computer code. It contains many different assumptions which are essen-
tial to understanding what the model represents. This is an issue of validation
[198]1: how you know that you have built the right system for your purpose.
This can only ever be expressed as a level of confidence. In some circum-
stances, for example where outputs of a simulation instrument have a high
level of criticality, a structured argument is required to express confidence
in a computer simulation [178], and for this, the model must be explicit.

In the aftermath of ‘Climategate’ [108], the spotlight is more closely on the
way in which scientists use computational devices as part of their scientific
process. There have been calls for open-source code to enable repeatability,
but in our view this is not enough. We need also to make the models and
their assumption open, the calibration open, and openly argue the fitness
of a simulation for a particular purpose. We need to demonstrate how the

8 1 CoSMoS: rationale and concepts

simulation has been engineered, and why it is a good instrument to enhance
our domain knowledge.

In biological and other scientific research publications, “methods and ma-
terials” are a prominent section in any experimental paper, describing how
relatively well-known and commonly used processes are pieced together for
the described experiment. Rarely does any analogous material find a place
in simulation literature (the ODD protocol [100, 101] is a welcome excep-
tion), and certainly not at the same level of detail. And because in simulation
much is bespoke, there is less scope to rely on pre-existing and well-accepted
“modules” in describing the work.

CoSMoS provides a framework for making all these aspects open, and
documentable, at the appropriate level of rigour.

1.4 Simulations in engineering

Simulation also plays an essential role of simulation in engineering and tech-
nology. There are many applications of simulation technology across engin-
eering research, design and operation, and more broadly for training and
entertainment (video games). Here we outline a number of illustrative ex-
amples. CoSMoS can also be used as an approach for building such engin-
eering simulations.

1.4.1 Training and video games

Perhaps one of the earliest applications of simulation technology was as
part of professional flight simulators. From the 1960s digital computers
have provided the computation, typically combined with a realistic cock-
pit mounted on a motion (Stewart) platform, and visual displays providing
the pilot(s) with the view from the cockpit windows. A flight simulator is
required to model, to a high degree of accuracy and in real-time, the flight
dynamics of the aircraft and its systems (i.e. engines). In response to the
flight controls, the simulator must generate realistic values for the cockpit
instruments and update the Out-The-Window (OTW) visual scene. A char-
acteristic of the flight simulator is that it is designed to be immersive; a flight
simulator is thus an example of immersive simulation environment more of-
ten known by the term Virtual Reality [187].

Even for video games that do not provide an immersive environment,
the computational and graphical performance of personal computers and

1.4 Simulations in engineering 9

games consoles provides a level of performance, in respect of modelling the
OTW view, that approaches that of professional training simulators. Flying
and driving simulators represent a class of video games noted for realism, to
the extent that a winner of a racing simulation video game contest secured
the chance to race for real, achieving creditable performance on the basis of
skills apparently learned from the video game Gran Turismo [94].

1.4.2 Engineering Research

Simulation has become an essential tool in robotics research and develop-
ment. Typically a robot simulator has four key features: (i) it provides a vir-
tual world, such as a 3D model of the real world, modelling physics, col-
lisions, etc; (ii) it provides a facility for creating a virtual model of the real
robot, modelling its structural components, actuators and sensors with reas-
onable fidelity; (iii) it allows the robot’s software controller to be installed
and ‘run’ on the virtual robot in the virtual world, and ideally it is possible
to install and run the same control code on the real robot; (iv) it provides a
visualisation of the virtual world and the simulated robots (and other ob-
jects) in it.

In a well-designed robot simulator we can develop and prototype new
robot designs (both hardware and software), research new robot control al-
gorithms, including algorithms for multi-robot systems, and, by placing the
simulator within a Genetic Algorithm framework, artificially evolve new
robot designs.

Well known robot simulators include the open source Player/Stage tools
[84] and the commercial simulator Webots [159]. These are examples of so-
called sensor- and physics-based simulators, in which a reasonable trade-
off between the accuracy with which robot sensors and actuators, and their
interactions, are modelled and run-time speed of the simulation has to be
achieved. The “reality-gap” between the simulated model and the real-
world represents a challenge to robotics researchers, and is discussed in de-
tail in §2.3.1.

1.4.3 Engineering and Process Design

In electronics design the use of simulation tools for both analogue and di-
gital electronics circuit design is very well established. The well-known elec-
tronics circuit simulation SPICE (Simulation Program with Integrated Cir-

10 1 CoSMoS: rationale and concepts

cuit Emphasis) [221], and its many variants and derivatives, performs AC
and DC analysis, noise analysis, transient analysis and transfer function
(input-output) analysis. Integrated circuit manufacturers make use of such
electronic circuit simulators to validate designs prior to manufacture – in
some cases with sufficient confidence that costly fabrication runs for proto-
typing and test are unnecessary.

An important class of immersive VR is the CAVE (Cave Automatic Vir-
tual Environment); typically a room with video projected images onto walls,
floor and ceiling, and a motion capture system to track the user’s move-
ments so that the CAVE display can respond to those movements. CAVE
systems are used in a wide range of applications, including product devel-
opment (to, for instance, virtually test a user interface) or process engineer-
ing (to virtually prototype a factory layout).

1.4.4 Engineering Operations

Where engineering plant and machinery is remote, or the consequences of
an incorrect control command are potentially catastrophic, then simulation
can provide a tool for testing and validating control actions before those
actions are committed by the real system. An example of remote systems are
the Mars Exploration Rovers, Spirit and Opportunity, and both computer
simulation tools, and scenario simulation using duplicate MER vehicles in a
“Mars yard” environment, are employed to validate commands before they
are sent to the real vehicles [126].

The robot arm within the Joint European Torus (JET) facility at Cul-
ham, Oxfordshire, provides an example of a simulation that is very closely
coupled with the real plant and machinery. A multi-axis manipulator within
the torus allows engineers to conduct maintenance or repair, by remotely
controlling the robot arm and its tools. Several cameras within the torus, in-
cluding cameras fitted to the robot arm, provide views to the operators but
these, not surprisingly, provide only limited viewpoints. Relying on these
cameras alone creates a significant risk that, in manoeuvring the robot’s
end-effector, some other part of the robot arm (an elbow for instance) col-
lides with the critical inner skin of the torus. The solution is a 3D simulation
of the robot arm, together with the structures of the torus, that is coupled to
and run in parallel with the real system. In the control room the simulator
visualisation is displayed alongside the camera views from the real system.
Each time a new movement of the robot arm is planned, the simulated ro-
bot arm is reset to exactly match the disposition of the real robot arm; the

1.5 Working Together 11

next planned action is then run on the simulator. Importantly the simulator
provides views to the operators from any desired viewpoint - even from out-
side a (transparent) simulated torus. Only when the operators are satisfied
that the action poses no risk is it carried out for real [197].

1.5 Working Together

Understanding and control of complex systems is a significant motive for
collaborative research. Complex systems require research across conven-
tional domains, and the lack of knowledge about how a particular domain
is involved in and with the wider context is a common limiting factor.

The point of collaboration is not to become an expert in someone else’s
domain, but to understand how to add one’s own expertise to an attempt
to address a problem expressed in a shared context. Expertise could be seen
as the right to pontificate about a particular domain, but it also entails an
obligation to conduct domain research to a high standard.

Collaboration is usually serendipitous: people or groups from different
domains build on chance encounters to take forward research that the in-
dividual or group could not pursue alone. However, with the increasing
emphasis on collaborative and interdisciplinary research, the possibility of
constructing collaborations is increasing. What would an ideal collaboration
look like? The following are some pointers.

• skilled scientists and engineers from more than one domain
• mutual commitment to a shared goal
• mutual trust in the expertise (as identified above) of other parties
• individual participant commitment to excellence in their domain of ex-

pertise
• a problem that cannot be addressed within one domain

We are concerned with creating simulations that are fit for purpose in re-
search domains. In this context, there are necessarily research domain ex-
perts, and software engineering domain experts.

Arguably, an attempt at complex systems simulation without expertise in
both of these domains cannot be shown to be fit-for-purpose. The engineer-
ing of software is not simply a matter of building a program with a visual
interface, any more than understanding the research domain to be simulated
is simply a matter of access to an undergraduate textbook or a few scientific
papers.

In systems analysis, the concept of a role provides a useful generalisation:
a role conveys rights and obligations; a role is played by one or more people,

12 1 CoSMoS: rationale and concepts

Role Description Contributes

Domain
Scientist

one or more scientists who com-
mission the simulation with the
intention of using outputs from
the simulation in their domain
research

scientific purpose and scope; in-
dication of impact and criticality;
information about the domain;
advice on and interpretation of
scientific sources; factual input
and data; advice on calibration
experiments and sensitivity ana-
lysis

Domain
Modeller

one or more software engineers
who collaborate with the domain
scientist to create a conceptual
model of the domain to be sim-
ulated

a model using concepts and
notations that the domain sci-
entist can recognise and under-
stand, but which also admits a
systematic route to implementa-
tion

Simulation
Engineer

one or more software engineers
who collaborate with the domain
modeller to engineer a simula-
tion derived from the domain
model; and collaborate with the
domain scientist to test and cal-
ibrate the implemented simu-
lator, and run simulation exper-
iments

software design and implement-
ation in which appropriate do-
main concepts are traceable, and
which includes facilities to set
up and run simulation experi-
ments, with appropriate obser-
vation and data collection

Argument
Modeller

one or more modellers respons-
ible for collating the basis on
which the other roles can reach
consensus on the fitness for pur-
pose of the simulator

a fitness-for-purpose case that
exposes the rationale for trust by
all roles in the simulator, the as-
sumptions made, the limitations
in the purpose and scope of the
simulator and in the potential
use of its results

Fig. 1.1 Roles in collaborative simulation development and use

and one or more roles can be played by a person. A role-based considera-
tion of collaboration helps to identify the actual areas of expertise required.
Figure 1.1 summarises.

Not everyone can work collaboratively. The people behind each role need
the flexibility and commitment to the simulation project. Everyone needs to
accept the challenge of explaining their area of expertise in non-specialist
terms: all parties need to understand that they can ask questions, challenge,
seek clarification and explanation, of the other experts involved. Because it
is a complex systems project, it is also necessary that all participants un-

1.6 Pattern Language 13

derstand that “we do not know” or “we cannot possibly know” are valid
answers to many questions about the domain (e.g. what size is particle x;
how many of y are produced), the domain modelling (e.g. is a spatial model
compatible with the scientific data; how can we tell if we got it right) and
the implementation (e.g. what is the effect of digitisation; how random is
random; is behaviour x realistic, a feature, or a bug).

The human aim of collaboration is to arrive at a consensus on the fitness
for the scientific purpose of the simulator. The participants must not take for
granted other people’s opinions, but should work constructively together to
understand assumptions and limitations.

The people involved in each role need to see the simulator as a tool: a sci-
entific instrument that is only as good as what goes in to its construction. The
use of the simulator and simulation results depends on this understanding.

1.6 Pattern Language

1.6.1 Historical context

We document the CoSMoS approach using a Pattern Language.
In 1977, Christopher Alexander and his co-authors published A Pattern

Language [7], one in a series of books “intended to provide a complete work-
ing alternative to our present ideas about architecture, building, and plan-
ning”. It is a handbook of 253 patterns, where “Each pattern describes a
problem which occurs over and over again in our environment, and then
describes the core of the solution to that problem, in such a way that you
can use this solution a million times over, without ever doing it the same
way twice.” [7, p.x]. The patterns describe how quality buildings should be
designed, and together provide a language covering a wide range of spa-
tial scales, from whole towns, through small clusters of buildings, and indi-
vidual buildings, to tiny detailing.

And that, as far as the computing community goes, would have been that,
were it not that the concept of Patterns inspired a group of software engin-
eers. Buildings are not the only things described by “architecture”: software
engineering uses the same word to describe its own structuring concepts.
In 1995, the so-called “Gang of Four” published Design Patterns [81], which
took Alexander’s concept and used it to produce a catalogue of patterns
found in good software architectures. Things have not looked back: there are
now analysis patterns [71], coding patterns [26], patterns conferences and
catalogues [53, 109, 153, 220], antipatterns [37, 140], metapatterns (patterns

14 1 CoSMoS: rationale and concepts

that describe patterns), and more (including arguments that the whole soft-
ware patterns community have completely missed Alexander’s point [78]).

The initial flurry of publications may have slowed somewhat since those
early days, but Patterns are now part of the everyday culture of software en-
gineering. One impact of Alexander’s ideas, as adapted by the Gang of Four,
on software development has been to make it clear that there is much more
to object-oriented architecture than just the single concept of an object. The
patterns provide a simple vocabulary, letting us all talk of the Visitor Pat-
tern, or the Factory Pattern [81], without having to explain what we mean.

A pattern language provides a collection of associated patterns that can be
used together to achieve a purpose. The CoSMoS pattern language provides
a collection of patterns for designing, building, using, and arguing fit-for-
purpose, simulations as scientific instruments.

1.6.2 CoSMoS pattern structure

It is important that a pattern is a practical, tried-and-tested solution to a
problem, not merely something the pattern writer hopes or theorises might
be a good solution2. The CoSMoS pattern language has been used on several
simulation developments, and we provide references where appropriate.

We use the following template to document a pattern:

Pattern Template

Intent

What the pattern is for; what its use will achieve.

Summary

The tasks (some stated as patterns) needed to achieve the pattern’s in-
tent.

Context

The place or circumstance where the pattern is applicable.

1.6 Pattern Language 15

Discussion

A general discussion of what the pattern provides, why it is needed,
and how to use it, including examples of its use where appropriate.

Related patterns

A discussion of related patterns, and of antipatterns to beware of when
applying this pattern.

We refer to a pattern in the text by its name in sans serif face and the page
number where it is documented – Pattern Template (14).

A full pattern language is more than just a vocabulary. Patterns can join
together to form larger patterns; the use of one pattern leads to the use of an-
other; antipattern solutions suggest alternative approaches. Many CoSMoS
patterns are expressed as a composition of smaller, more detailed patterns.
This suggests a structure to the final CoSMoS project artefacts, but should
not necessarily be taken as a suggestion on the order of pattern execution.
The development process should be flexible and iterative, and tailored to
the specifics of a given project.

1.6.3 CoSMoS anti-pattern structure

Patterns provide guidance on what to do. It is just as important to give guid-
ance on what not to do, particularly when this superficially appears to be a
good idea, a clever shortcut, a sensible compromise, or even just normal
practice. Antipatterns [37, 140] provide a means to give such guidance. An
antipattern documents a pattern of bad behaviour or an often repeated mis-
take, together with a solution of what to do instead, or how to recover from
the mistake. The solution is often a pointer to which pattern(s) to use in-
stead.

We use the following template to document an antipattern:

Antipattern Template

Problem

What the problem is.

16 1 CoSMoS: rationale and concepts

Context

The place or circumstance where the mistake is often made.

Discussion

Further discussion of the problem.

Solution

A pithy summary of what to do instead, or how to recover from the
mistake.

We refer to a an antipattern in the text by its (usually perjorative) name in
italic sans serif face and the page number where it is documented – Antipat-

tern Template (15).
In addition to antipatterns of the form “doing the wrong thing”, antip-

atterns can often appear in pairs (for example, Analysis Paralysis (140) and
Premature Implementation (171)) where one of the antipatterns is “doing too
much” and its pair is “doing too little”.

1.7 The CoSMoS concepts

CoSMoS assumes the use of good software engineering practices, but this
book is not about specific software engineering techniques. Instead, CoS-
MoS provides a pattern language (§1.6) that enables the construction and
exploration of simulations for the purpose of scientific research: it defines
where good modelling and software engineering techniques should be used.
This patterns-based approach has been designed to be adaptable both to a
variety of simulation problems and to changing circumstances during sim-
ulation construction and use. Application of appropriate patterns should be
tailored to suit the criticality and intended impact of the research outcomes.

The construction and use of simulations is a necessarily interdisciplin-
ary endeavour between scientists who study a particular Domain (125) (tak-
ing the role of Domain Scientist (102)), and software engineers who construct
simulations to facilitate the study of that domain (taking the roles of Domain

Modeller (103) and Simulation Engineer (105)). The Domain Scientists, Domain

Modellers, and Simulation Engineers are involved together in open-ended sci-
entific research: the simulations are used as a tool to support theory explor-
ation, hypothesis generation, and design of real-world experimentation.

1.7 The CoSMoS concepts 17

To run computer simulations we need to engineer a Simulation Platform

(163). A properly calibrated Simulation Platform is the scientific instrument, the
basis for running a Simulation Experiment (179). To engineer such a platform
requires us to explicitly represent some knowledge of the system being stud-
ied in a form of source code that can be run on a computer. This source code
is either designed manually by the developers or automatically generated
from a higher-level description.

In many existing approaches to simulation, the source code is the only
explicit description of the aspects of the target domain that are being sim-
ulated. Source code contains numerous implicit assumptions3 concerning
both the scientific aspects of the work, and the engineering design of the
simulation platform. Source code also contains many implementation de-
tails, which are needed to make the simulation run on a computer, but are
not part of the underlying scientific model. Hence source code is not a satis-
factory model of the target domain.

To mitigate inappropriate assumptions in the design of a Simulation Plat-

form and to have greater confidence that simulation results can actually tell
us something that relates to the real system being studied, CoSMoS proposes
a series of related models to drive and describe the development of the Sim-

ulation Platform and simulation results generated from its use. Systematic
development assists interaction between Domain Scientists and software en-
gineers, and improves confidence in, and interpretation of, the results of
simulations.

1.7.1 Phases

We identify three main phases in a simulation project.

Discovery Phase (95) Deciding what scientific instrument to build: establishing
the scientific basis of the project, including the scientific purpose ad-
dressed by the simulations; identifying the domain of interest, models
the domain; shedding light on scientific questions.

Development Phase (96) Building the instrument: producing a simulation plat-
form to perform repeated simulation, based on the output of Discovery.

Exploration Phase (97) Using the instrument to run experiments: using the
simulation platform resulting from Development for exploring the sci-
entific questions established during Discovery.

These phases are not intended to be performed purely sequentially. A
project naturally begins with discovery, followed by development and then
exploration. But many iterations of discovery, development and exploration

18 1 CoSMoS: rationale and concepts

Fig. 1.2 Relationship
between CoSMoS Simu-

lation Project components;
arrows represent flows of
information. These are all
framed by the Research

Context (121).

Domain
Domain

Model

Platform

Model

Results

Model

Simulation

Platform

may be required to build a robust, fit for purpose instrument. The separation
into phases helps provide a focus on what particular pieces of information
are needed at each phase for each model.

Indeed, some projects might not perform all phases. A prior project may
have performed the necessary discovery, and only development and explor-
ation is needed (although it will be necessary to check that the assumptions
of the prior discovery phase are valid for this project). Similarly, a suitable
existing simulation platform might exist, and only the exploration phase is
followed in this project (again, it will be necessary to check that the assump-
tions underlying existing the simulation platform are valid for this project).
On the other hand, it may be that only the discovery phase occurs, and dis-
covers that a simulation is not appropriate, or not needed.

1.7.2 Models

Our simulation approach uses the following model concepts: domain, do-
main model, platform model, simulation platform, and results model (figure
1.2). Each of these components has a different role to play in the building,
verifying, and use of the simulation:

Domain (125) A particular view (or views) of the real-world system of study.
Domain Model (131) A descriptive4 (scientific) model of the Domain, as un-

derstood from domain experiments, observations, and hypotheses of
underlying mechanisms. It encapsulates the understanding of appropri-
ate aspects of the domain. It focuses on the scientific understanding; no
simulation implementation details are considered.

Platform Model (151) A prescriptive (engineering) model of the Simulation

Platform. It comprises computational analogues of relevant Domain Model

concepts, and includes implementation details needed for the Simulation

Platform.

1.7 The CoSMoS concepts 19

Simulation Platform (163) An encoding of the Platform Model into a soft-
ware and hardware platform. It is the platform with which Simulation

Experiments can be set up, performed, and observed.
Results Model (176) A descriptive model of the simulation domain, as un-

derstood from Simulation Experiments and observations. It encapsulates
the understanding that results from Simulation Experiments, and casts it
in Domain Model (131) terms to support comparison with Domain Model

(131) analogues.

Underlying these models is a common Data Dictionary (134), defining the
modelling data used to build the simulation, and the experimental data that
is produced by domain experiments and corresponding simulation experi-
ments.

CoSMoS does not dictate any particular form of modelling. The import-
ant things to consider when deciding what sort of models to create are:

• does the Domain Scientist understand the models of the Domain? can
the Domain Scientist tell when the Domain Modeller has got something
wrong?

• can the key concepts of the Domain and the Simulation Platform be ex-
pressed in the models? do we need to create a domain-specific interpret-
ation of a modelling language, or use different languages for different
views?

• is there, or can we devise, a clear mapping from the domain model to
the platform model and to the code of the simulation platform?

That is, the key point is to select modelling approaches that all parties are
comfortable with, and that are suitable for expressing the domain model.
Put effort into traceability, all the way from Domain Model through code to
results, rather than adjusting a model to suit the software engineering.

In §1.7.4 we describe the common substructure of the three main models.
In chapter 3 we illustrate the entire approach in miniature, through a small
running example.

1.7.3 Implementation and calibration

The models described above are used to specify, design, and build the Sim-

ulation Platform. The platform can be thought of as a computational imple-
mentation of the (model of) the real world system under study.

Initial runs of the platform are used to perform Calibration (165). This is
needed to determine how to translate Domain parameters and variables into

20 1 CoSMoS: rationale and concepts

their corresponding platform values (for example how to translate between
real-world time, and simulated time), and how to take simulation experi-
ment raw output data and analyse it to enable comparison with domain res-
ults captured in the Domain Model. The amount of calibration effort needed
depends on Research Context (121) and Simulation Purpose (123).

1.7.4 Domain and Simulation Experiments

Within the CoSMoS approach the concept of an experiment is present at
two stages: domain experiments, performed on a real world system within the
Domain, and simulation experiments, carried out on the Simulation Platform.
These are analogous to in vivo/in vitro and in silico experimentation respect-
ively.

A common goal of a CoSMoS Simulation Project is to run Simulation Exper-

iment (179)s on the Simulation Platform that enable us to build a Results Model

that can be compared to the Domain Model and provide insight back into
the real Domain of study. This might help in understanding the results of
domain experiments, or help in the design of new domain experiments that
can further illuminate the domain model. So the Simulation Platform must
allow us to run appropriate Simulation Experiments that reflect the concepts
of interest in the Domain.

Specifically, Simulation Experiments should allow us to select the appro-
priate model components and behaviours, control the initialisation of key
parameters, and perform appropriate analyses via suitable statistics. These
abilities are explicitly represented within the Platform Model in terms of the
Simulation Experiment Model (154).

There is a danger that the Simulation Experiments are used to explore hy-
pothesised behaviours that are infeasible to observe or measure in the Do-

main, producing incomparable, uncalibratable results. So it is sensible to en-
sure that the Simulation Experiments are related to possible domain experi-
ments, captured in the Domain Experiment Model (137), to help ensure com-
parable results.

Domain Experiment Model

The Domain Model can be viewed as describing the behaviours present in the
Domain that are expressed when probed via domain experiments. The Do-

main Experiment Model is the place to explicitly model these domain exper-
iments, describing the experimental system present in the domain, identi-

1.7 The CoSMoS concepts 21

(a)

domain

experiment

micro / agent

mechanisms

observed

emergent

behaviours

domain

experiment

specification

agent

specification

platform

simulation

experiment

observed

simulation

behaviours

results

(b)

Domain
Experiment

Model

Basic Domain
Model

Domain
Behaviours

Domain Model

Simulation
Experiment

Model

Basic Platform
Model

Platform Model

Simulation
Experiment

Simulation
Behaviours

Results Model

Fig. 1.3 (a) The substructure of the various CoSMoS components. (b) The mapping to the
relevant CoSMoS patterns.

fying, for example, experimental procedures and protocols, variables and
ranges, controls, measurables, data volumes, sample sizes and statistical
tests.

The Domain Model provides the Domain concepts and behaviours, and is
factored into three component submodels (figure 1.3).

• The Domain Experiment Model (137) identifies the model parameters and
how we manipulate them.

• The Basic Domain Model (133) captures the (usually hypothesised) Do-

main micro-level concepts, including components, structures, mechan-
isms, behaviours and interactions.

• The Domain Behaviours (137) model captures the domain macro-level
emergent observed behaviours.

22 1 CoSMoS: rationale and concepts

Simulation Experiment Model

The Platform Model comprises computational representations of the relev-
ant Domain Model components, making implementation abstractions, and is
factored into two component submodels.

• The Simulation Experiment Model (154) is derived from the Domain Exper-

iment Model and incorporates instrumentation for running experiments.
• The Basic Platform Model (152) captures the computational realisation of

the Domain micro-level concepts.

The deliberate lack of a component corresponding to the Domain Behaviours

macro-level model helps ensure that the ‘answer’ – the emergent behaviours
resulting from the hypothesised micro-level behaviours – is not explicitly
coded into the Simulation Platform.

Simulation Experiments

Implementation of the Platform Model results in a Simulation Platform. A cal-
ibrated simulation platform can be used to run Simulation Experiments that
are analogues of real world experiments run in the Domain. The results of
a simulation experiment (after suitable translation into domain terms, and
data analysis, via the Results Model) can be compared to the real world ex-
perimental results.

The Results Model comprises models of the results of running simulation
experiments on the simulation platform, and is factored into two component
submodels.

• The Simulation Experiment (179) captures specific experiment instances of
the Simulation Experiment Model.
• The Simulation Behaviours (181) model captures the observed and ana-

lysed simulation behaviours in terms analogous to the macro-level emer-
gent Domain Behaviours. It determines how these behaviours are identi-
fied and measured when running Simulation Experiments.

The results can be compared with analogous domain experiment outputs
in the Domain Model. If they disagree, it may be because:

• the variables and parameters are not being translated appropriately (Cal-

ibration may have overfit their values)
• there a faults in the design of the Platform Model or in the implementa-

tion of the Simulation Platform

• there are faults in the Domain Experiment Model, such as imperfect meas-
urements or statistical errors

1.7 The CoSMoS concepts 23

• there are faults in the Basic Domain Model: the science is imperfectly cap-
tured, or imperfectly understood

1.7.5 Arguing Fitness for Purpose

A simulation is built for a purpose, and those using the Simulation Platform

to run Simulation Experiments need to be confident that it is suitable for that
intended purpose. The scientific results from using the Simulation Platform

may be published, or may underpin further scientific research; in such cases,
people outside the team developing and using the Simulation Platform need
to be given reason to have confidence in its fitness for purpose.

To build the appropriate confidence in a particular simulation-based
study, the team needs to present a rationale for the fitness for purpose of
the entire simulation project (including modelling and simulator develop-
ment, input data, and analysis of results).

The case for fitness for purpose comprises evidence of the quality of de-
velopment, the consideration of assumptions, and the work on assuring the
results. Rather than create a dense textual argument, a Structured Argument

(191) can be created, with appropriate linkage to supporting evidence, as-
sumptions and justifications. The fitness for purpose argument may be de-
veloped post hoc, or may be used to drive the shape of the simulation de-
velopment process: it is easier to argue a system is fit for purpose if the
development has been guided with such a need in mind.

We specifically use the terminology “fit for purpose” (with the meaning
“good enough to do the job it was designed to do”5) and “appropriate”.
These terms emphasise that these properties are relative, to the Simulation

Purpose, and hence that there is a need to revisit arguments should that pur-
pose change.

We choose not to use more common terminology such as “valid” or “cor-
rect”. These terms have implications of being absolute terms: “this instru-
ment is correct”, as opposed to “this instrument is fit for a given purpose”.
These stronger terms do not capture the need to revisit arguments if circum-
stances change. Additionally, they have implications of being either true or
false: something is either “valid” or “invalid”, whereas we want to capture
a continuum of possibilities, allowing a Simulation Platform to have degrees
of fitness for purpose.

A fitness-for-purpose argument is usually incomplete: its purpose is to
capture the understanding about fitness for purpose of its audience, so that
it can be referenced in future, challenged and revisited. A thorough and fully

24 1 CoSMoS: rationale and concepts

documented argumentation exercise is unnecessary in most situations, par-
ticularly in cases where the simulation criticality is low.

As well as documenting what is done, and arguing that it is the right
thing to do, it is important also to document what is not done, and argue
why it has been decided not to do it. This saves much grief later in the pro-
ject, when a previously dismissed approach is retried, and the reason for its
dismissal rediscovered.

It is important to note that, particularly in the context of complex sys-
tems simulation, an initial set of tests and calibration experiments may not
fully exercise the Simulation Platform. Subsequent Simulation Experiments
may later expose hidden assumptions, which are likely to clarify the scope
and scale for which the simulation is appropriate (and outside which it can-
not be “trusted”). Fitness for purpose should be viewed as a temporary state
that may be contradicted by subsequent experimentation, either because the
understanding on which the simulator was designed is inadequate, or be-
cause the Simulation Purpose was not fully defined.

Chapter 2

What’s in it for me?

Abstract — In which two Domain Scientists, Bown and Winfield, argue why
the CoSMoS approach is beneficial to them.

2.1 Why this chapter, and why us?

CoSMoS is a sophisticated, powerful and detailed approach to support sim-
ulations, and it encompasses the whole process of conceptualising, design-
ing, constructing, executing and evaluating simulations as scientific instru-
ments. At the same time the CoSMoS approach is subtle and multi-faceted in
supporting that process. This means that for the non-software engineer the
CoSMoS approach may be perceived as on the one hand overwhelming and
on the other hand abstruse. In this chapter, by taking a scientist’s perspective
rather than that of a software engineer, we hope to offer a valuable pathway
into the comprehensive coverage of the CoSMoS approach provided in Part
II.

We are well placed to do this since we are scientific project partners to
the CoSMoS project, with backgrounds in systems biology [JLB] and sys-
tems engineering [AFTW]. Part of our role has been, in conjunction with
other domain scientists associated with the CoSMoS project, to provide an
external perspective on the role and value of much of the process developed
here, together with a view on how that process may help address the issues
that we currently face and are likely to face in the future.

We recognise that using the CoSMoS approach constitutes a significant
investment of time on behalf of the domain scientist. The remainder of this
chapter seeks to explain the relevance and value of the CoSMoS approach to
scientists by highlighting what the CoSMoS approach may contribute to our

25

26 2 What’s in it for me?

respective domains. We summarise briefly those domains, and indicate how
the CoSMoS approach helps address some of the cross-cutting challenges
in studying complex systems that are shared in biology and engineering.
We also consider indicative challenges unique to each of our domains and
likewise discuss the role of the CoSMoS approach in overcoming those chal-
lenges.

Our intention is to illustrate the value of CoSMoS for fields beyond our
own. Many of the challenges we raise are manifest in other complex do-
mains such as financial, environmental and socio-technical systems. Read-
ers from other domains should find pathways into the value of CoSMoS by
recognising some of the challenges we raise in their own arenas and in doing
so form a lens through which to read Part II.

2.2 What challenges do we face

2.2.1 Systems biology

Biology is at the root of some of the most challenging and important prob-
lems facing society today, spanning diverse areas such as adequate food pro-
duction, preservation of biodiversity, landscape management in the face of
climate change, and maintenance of human health in a population increas-
ing in age and size. Biological systems have for a long time been studied
through reductionist science, decomposing the system into its constituent
parts. While this has provided extensive data sets characterising the indi-
vidual components, reductionist science has failed to provide a scheme for
re-integration of that data into a holistic view of the system. As Cohen [51]
states: “The more data we have access to, the more confused we have be-
come.”

Systems biology is a relatively new scientific discipline that seeks to
provide that integrative view by treating biological systems as complex sys-
tems, i.e. a system that comprises many individual components that interact
in space over time. Complex systems in biology are known to exhibit several
phenomena that make them interesting but difficult to study, including:

• that they are inherently spatial, and so the spatial patterning of indi-
vidual components impacts system dynamics and vice versa

• system components exhibit natural variation, and this variation is im-
portant to the interactions among these components

2.2 What challenges do we face 27

• component interactions generate emergent patterns, e.g. bird flocking
and ant trails, visible at the system-scale but not deducible from the
measurables of the individual components

• system dynamics are governed by processes operating at a range of spa-
tial and temporal scales and this, combined with the difficulties associ-
ated with experimental measurement generally, means that no one ex-
perimental approach may characterise the system fully

2.2.2 Systems engineering

Almost all modern engineering is systems engineering. Even self-contained
engineered artefacts like mobile phones or mobile robots are composed of
many sub-systems (circuits or modules), which are systems-engineered to
achieve the overall required functionality. The very high levels of function-
ality that are now commonplace in such artefacts owes itself to several crit-
ical factors: one is the standardization of modular sub-systems and their
interfaces (think of a third-party designed and manufactured GPS receiver
treated as a ‘component’ within a mobile phone or digital camera); another
is the protocols that allow these sub-systems to communicate. The third is
software, which embeds multiple layers of e.g. device drivers (often stand-
ard components), protocol stacks, and applications code; much of the func-
tionality of engineered systems is achieved through software design and of-
ten that software provides the overall integration of sub-systems into a func-
tional whole. Good software engineering is a profoundly important part of
systems engineering.

Traditionally systems engineering has employed requirements-driven
methodologies that proceed by first decomposing high-level requirements
into successively lower level components, then - once that decomposition is
complete - instantiating and testing those components (hardware and soft-
ware), then successively integrating and testing until the overall system is
complete. This is the so-called V-shaped model of systems engineering [179],
although more recent approaches such as Agile Systems Engineering have
challenged the V-shaped model [215].

Traditional approaches to systems engineering are not always successful,
however, and failures of large-scale systems are well known [67]. While the
reasons for such failures are often attributable to poor requirements or weak
project management, less obvious factors can play a significant role, espe-
cially for large scale or distributed systems. These include: (i) an unpredict-
able or poorly understood and ill-specified operational environment, which

28 2 What’s in it for me?

might lead to (ii) unexpected emergent and/or stochastic behaviours from
the system when operating in that environment, or (iii) unknown emergent
behaviours arising from the combinatorial complexity of the large number
of sub-systems and their interactions. And (iv) if failures of sub-systems, or
simply component specifications drifting out-of-tolerance, occur then differ-
ent kinds of unpredictable system properties will emerge.

Responses to these challenges to systems engineering include, for ex-
ample, engineering the operational environment in addition to the system
in an effort to address (i) and (ii); an example would be the engineering of a
warehouse in order to provide autonomous guided vehicles for moving in-
ventory with a fully characterised and predictable environment. In the case
of large-scale VLSI designs the risk of (iii) is significantly minimized by em-
ploying advanced circuit simulations to exhaustively test the functionality
of the circuit design before committing it to silicon. However, where engin-
eering the environment is not an option as would be the case for unknown
(natural or unexplored) environments, or known but unpredictable envir-
onments such as human living or workplaces, then modelling – of both the
system and its environment – should, we propose, become part of a new
systems engineering approach for complex systems.

2.2.3 Challenges in systems biology and systems engineering

These scientific domains are characterised by interactions among diverse in-
dividuals in space over both ecological and evolutionary time-scales. Com-
plex systems models seek to simulate those interactions, which may be
driven by processes at single or multiple spatio-temporal scales depending
on the system of study. Additionally, system-scale patterns can emerge from
individual-scale processes, and such non-linearities are characteristic fea-
tures of many systems in engineering and especially biology. Based on this,
we consider the following (non-exhaustive) set of fundamental challenges
to modelling complex biological and engineered systems:

• the reality gap
• representing individuals and processes
• characterising emergent behaviour
• acceptance of model results

There are, of course, clear differences between biological and engineered
systems. Engineering systems can be configured with a vast array of options
and these options can impact significantly on system dynamics; in contrast

2.3 What can the CoSMoS approach do to help? 29

biological system configuration is rather blunt with manipulation of bulk-
scale parameters such as resource level or a small number of system-scale
interventions. Engineered systems must build in mechanisms to be resili-
ent in the face of failure and be explicit about their environmental operating
range; in contrast resilience is a pervasive feature in many biological sys-
tems.

Engineering systems can be heavily instrumented and so it is possible to
measure everything; in contrast, in many biological systems it is difficult to
measure anything without disrupting the system under study and the often
opaque physicality of the biology, e.g. soil systems or the human body, fur-
ther impedes measurement. Finally, in both systems new knowledge is gen-
erated on a continuous basis, but this is particularly characteristic of biology
with -omics high throughput technology and new instrumentation offering
new spatio-temporal resolutions of study. As a result, we additionally con-
sider the following domain-specific challenges:

• Simulation-based Internal Models – engineering
• A rapidly developing yet incomplete knowledge base – biology

2.3 What can the CoSMoS approach do to help?

CoSMoS provides a framework for developing complex systems models
that makes systematic the identification of key elements that are required
in such a model: the domain that establishes the system of study; the do-
main model that defines the purpose and scope of the simulation; the plat-
form model that frames that domain model in an engineered design; a sim-
ulation model that encodes the platform in software and hardware; and a
results model that enables interpretation of model output by domain ex-
perts. By making explicit the essential characteristics of each element and
their interplay the task of defining a complex system becomes not only man-
ageable but also illuminating. The explication of aspects of the system that
might otherwise be implicit serves to challenge any assumptions surround-
ing those aspects and gives confidence when interpreting results from mod-
els based on those assumptions. The separation out of the different elements
allows both a stepwise approach to model construction and reduces the like-
lihood of building the (assumed) answer into the model, a particular con-
cern if a simulation platform is built directly from the domain with a view
to obtaining specific (types of) results.

In order to illustrate the value of CoSMoS generally, we first consider the
value of CoSMoS in the content of three domain-independent challenges

30 2 What’s in it for me?

that impact the domains of both systems engineering and systems biology.
To show how CoSMoS can likewise support the nuances found in distinct
problem domains, we then consider one characteristic domain-specific chal-
lenge in each of systems engineering and systems biology.

2.3.1 Domain-independent challenges

The reality gap

No simulation tool models a system with perfect fidelity. Like mathemat-
ical models simulators model an abstraction of the system; a simulator is a
computational model of a system with limited fidelity. In robotics this loss
of fidelity is known as the reality gap. We describe the reality gap here in
the context of robotics and then biology, but it applies to all domains and is
therefore a domain-independent challenge.

In the domain of robotics the use of simulation tools to prototype and test
robot control algorithms is widespread and generally accepted as a valid
way of speeding up the development process. Commercial robot simula-
tion tools, such as Webots [159], semi-commercial simulators such as V-REP
[192], or open source simulators such as Player-Stage [84], model both the
robot(s) and their operational environment, and typically claim that code
developed in the simulator can be transferred directly to real robots. All of
these robot simulators have a pre-defined library of models for popular re-
search robots, with the facility to add new robots (using, for instance, XML
as a description language). However, there is also a well-known problem
with robotics simulation: robot algorithms or code developed and tested
in the simulator rarely works as expected when transferred to the real ro-
bot. The problem is especially acute when the simulator is used to artifi-
cially evolve the robot(s) controllers – because genetic algorithms tend to
exploit simulation artefacts – but exists equally when robot controllers are
hand-coded. This problem has become known as the reality gap: the gap
between the simulated robot and its world, and the real robot in the real
world [125]. But, although the problem is well-known, the presentation of
new algorithms or results in robotics research, in which all development has
been undertaken entirely in simulation and where there is little or no accom-
panying analysis of exactly how the results might be compromised by the
reality gap, persists. When challenged, there is often a poor understanding
of precisely where and how the results might have been affected by the sim-
ulation: for example, what are the effects of the ‘idealised’ models of robot

2.3 What can the CoSMoS approach do to help? 31

sensors; or the effects of the particular approaches taken to model physical
interactions by the ‘physics engine’ in the simulator; or why the lack of sim-
ulated environmental ‘noise’ might itself be a problem; or the effect of the
simulator’s discrete time steps.

The CoSMoS approach can help to address the problem of the reality gap,
and the interpretation of what the reality gap means in robotics simulation,
in several ways:

1. By drawing attention to the simulator and its role in the developmental
process, and hence raising awareness of the need to understand the lim-
itations of the simulator and what those limitations mean to the specific
engineering task in hand, rather than simply taking it for granted that
the simulator provides an appropriate model of the system and its envir-
onment. This will improve the analysis and hence the quality of claims
made for robotics algorithms developed and tested entirely in simula-
tion.

2. By allowing us to approach the measurement and calibration of a ro-
botics simulation tool in a principled way, thus allowing us to analyse
quantitatively, as well as qualitatively, the effects of the reality gap.

3. By then, again in a principled way, enhancing the simulated model.
Thus, if the analysis of point (2) shows that the way a particular robot
sensor is modelled has a significant impact on the overall quality of sim-
ulation, whereas the effect of all other abstractions is marginal, then by
replacing the model of that sensor with a higher fidelity model (perhaps
calibrated from measurements on real-world sensors), we can signific-
antly reduce the reality gap for the engineering task in hand. The same
would be equally true for targeted enhancements to the environment
model within the simulator. Here we are not only understanding, but
reducing, the reality gap in a principled way.

4. By iterating on point (3), so that the robotics simulation, and the models
within it, are co-developed alongside the robotics systems the simulator
is being used to develop. This represents the full application of the CoS-
MoS approach, with significant benefits to the quality of the claims that
can be made for the algorithms developed in simulation, and to the real-
world robotics systems ultimately developed.

In biology the reality gap is likewise present. Systems biology seeks to
understand the relationship between measurable processes – often at the
component scale – and observable patterns – typically at the system scale.
To gain a thorough understanding of these processes often requires a level
of control over system input that is not possible in realistic contexts and so a
simplified system is studied. In many cases the elements within a complex

32 2 What’s in it for me?

system exhibit context-dependent behaviour and so results may not trans-
late from the simplified system back to the real system. In CoSMoS terms,
this desire to understand key processes can lead to a disconnect between
the Domain and Domain Model and the difficulties of Results Model interpret-
ation this disconnect then attracts. Here, we illustrate the reality gap with
reference to cancer systems biology, although this challenge is certainly not
limited to this system.

In cancer systems biology the overarching goal is to design effective anti-
cancer therapy by studying the impact of candidate anti-cancer drugs on cell
function and fate, thereby elucidating the processes by which drugs act on
cells. Early stage exploration of drug compound action on cells is carried out
using an experimental system comprising a monolayer of cells [121]. These
2D systems benefit from relatively high throughput, established experi-
mental protocols and well-developed approaches to measurement of drug
action over time. In spite of these benefits, there is very limited success in
translating findings from these systems into clinical practice [77]. Part of the
reason for this lack of translation is the complexity of the human cell. In ad-
dition to a cell’s internal complexity (and see the next domain-independent
challenge of emergent behaviour) a cell’s behaviour is context specific. There
is a growing body of evidence to show that cells behave differently in mono-
layer than in 3D structures such as the human body [188]. This is in part
because of differences in nutrient availability and oxygen levels [136]: in 2D
systems cells are uniformly exposed to nutrients and oxygen; in 3D systems
there exist spatial gradients and in the case of tumours where cell packing
is often denser than normal tissue these gradients can be acute. Likewise,
drug application in monolayers approaches uniform treatment of cells; in
3D systems there are again spatial gradients [136]. Finally, the physical pres-
sures introduced by spatial packing, which are largely absent in monolayer
systems, introduce the phenomenon of mechano-transduction in cells – the
triggering of internal mechanisms based on external forces that can drive
tumour progression in vivo [36].

In response to these differences, new experimental systems have been de-
vised, with the spheroid – an aggregate of cancer cells – emerging as a key
model system. These 3D systems provide some of the properties of in vivo
tissue: spatial architectures of cells; nutrient and oxygen gradients, mech-
anical stresses, etc. but are less standard in their protocols and more chal-
lenging to analyse [136]. Efforts have begun to characterise the differences
between monolayer cell cultures and spheroids by carrying out experiments
on those 2D and 3D systems using comparable conditions. Results show
marked differences in behaviour exhibited by some cell types in 2D com-
pared with 3D in response to some therapeutic insults (see for example [121,

2.3 What can the CoSMoS approach do to help? 33

188]), both in terms of key internal proteins and cell lifecycle dynamics. Ad-
ditionally, there are a range of 3D systems available such as those based on
bioreactor or bioprinting technologies, and each have their advantages and
disadvantages with reference to the in vivo system they seek to inform: for
example bioprinted allow high levels of control over physical architecture
but seeding the systems with cells in a controlled pattern is challenging (see
[191] for a review). Likewise, and following on from more than a decade of
computational modelling of cells using data derived from monolayer exper-
iments, computational modelling has begun to model 3D systems that are
able to take account of the spatio-temporal development of tumours and re-
sponse to treatment (see [130] for a review). Thus the field of cancer systems
biology must on the one hand build on decades of drug-monolayer system
research and on the other hand incorporate new findings from these new
and emerging 3D systems.

The CoSMoS approach can help to address the challenge of the reality
gap in systems biology as follows:

1. By guiding the development of new computational models of 3D sys-
tems that are designed to help understand tumour response to treatment
by setting out the explicitly the relation between the Domain, 3D in vivo,
the Domain Model, 3D in vitro, and the Platform Model, 3D in silico. There
is a range of different in vitro 3D systems, each differently representing
key aspects of in vivo systems to greater or lesser degrees. This range
is also rapidly advancing in realism and sophistication. By establishing
the relation between the Domainand Domain Model, CoSMoS provides
a rigorous yet accessible way of capturing the inherent strengths and
weaknesses, in other words what in vivo features are preserved and to
what degree in vitro. Moreover, the explicit mapping of Domain Model to
Platform Model, and then to the Simulation Platform, allows a clear link-
age between the in vivo system and the in silico model, which then helps
stakeholders interpret and ultimately accept model results as useful (see
the subsection Acceptance of model results below).

2. By informing the integration of 3D systems data into new models,
through the explication of Domain Model and Platform Model. Compu-
tational models of 2D cell systems concern themselves with time but not
typically space. For example genomic and proteomic dynamics are av-
eraged in space and measured over time at the whole system scale. 3D
in vitro systems generate more complex, spatially structured data, and
approaches for model integration are less well developed than for their
2D counterparts. 3D system data integration depends on statistical as-
sumptions; CoSMoS is ideally placed to capture those assumptions at
the interface between Domain Model, which can encapsulate the spatio-

34 2 What’s in it for me?

temporal data derived from the system, and Platform Model, which can
detail the statistical representation of that data under given assump-
tions.

3. By enhancing model interpretation through the Results Model and its
corresponding Domain Model. The results from computational models of
3D systems are complex, and large data sets must be distilled down into
the essential system readouts, a small subset of the total data available.
CoSMoS can guide this reduction process by framing the results in the
domain, ensuring that any model fitting – user driven or algorithmic –
is guided by those essential system readouts.

4. By enabling the introduction of multi-stream data, in order to draw on
the wealth of 2D data streams available. First, CoSMoS can make clear
both the source of that 2D data in its Domain and the potential limitations
of its relevance in 3D systems in the Domain Model. Then, it is possible
to use CoSMoS to help bridge the gap between 2D and 3D data streams
through principled inclusion of 2D data under different assumptions
(Platform Model) with support for model fitting as in point (3).

Characterising emergent behaviour

It is of great importance that emergent properties of a real system also mani-
fest themselves in a simulation of that system. In systems engineering emer-
gent properties are of great interest because they are often undesirable, and
point to design or implementation flaws. However, this is not always the
case. In both systems biology and systems engineering we could be model-
ling systems of multiple interacting elements (cells or agents in a distributed
system, for example), in which the desired systems behaviours emerge, per-
haps from self-organisation of those cells or agents. In systems biology, for
example, emergent properties often hold the key to linking processes to pat-
terns.

In either case careful attention to emergent behaviour is needed, for sev-
eral reasons. The first is that emergent behaviours apparent in a simulation
might not in fact be present at all in the real system; instead they can arise
because of so-called simulation artefacts. Such artefacts could be because
of errors in the simulation model, including in physics modelling (which,
if present, is typically provided by a plug-in module in many simulation
tools), or they could be because of the simulated timing of simulated inter-
actions (because simulators generally serialise what are in reality parallel
processes). The second reason for caution in interpreting apparently emer-
gent behaviours in simulated systems is that emergent properties can be

2.3 What can the CoSMoS approach do to help? 35

brittle. A small change in parameters, including noise, can radically change
whether emergent behaviours manifest or not. These factors mean that it is
very difficult to make confident (qualitative and quantitative) claims about
emergent behaviours in real-world systems based on observations of those
behaviours in simulation.

Continuing with the systems biology example above, the characterisa-
tion of emergent behaviour is of paramount importance in anti-cancer drug
design. Contemporary drug design is based on a paradigm of a single drug
for a single target in the cellular signalling network [155], where that drug
seeks to restore (or at least limit) aberrant functioning at that target. A re-
cognised mechanism of drug resistance is feedback loops, pervasive in bio-
logy and often providing positive regulatory effects, that in cancer cells can
allow those cells to adapt to the effect of the drug [211]. These feedback
loops emerge from the interaction of different components within a topo-
logically complex intracellular signalling networks, characterised by sub-
network cross-talk and cross-activation together with built-in redundancy
to preserve functioning in a wide range of circumstances [156]. Combination
therapies seek to overcome those negative emergent behaviours by targeting
multiple points in the network [49]. However, given network sensitivity to
both the order and timing of drugs within a combination regimen, effective
therapy design is very challenging indeed. Computational models can sup-
port rapid and cheap exploration of combination therapy designs, but to be
useful we need to be sure that emergent behaviours are a consequence of
the modelled system and its dynamics and – importantly – are not built into
the model itself. Through its transparent documentation of the translation
from Platform Model to Simulation Platform CoSMoS helps avoid emergent
behaviours arising from simulation artefacts.

Here a good understanding of emergence and its origins together with
careful attention to the reality gap, as outlined above, help to avoid issues
with both simulation and interpretation of emergent behaviours.

Acceptance of model results

Modern simulation tools are powerful but also dangerous. Dangerous be-
cause it is too easy to assume that they are telling us the truth. Especially
beguiling is the renderer, which provides an animated visualisation of the
simulated world and the agents in it. Often the renderer provides all kinds
of sophisticated effects borrowed from video games, like shadows, lighting
and reflections, which all serve to strengthen the illusion that what we are
seeing is accurate. It is important to understand that the sophistication of the

36 2 What’s in it for me?

scene renderer is not an indicator of the fidelity of the simulated world and
the agents in it. Results should only be accepted on the basis of a sound un-
derstanding of the Domain Model and its limitations, the Platform Model and
its limitations, and the Results Model – all supported by sound arguments. A
key part of CoSMoS is argumentation: the fitness-for-purpose of the models
can be presented as an argument. This argument presents both the under-
pinning evidence for a model and also its limitations and uncertainties. In
doing so, CoSMoS provides a framework to structure those arguments into
the various concerns as per the CoSMoS approach.

Where models are used to inform real-world decision making, this argu-
mentation is of particular importance. In healthcare for example, systems
biology models are typically used to direct pre-clinical experimental effort,
and in doing so seek to save experimenter time, expensive consumables and
even reduce animal experimentation. As data increases in volume, resolu-
tion and realism models grow more sophisticated, and there is increasing
interest in models for personalised medicine [113].

For example, Patel et al. [172] construct a systems biology model of tox-
icology of a drug used to treat depression (citalopram). They construct a
mechanistic model coupled to an in vitro system and calibrate the model to
individual patients. They validate personalised model predictions against
individual patient case histories, and show good agreement. They highlight
the importance of explicitly describing the model assumptions and limita-
tions to “build confidence in the model”.

More broadly, Karolak et al. [130] likewise recognise the potential value
of computational models for personalised medicine, and provide a useful
summary of work in the area of oncology. However, in medicine in partic-
ular such models can be met with resistance, since, even when sophistic-
ated, they grossly oversimplify a highly complex system and seek to make
quantitative a knowledge base that is often framed in qualitative terms [218].
We believe CoSMoS has a useful role in promoting useful model develop-
ment in this challenging arena where confidence in model behaviour is para-
mount.

2.3.2 Domain-specific challenges

Engineering domain: simulation-based internal models

In recent years simulation has emerged as an embedded component within
a new class of cognitive robotic systems, thus raising new possibilities and

2.3 What can the CoSMoS approach do to help? 37

challenges. An embedded simulator provides a robot with a mechanism for
generating and testing what-if hypotheses:

1. What if I carry out action x?
2. Of several possible next actions xi, which should I choose?

This leads to the idea of a simulation-based internal model as a con-
sequence engine – a mechanism for estimating and hence anticipating the
consequences of actions [227].

Recent work has proposed and experimentally tested simulation-based
internal models to provide robots with simple ethical behaviours [217, 226],
improve robot safety [31] and to enable robots to infer the goals of an-
other robot – so called rational imitation [216]. In swarm robotics the same
approach has been used to explore exogenous fault detection [160] and
O’Dowd et al. [168] demonstrate a simulator running within an embedded
genetic algorithm to artificially evolve swarm behaviours.

In all of this work a simulator for both the robot and its environment, in-
cluding other dynamic actors (other robots, in some cases acting as proxy
humans), is embedded within the robot; it thus has a simulation of itself in-
side itself (an internal model). Typically that simulation runs in real time.
Periodically, perhaps once every second, the simulation is initialised with
the current state of the robot (position and pose, etc) and the world includ-
ing other robots, then run – for a given number of simulated seconds into
the future (typically 10 s) – for each of the robot’s several next possible ac-
tions. For each of those runs the consequences of that action (to both the
robot and other dynamic actors) are evaluated; then, based for example on
a safety or ethical rule, the robot’s next real action is chosen. For the embed-
ded simulator some of these works [31, 226] make use of a modified version
of Stage [84], while the rest employ a purpose-built simulator; all are relat-
ively low fidelity1 simulators with light-weight 2D models for kinetics and
the physics of collisions.

In that work simulation is not used as a scientific instrument, but in-
stead as an embedded component within an engineered system (although
the purpose of these systems is to experimentally test research questions in
robotics science). The use of simulation as an embedded component within
engineered system does raise several new challenges. First is the question of
how we find the right compromise between simulation fidelity and compu-
tational budget in a real time system. The second is about timing. When, and
how often, does the robot need to initiate the process of internally simulat-
ing its next possible actions? And how far into the future should we simulate
(and could we adapt that time according to the demands of the situation)?
The third question is about validation and verification. This is especially

38 2 What’s in it for me?

problematic when we consider that an advantage of the simulation-based
internal modelling approach is that, in principle, it can cope with unknown
situations and environments, since the robot initialises the consequence en-
gine with the situation in which it finds itself. For a deeper analysis of these
questions, see [227].

Simulation-based internal models are at present the subject of research,
but should they find real-world application these questions, especially that
of validation and verification, will need to be addressed. Embodied Simula-

tion (241) captures some of these issues. We are confident that the CoSMoS
approach will be of benefit to that verification and validation process, and
so support adoption of robots able to anticipate the consequences of their
actions.

Systems biology domain: a rapidly developing yet incomplete
knowledge base

Knowledge in systems biology is both provisional and incomplete. As with
any scientific endeavour, new experiments are designed to investigate (bio-
logical) mechanisms in novel ways to produce new data that characterises
the system of study. These new data then require incorporation into any
model of that system. Biology faces an additional opportunity with respect
to measurement, and challenge with respect to modelling of large omics.
Large omics data can be derived from multiple organisational levels of a
system, such as genomic, transcriptomic and proteomic. These omics data
should provide the key to a deep understanding of biological mechanisms,
and ultimately personalised medicine, yet the systematic integration of om-
ics data into computational models is challenging [8].

Beyond the scale of the data, the most difficult task ahead is to understand
the connections within and among these data streams. At its most abstract
level, this task becomes one of linking genotype to phenotype. This linking
requires consideration of multiple omic streams from the genome through
the epigenome, transcriptome, proteome and metabolome in order to un-
derstand the phenome [189]. These data streams are connected biologically,
but those connections are not identified by the data streams alone. They
must be inferred from a mix of systematic perturbation experiments (for
example, Casado et al. [44] explore the link between gene mutations and
cancer-inducing aberrations in proteins influencing cell survival and pro-
liferation) and, importantly here, assumptions of interconnections among
levels.

2.4 Summary and future perspectives 39

Even within a single level of study, system knowledge, and indeed sys-
tem representation, is incomplete. Models focus on specific signalling path-
ways linked to specific function. However, any given component of that
pathway might itself be influenced, directly or indirectly, by another level of
organisation and by other pathways outwith the Domain of the system con-
sidered [141]. Moreover, any given experimental design cannot practically
populate all components in the network, and so wider literature is drawn on
for some measurements; model fitting is used to characterise those system
components not measured directly or derived from literature. Accordingly,
modelling must be carried out with incomplete knowledge.

Cvijovic et al. [55] provide a useful review of the challenges presented by
gaps in knowledge and recommend, among other developments, the inclu-
sion of stochastic descriptions of uncertainty in input data, constraints on
parameter values informed by incorporating previous work, and processes
for model reduction, for example through sensitivity analysis. These inclu-
sions can introduce marked changes in model formulation and performance
and should be carefully documented for transparency.

To support this, CoSMoS offers argumentation (as above) in general, and
goal structured notation (GSN) in particular. GSN offers a scheme to explic-
ate assumptions for all aspects of CoSMoS from Domain through to Results

Model, including simplifications and omissions, in a rigorous manner. This
scheme formalises the link between assumptions and the knowledge base,
promoting transparency in both those parts of the model that are suppor-
ted by evidence, and those that are hypothesis-based. Both evidence- and
hypothesis-based assumptions are, of course, entirely acceptable in model-
ling, but it is crucial to distinguish one from another. As the knowledge base
evolves, GSN may also provide a way of systematically introducing, and
recording the introduction of, new knowledge into the model. In turn, GSN
also supports identification of the ramifications of new knowledge on model
functioning through this explication.

2.4 Summary and future perspectives

Closing the loop

Systems modelling is most powerful when there is a virtuous circle of real-
world experiments driving computational model development, and the ana-
lysis of the results of that model in turn informs experimental design to gen-
erate new data . . . to then influence model development and so on [137].

40 2 What’s in it for me?

Effective implementation of this virtuous circle is difficult, however. At its
simplest, this loop can mean results from new experiments can mean new
knowledge to be added into a model to improve predictions. Beyond this,
however, new results might lead to model reformulation because of new
knowledge about how components interrelate, changes to the scope of the
system under study, or even fundamental changes to the way in which a sys-
tem is considered, provoking entirely new question sets. Thus, closing the
loop might require systems model development in many different ways.

CoSMoS unpacks the modelling process into distinct aspects that sup-
port such development. New knowledge can be represented in the Do-

main Model. Model reformulation is then explicitly propagated to the Plat-

form Model and Simulation Platform where necessary. New questions and
changes in scope can be propagated through the CoSMoS approach from
Domainthrough to Results Model. In this way, CoSMoS offers a set of stages
and considerations through which to manage effectively and transparently
the virtuous circle of coupled experimental and theoretical systems.

Open Science

Open Science is the emerging practice of making some or all of a science pro-
ject available for anyone to witness as the project progresses, typically mak-
ing use of project web pages as a window into the project. There is, as yet, no
widely accepted standard approach for open science. Open science encom-
passes a spectrum of activities, some of which are already widely practised
such as deposition of papers in publicly accessible repositories; publication
in open access journals; inclusion of datasets with published papers, or the
maintenance of project websites. But the fullest expression of open science
makes “everything - data, scientific opinions, questions, ideas, folk know-
ledge, workflows and everything else available as it happens” [162, p.32]. In
what is referred to as Open Notebook Science “researchers post their labor-
atory notebooks on the Internet for public scrutiny [. . .] in as close to real
time as possible” [200, p.S21].

In recent work we have argued that open science represents a new way
of building and sustaining trust in science; that open science represents a
new Trust Technology [93]. Given that CoSMoS addresses the issue of how
we can trust simulation in science and engineering and argues, in §1.3, that
we must go beyond open-source code and openly argue the fitness for pur-
pose of a simulation in modelling a particular problem and domain. Open
science, and especially open notebook science, provides a framework that
complements the CoSMoS approach. Indeed the CoSMoS approach lends

2.4 Summary and future perspectives 41

itself to open science, since the argumentation, which supports the models,
provides a narrative that should be published alongside those models, as
the project proceeds. Opening the argumentation for criticism, debate and
refinement can only help to build confidence and trust in the fitness for pur-
pose of the CoSMoS models and the insights they provide.

Beyond Systems Engineering and Systems Biology

In this Chapter we have set out a consideration of the value of CoSMoS in
systems engineering and systems biology. Complex systems modelling has
value in other domains spanning the natural and social sciences, includ-
ing environmental management, individual and societal behaviour, finan-
cial systems, and beyond.

Researchers in the natural sciences and engineering disciplines will find
many overlaps with our accounts of complex systems modelling challenges.
In the social sciences there is growing interest in the use of complexity sci-
ence to understand emergent phenomena and stimulate new thinking on
existing problems. For example, van Wietmarschen et al. [224] consider the
opportunities that complex systems models of healthcare that moves bey-
ond biological to integrate psychological and societal aspects are “essential
for aligning and reconnecting the many institutions and disciplines involved
in the health care sector”. Spaiser et al. [199] provide an account of complex
systems modelling in education, where they explore the social phenomenon
of segregation in secondary schools and using a data-driven approach de-
termine characteristic complex systems patterns such as tipping points.

The increasing interconnection of our socio-economic systems, locally
and globally, means that complex systems models are of growing import-
ance. However, those systems are arguably even more complex than those
considered in these chapters, meaning that the reality gap will be more pro-
found, emergence more difficult to first interpret and then harness, and gaps
in knowledge will be particularly prominent – models must rely on assump-
tions and constraints. We believe that CoSMoS has a prominent role to play
in developing systems models to address some of society’s most trouble-
some problem spaces.

Chapter 3

The CoSMoS approach in miniature

Abstract — In which we give an overview of the entire CoSMoS approach
in miniature, by use of a small example development, tailored to illustrate
the core CoSMoS components.

3.1 Introduction – a running example

In this chapter, we illustrate the CoSMoS approach with a running example.
The example develops a simulator to support exploration of a particular
theory of prostate cell division and differentiation [150], devised as part of a
study of prostate cancer neogenesis that is expected to lead to novel thera-
peutic treatment of prostate cancer1.

We present the example through instantiations of the relevant CoSMoS
patterns. We use three distinctive styles to draw attention to the three kinds
of exposition that comprise each instantiated pattern:

Context Pattern Name > This Pattern Name, or contextual step

This Pattern Name (page number of full description)

pattern intent and (optionally) summary, for navigation through
the pattern structure

(optionally) further explanatory commentary, expanding intent
and context of the CoSMoS approach

the content of the instantiated pattern for the running example

43

44 3 The CoSMoS approach in miniature

The order of the boxed instantiated patterns below follows the structure
of the CoSMoS patterns. This presentational order does not necessarily re-
flect the order in which the components were developed and completed: the
development of some of the components proceeded in a different order, in
parallel, and during overlapping phases. Furthermore, this is an incomplete
presentation: some of the more-conventional material has been omitted, for
space, and to help highlight the CoSMoS-specific aspects of the develop-
ment process. Some details have been simplified or changed, for expository
purposes.

The entire process is not needed for every project: CoSMoS can be tailored
to a variety of different needs, see Partial Process (232). In particular, using a
Multi-increment Simulation (242) approach would produce each model in an
incremental manner. See Part IV for a larger example development.

3.2 The CoSMoS Simulation Project

CoSMoS Simulation Project (93)

CoSMoS Simulation Project (93)

Develop a fit for purpose simulation of the complex scientific do-
main of interest.

• carry out the Discovery Phase (95)

• carry out the Development Phase (96)

• carry out the Exploration Phase (97)

• Argue Instrument Fit For Purpose (189)

This top level pattern provides a route to build and use a simula-
tion platform for scientific research, and argue it fit for purpose.
Following the phases provides systematic development that aids
scientific reproducibility, and supports subsequent modification
and interpretation. A single increment comprising each phase
should produce the set of models outlined in §1.7.2, with further
increments modifying and extending these models.

3.3 Discovery phase 45

3.3 Discovery phase

CoSMoS Simulation Project (93) > Discovery Phase (95)

Discovery Phase (95)

Decide what scientific instrument to build. Establish the scientific
basis of the project: identify the domain of interest, model the
domain, and shed light on scientific questions.

• identify the Research Context (121)

• define the Domain (125)

• construct the Domain Model (131)

3.3.1 Identify the research context

Discovery Phase (95) > Research Context (121)

Research Context (121)

Identify the overall scientific context and scope of the simulation-
based research being conducted.

• provide a brief overview of the research context
• document the research goals and project scope
• agree the Simulation Purpose (123), including criticality and

impact
• identify the team members and their experience, and assign

Roles (99)

• Document Assumptions (109) relevant to the research context
• note the available resources, timescales, and other constraints
• determine success criteria
• decide whether to proceed, or walk away

46 3 The CoSMoS approach in miniature

The Research Context identifies the overall scientific context and
scope of the simulation-based research being conducted. It is the
place to collate and track any contextual underpinnings of the
simulation-based research, including the scientific background,
and the technical and human limitations (resources) of the work.

The scientific context can be captured by recording high-level
motivations or goals, research questions, assumptions, hypo-
theses, general definitions, and success criteria (how will you
know the simulation has been successful). It is important to
identify when, why and how these change throughout the course
of developing and using the simulation. The scope of the re-
search determines how the simulation results can be interpreted
and applied.

Documenting assumptions on the research context helps to
capture the general motivation and rationale for engaging in a
collaborative simulation. This is one of the aspects of the re-
search context that may be developed incrementally throughout
the project, as new assumptions are uncovered.

Research Context (121) > overview

The overview provides context, and will be broader than the Sim-

ulation Purpose (123), which fits into this context.

Cancer is a phenotype arising as the result of aberrant interac-
tions between many individual cells. The study of cancer is therefore
the study of cell population dynamics. Mutations in a wide range of
genes (oncogenes) are known to increase the risk of cancer [43]. Al-
though the presence of mutations in oncogenes confers an elevated
risk of cancer, there is a high level of variability in the timing and ex-
act genotype of cancers. This stochastic element makes the analysis of
cancers at the expression level very difficult. Stochasticity and genetic
variability make cell population modelling a very attractive tool for
the study of cancer neogenesis.

Cancer Research UK provide various statistics on prostate cancer
incidence [42], including: in males in the UK, prostate cancer is the
most common cancer; it accounts for 26% of all new cancer cases in

3.3 Discovery phase 47

males in the UK (2015); 1 in 8 men will be diagnosed with prostate
cancer during their lifetime.

Research Context (121) > research goals

We use the !! Future tag to mark aspects that will be important for
future increments in a Multi-increment Simulation (242), but that
are not part of the current increment.

The overall goals of the research are:

1. to create a dynamic, cell-based model of normal prostate epithe-
lium that captures the processes of cell division and differenti-
ation

2. !! Future: to augment this model in order to incorporate pseudo-
genome inheritance

3. !! Future: to calibrate this model using primary prostate sample
data

4. !! Future: to perturb the calibrated model by introducing rare
(stochastic) mutations to individual cell states, in order to invest-
igate the emergence of a cancerous phenotype from a dynamic
population of differentiating cells

Only the first of these goals is addressed in the running example
here. The subsequent goals are to be realised using Multi-increment

Simulation (242). However, these subsequent goals do influence the
design of the initial increment.

This first increment has the form of a feasibility study, to determine
if the research programme is feasible. Specifically, the work should
determine suitable modelling and implementation approaches, de-
termine the computational resources needed for a full scale simula-
tion, and bring the development team up to speed with the Domain

(125).

Research Context (121) > Simulation Purpose (123)

48 3 The CoSMoS approach in miniature

Simulation Purpose (123)

Agree the purpose for which the simulation is being built and
used, within the research context.

• define the role of the simulation
• determine the criticality of the simulation results

Identifying and agreeing the Simulation Purpose is key to shaping
the of the rest of the process. The simulation has a purpose, a role
to play, within the overall research context. Without a defined
purpose, it is impossible to scope the research context, and it is
impossible to arrive at a consensus over fitness for purpose.

The Simulation Purpose may, however, evolve over time, par-
ticularly as knowledge of the domain, and implementation pos-
sibilities and constraints, become clearer as the project progresses.
Any changes to the purpose, and knock-on effects, need to be
documented.

Simulation Purpose (123) > role of simulation

The overall aim of this project is:

1. Develop a model and simulation of prostate cell differentiation
and division, based on prostate cell populations from laboratory
research data. The simulation should replicate observed cell pop-
ulation dynamics, represented as changing proportions of cells in
a “normal” prostate.

2. !! Future: Building on the model of the “normal” prostate, de-
velop simulations that capture known environmental variation
and mutation, in order to explore the emergence of cell propor-
tions indicative of cancer (or other prostate conditions).

3. !! Future: Using these models of normal and cancerous prostate
cell behaviours, develop simulation experiments that can be used
to guide and test laboratory hypotheses of cancer development
and control.

This first increment is an initial feasibility study, to demonstrate
whether the simulation approach is computationally feasible. So the
purpose of this increment is:

3.3 Discovery phase 49

• to develop a model and simulation of prostate cell differentiation
and division, where

1. the Domain Model is agreed suitable by the Domain Scientist

2. the simulation replicates observed cell population dynamics,
represented as changing proportions of cells in a “normal”
prostate

3. the simulation can be run at a sufficient scale to investigate
low probability events (mutations of single cells)

Simulation Purpose (123) > criticality of results

As a feasibility study, the specific simulation results are non-critical,
and so lightweight arguments of fitness for purpose are all that is
needed for these. As the purpose of this phase is to decide whether
to proceed with a full simulation, argumentation related to scaling
properties and resource requirements is more critical.

Subsequent phases will almost certainly be of higher criticality;
the main risk is of publishing results from simulation experiments
without good scientific evidence to support them, resulting in poten-
tial waste of resources by basing experiments on those results. So later
phases should consider any developments in this initial phase as a
Prototype (215), to be used to inform subsequent phases, but not to be
used as the basis of a Multi-increment Simulation (242).

Research Context (121) > Roles (99)

Roles (99)

Assign team members to key roles in the simulation project.

• identify the Domain Scientist (102)

• identify the Domain Modeller (103)

• identify the Simulation Engineer (105)

• identify the Argument Modeller (107)

• identify other optional roles
• identify necessary collaborations between roles

The team comprises the following:

50 3 The CoSMoS approach in miniature

• the Domain Scientist: Norman J. Maitland, a senior academic can-
cer specialist, assisted by his team of laboratory scientists includ-
ing Fiona Frame and other post-doctoral researchers, all expert in
the domain of prostate cancer, but with limited simulation exper-
ience

• the Domain Modeller: Alastair Droop, a senior post-doctoral re-
searcher, with knowledge of the domain, and with some mod-
elling and implementation experience, assisted by Susan Stepney
and Fiona Polack, two modelling experts and academic computer
scientists

• the Simulation Engineer: Philip Garnett, a junior post-doctoral re-
searcher, with expertise in developing biological simulations us-
ing the CoSMoS approach, but no initial knowledge of the specific
domain

• the Argument Modeller: Fiona Polack, an academic computer sci-
entist, with expertise in developing fitness-for-purpose arguments,
but no initial knowledge of the specific domain

A Scribe was nominated at each meeting, to make notes of the dis-
cussions and decisions.

Intense collaboration was needed between the Domain Scientist and
Domain Modeller, to communicate the required knowledge. Multiple
meetings were held of all the team members, discussing the Domain,
and validating the Domain Model; cake was a prominent feature.

Research Context (121) > Document Assumptions (109)

3.3 Discovery phase 51

Document Assumptions (109)

Ensure assumptions are explicit and justified, and their con-
sequences are understood.

• identify that an assumption has been made, and record it in
an appropriate way

• for each assumption, determine its nature and criticality
• for each assumption, document the reason it has been made
• for each reason, document its justification, or flag it as “un-

justified” or “unjustifiable”
• for each assumption, document its connotations and con-

sequences
• for each critical assumption, determine the connotations for

the scope and fitness-for-purpose of the simulation
• for each critical assumption, achieve consensus on the appro-

priateness of the assumption, and reflect this in fitness for
purpose arguments

• revisit the Research Context (121) in light of the assumption,
as appropriate

52 3 The CoSMoS approach in miniature

In documenting assumptions, we are seeking to record assump-
tions that fundamentally affect our understanding or modelling.
It is impossible to document all assumptions, and many assump-
tions turn out to be irrelevant to the fitness of a simulation exer-
cise. In general, however, it is good practice to record any recog-
nised assumptions.

Documented assumptions provide input to the argumentation
phase. They also provide a way of interrogating and checking
modelling and other decisions. Documenting justifications helps
to expose unneeded or unjustified assumptions. Documenting
consequences helps ensure the the Simulation Purpose (123) is still
achievable.

Assumptions are never “complete”. Assumptions may be iden-
tified at any point in a simulation development. Late identifica-
tion of an assumption and its consequences may require you to
Propagate Changes (170) through the various models.

Here the Research Context (121) assumptions are documented,
but the reasons, justifications, and consequences are mostly omit-
ted. See later (Domain assumptions) for a more fully documented
list.

A.1 Simulation will help provide insight.

reason: Human data is limited, with small numbers of samples
from each subject (biopsies are not usually performed regu-
larly or repeatedly).

reason: Animal models, which traditionally provide an experi-
mental surrogate for human conditions, are not considered
particularly helpful in this context.

A.2 Observation of the embryonic development of the prostate pro-
vides good insight into cell dynamics.

A.3 The proposed model of cancer neogenesis can be sufficiently ex-
pressed by a model of the amplification of rare mutation by nat-
ural cell division and differentiation.

A.4 The context is simulation of a human prostate

consequence: results will not be directly applicable to other or-
gans or other species

3.3 Discovery phase 53

Research Context (121) > resources, timescales, and other
constraints

• The Domain Modeller and the Simulation Engineer are each em-
ployed half time on the project, so each have two months effort.
The domain scientist and his team, and the modelling and argu-
mentation experts, can each provide ad hoc input of up to a few
days effort each.

• The work has access to a local small compute cluster, for running
simulations and gathering performance metrics.

• The timescale of the work is four months.
• There are no specific publication format constraints.

Research Context (121) > success criteria

This initial increment is a feasibility study, and the success criteria are
the ability to answer the following questions:

1. can we build a model that is both biologically plausible (provides
a scientifically sound Domain Model) and is simulatable (provides
an implementable Platform Model)?

a. do we have adequate Domain knowledge?
b. do we have adequate modelling approaches?

2. do we have adequate biological (laboratory) data for Calibration

and to initialise the Simulation Platform?
3. can we use the Simulation Platform to run Simulation Experiments

of a sufficiently large number (millions) of cells in a reasonable
time (that run in less than a day)?

The answers to these questions will help determine if later increments
are to go ahead.

Research Context (121) > decide

The decision was made to continue with the CoSMoS Simulation Pro-

ject (93).

54 3 The CoSMoS approach in miniature

3.3.2 Define the domain

Discovery Phase (95) > Domain (125)

Domain (125)

Identify the subject of simulation: the real-world biological sys-
tem, and the relevant information known about it.

• draw an explanatory Cartoon (126) of the domain
• provide an overview description of the domain
• define the Expected Behaviours (129)

• provide a Glossary (130) of relevant domain-specific termino-
logy

• Document Assumptions (109) relevant to the domain
• define the scope and boundary of the domain — what is in-

side and what is outside — from the Research Context (121)

• identify relevant sources: people, literature, data, models, etc

The Domain (125) is the Domain Scientist (102)’s view of the sub-
ject of simulation; for example, a real-world system that is the
subject of scientific research, or an engineered system that is the
subject of engineering research and design. This view might be a
controversial view; it might be a view that the research is trying
to disprove. It is the target for simulation. In contrast to the Re-

search Context (121), which says why the simulation is being built,
the Domain (125) describes what is being simulated.

The Domain (125) pattern provides information about the sci-
entific domain, including references to source material and data,
that the Domain Model (131) draws on.

The Domain is the process of cell division and differentiation in the
prostate.

Domain (125) > Cartoon (126)

Cartoon (126) : Sketch an informal overview picture.

3.3 Discovery phase 55

An explanatory Cartoon helps to show the relevant components.

bladder

urethra

ejaculatory
duct

prostate lumen

stroma

luminal
compartment

basal compartment

basement membrane

stroma

neuroendocrine cell

CBTA

L

SC

duct

bladder

urethra

ejaculatory
duct

prostate lumen

stroma

luminal
compartment

basal compartment

basement membrane

stroma

neuroendocrine cell

CBTA

L

SC

duct

Fig. 3.1 A Cartoon of the modelled prostate cell types, showing the context within
the gland, and identifying the four types of modelled epithelial cells: stem cells
(SC), transit amplifying cells (TA), committed basal cells (CB), and luminal cells
(L).

Domain (125) > overview

Several cell populations are present in the prostate (see Cartoon in
fig 3.1). The majority of prostatic tissue is composed of stromal cells
which consist of connective tissues and blood vessels. The tissue of
interest with respect to prostate cancer is the prostatic epithelium,
which consists of basal, secretory and neuroendocrine cells [52]. The
secretory cell population consists of terminally-differentiated colum-
nar cells. The basal cell compartment contains less-differentiated cells
that are still in contact with the basement membrane.

56 3 The CoSMoS approach in miniature

The presence of small numbers of self-renewing stem cells in most
tissues is now widely accepted. The stem cell population is able to
replace dead cells in the tissue by the processes of division and differ-
entiation. Stem cells are able to undergo two types of division: sym-
metric division in which a single stem cell divides to yield two similar
daughter stem cells; and asymmetric division in which a single stem
cell divides to give rise to a daughter stem cell and a daughter cell of
a more differentiated phenotype.

The role of stem cells in the formation and maintenance of tumours
is not well understood. Viable mutations in a stem cell will be passed
on to its large number of progeny by the normal processes of cell di-
vision and differentiation. The cancer stem cell model [150] suggests
that, if these stem cell mutations confer a malignant phenotype, then
these progeny will form a cancerous population (a tumour). If this
model is correct, then the stem cell population is of utmost import-
ance in cancer treatment; the common therapy of removal of the bulk
tumour mass will not impact the long-term patient survival, whereas
ablation of cancerous stem cells would allow successful treatment.

Domain (125) > Expected Behaviours (129)

Expected Behaviours (129) : Describe the hypothesised beha-
viours and mechanisms.

This description encapsulates a summary of what is observable
in the Domain, what concepts we believe to be involved and how,
and what hypotheses related to these observables we want to
investigate.

The expected observable is the experimentally-determined typical
cell ratios, and the change in time from “normal” to “abnormal” ra-
tios, indicative of a particular prostate condition such as cancer.

!! Future: abnormal cells to be modelled in later increments.
Figure 3.2 shows the system level transitions, and examples of cell

states. All cells may have internal state transitions, but only two are
shown: we know that there are potentially more relevant cell-level
details. Note that Luminal cells are “active” in terms of division and
differentiation when they are not active in terms of their secretory role
in the prostate.

3.3 Discovery phase 57

Three hypotheses related to cell dynamics to explore are:

1. Stem cells divide and differentiate successively to transit amp-
lifying, committed basal and luminal cells; cells can maintain a
steady state (dynamic equilibrium) through the division and dif-
ferentiation plus cell death.

2. The move over time of the system to abnormal cell ratios (indic-
ative of cancer or other prostate abnormalities) arises from small
changes in the transition dynamics as expressed in (1).

3. Small changes in cell dynamics arise from mutable and heritable
states within individual cells, for instance, caused by system level
(intercellular) effects such as crowding, cell level effects (local
mutation), and extracellular effects (due to environmental stim-
uli, where the mutation effect is important to the model, but the
sources of the stimuli are not).

normal prostate abnormal prostate

1:1 (SC+TA+CB):L 1:100 (SC+TA+CB):L

timeobservables

active

quiescent

SC

TA

active

quiescent

LCB

Fig. 3.2 Expected Behaviours figure for the case study. The expected observed
behaviours are shown above the horizontal dashed line. A cartoon of the lower
level behaviours giving rise to these is shown below the line. The four cell types
are: SC, stem cell; TA, transit amplifying cell; CB, committed basal cell; L, luminal
cell. Cells can exist in two states: active cells are able to divide and differentiate;
quiescent cells are productive but can not divide or differentiate. Cells in any state
can die.

Domain (125) > Glossary (130)

Glossary (130) : Provide a common terminology across the simu-
lation project.

The main biological terms used in the various models are:

apoptosis – cell death

58 3 The CoSMoS approach in miniature

committed basal cell (CB) – one of the four modelled cell types
daughter cell – a modelling construct: a cell immediately after divi-

sion, before differentiation
differentiation (diff) – a cell changes type
division (div) – one cell becomes two
epithelial cell – the four modelled cell types: SC, TA, B, and L
luminal cell (L) – one of the four modelled cell types
stem cell (SC) – one of the four modelled cell types
transit amplifying cell (TA) – one of the four modelled cell types

Domain (125) > Document Assumptions (109)

When exploring the Domain, a wide variety of clarifications and
assumptions are made. Domain assumptions are an opportunity
for the Domain Scientist (102) to record their understanding of the
limitations of the simulation activity, and an opportunity to re-
cord the answers when the Domain Modeller (103) and Simulation

Engineer (105) Ask [Silly] Questions (219) while trying to understand
the domain.

A.5 We can classify epithelial cells into four distinct catergories: stem
cells, transit amplifying cells, commited basal cells, and luminal
cells.

reason: In reality there is a continuum of cell differentiation; we
focus on biologically distinct (stem and luminal) or distin-
guishable (committed basal and transit amplifying) cell types.

justification: These four kinds of cells can be biologically distin-
guished due to their activity/secretions; the Domain Scientist

can provide relevant cell counts or ratios for input to the sim-
ulator and for results comparison.

A.6 We consider only epithelial cells to be important in the develop-
ment of prostate cancer.

reason: Considering only epithelial cells will lead to a model that
is simple enough to interpret against directly accessible biolo-
gical research.

justification: The Domain Scientist notes that both blood vessel
formation (via the stroma) and hormonal interactions (via
neuroendocrine cells) are known to be important in prostate

3.3 Discovery phase 59

cancer development; however, the cancer role and mechan-
isms of the stromal and neuroendocrine cells is not well un-
derstood; the stroma and neuroendocrine effects are probably
sufficiently distinct from the epithelial processes to be ignored
(or captured as general environmental inputs).

consequence: The simulation will not be appropriate for study of
any cancer, or other prostatic syndrome in which cell division
and differentiation are implicated, that is influenced by, for
instance, blood supply, or any condition in which stromal or
neuroendocrine cells, as well as epithelial cells are implicated.

A.7 We ignore spatial aspects such as cell positions and cell contact.

reason: For model and implementation simplicity, and lack of
sufficient biological data to model spatial aspects with any fi-
delity.

justification: It fits the research context: although spatial aspects,
such as crowding and proximity, are thought to be important
in, for instance, cell death and cell-to-cell signalling, extend-
ing the simulation to include spatial parameters is a level of
complication that we do not wish to consider here; there are
other ways to study spatial effect, and potentially a different
simulator to be considered, which is beyond our resources in
this study; additionally, the biological data for the prostate cell
rates and ratios is aspatial.

consequence: We need to ensure that there are surrogates for rel-
evant spatial effects (for example through relating cell death
to cell numbers); we need to ensure that environmental influ-
ences include those that might, in reality, have an effect via
spatial aspects.

A.8 We can express the cell division process as simple cell duplication.

reason: To simplify the model.
justification: In reality, a cell genome divides first, then the cell

divides to accommodate each new genome; however, at the
levels of abstraction used here, there is no functionality asso-
ciated with the process of division; we are interested only in
the abstraction to rates or probabilities of division and differ-
entiation, and in mutation that affects cell division and differ-
entiation rates.

60 3 The CoSMoS approach in miniature

consequence: Representing division as a single process means
that we cannot add genome-level influences directly; cell di-
vision in the simulator needs to represent an appropriate ab-
straction of heritable genomic information, and needs to al-
low the possibility of faulty genome copying (mutation).

A.9 We can ignore the genes that control cell behaviour in response to
extra-cellular environmental influences.

reason: The mechanisms of intra-cellular behaviour are better
studied in the laboratory, or at lower levels of abstraction than
we consider here.

justification: All environmental influences of relevance to our
concerns lead to either the acceleration or deceleration of cell
division and differentiation; the full set of environmental in-
fluences and the consequent intra-cellular behaviours are not
known, and are not of relevance to this simulator.

consequence: We cannot use the simulator to explore different
environmental influences, only the consequences of changes
to cell division and differentiation rates.

Domain (125) > scope and boundary

• inter-cell-level modelling
• model cell division and differentiation
• consider only biologically-distinguishable cell states
• do not model blood flow to tissue
• do not model spatial aspects (assumption A.7)

Domain (125) > relevant sources

The main relevant sources are:

• the input of the Domain Scientist and his team of laboratory sci-
entists, who provide

– biological domain knowledge for modelling decisions
– specific experimental data on division and differentiation rates,

and cell number ratios

3.3 Discovery phase 61

• the references given in the Research Context and the Domain over-
view

3.3.3 Construct the domain model

Discovery Phase (95) > Domain Model (131)

Domain Model (131)

Produce an explicit description of the relevant domain concepts.

• draw an explanatory Cartoon (126)

• discuss and choose the domain Modelling Approach (112) and
level of abstraction

• define the Domain Behaviours (137)

• build the Basic Domain Model (133) using the chosen model-
ling approach

• build the Domain Experiment Model (137)

• build the Data Dictionary (134)

• build the domain Stochasticity Model (156)

• Document Assumptions (109) relevant to the domain model

The Domain Model explicitly captures understanding of the Do-

main (125), identifying and describing the components, struc-
tures, behaviours and interactions present in the Domain at a
level of detail and abstraction suitable for addressing any iden-
tified research questions to be posed of the Simulation Platform

(163). It is a model based on the science as presented by the Do-

main Scientist (102), and its design should be free from Simulation

Platform implementation bias; it separates the model of the sci-
ence from the implementation details of the Simulation Platform.

The Domain Model is a tool to exchange and discuss domain
understanding between Domain Modellers and Domain Scientists.
The reviewed and agreed Domain Model forms the agreed sci-
entific basis for the eventual Simulation Platform.

62 3 The CoSMoS approach in miniature

Domain Model (131) > Cartoon (126)

This Cartoon looks more formal than the Domain (125) Cartoon

(figure 3.1). However, it is still a Cartoon: there is no defined lan-
guage, no semantics, no set of defined language concepts, just
arbitrary boxes and arrows to help capture and explore under-
standing.

An explanatory Cartoon shows the relevant processes of prostate
cell division and differentiation:

SC TA CB L

differentiate

revert

Fig. 3.3 A Cartoon capturing which cells differentiate, and which cell differenti-
ations might be reversions to a previous sort of cell: TA cells can revert to SC.

During the discussion which led to drawing of figure 3.3, it was
discovered that there is no agreed definitive understanding of the
process of reversion. One Simulation Experiment (179) that can be done
is to determine whether the agreed set of cell transitions in the model
are capable of capturing normal dynamics.

Fig. 3.4 Possible representations of cell division patterns: after division, each res-
ulting cell is either the same type as the original cell, or is the next type in the
differentiation pathway.

Domain Model (131) > Modelling Approach (112)

Modelling Approach (112) : Choose an appropriate modelling
approach and notation.

3.3 Discovery phase 63

The Domain Model is the first stage in moving from Cartoon (126)

to more formal software engineering models. The Domain Mod-

eller (103), in collaboration with the Domain Scientist (102) and the
rest of the team, identify the Modelling Approach. It is essentially
unimportant what engineering procedures, modelling and im-
plementation languages are used, so long as it is possible:

• to express the Domain Model in a way that is clear to Domain

Scientists and useful to the Domain Modeller and Simulation

Engineer

• to trace how the components (structures, behaviours) of the
Domain Model are captured in the implemented Simulation

Platform (163)

It is also worth taking into account any presumptions about the
kind of simulation that will be created, and the kind of experi-
ments that might be carried out in simulation.

We will use a form of Agent Based Modelling (210), because, in later
increments, we want to be able to model mutation and heritabilty of
individual cells (agents in the simulation), and to be able to track cell
changes through the population.

The Domain Model need not include a notion of space (assump-
tion A.7). However, we note that the prostate is a constrained space,
and some division and differentiation is constrained by crowding;
this will require us to introduce a crowding parameter to the simu-
lation platform (assumption A.10).

We want a notation that clearly captures the processes of cell di-
vision (one agent becoming two agents) and of differentiation (one
agent becoming a different type of agent). The Domain Scientist noted
that Petri nets2 might be suitable; Petri nets are attractive to many sys-
tems biologists, being widely used to model signalling and pathways
in biological systems (see, for example [46, 90, 154, 194]). The Domain

Modeller confirmed that Petri nets provide a clear and natural way to
model division and differentiation, using tokens to model the cells,
and transitions to model the processes of division and differentiation.

While building the Domain Model, we discovered that we also want
a notation that clearly captures the processes occurring in a cell dur-
ing the part of its lifecycle where it is not undergoing the transforma-
tional changes of division and differentiation. Although Petri nets can

64 3 The CoSMoS approach in miniature

be used to model such state transitions, the notation rapidly becomes
unwieldy. We instead model the individual cells as state machines.

Because we are using two separate modelling notations, rather
than creating a custom modification of one language, we have a Hy-

brid Model (213), and so we need to define how these different com-
ponents fit together. At this domain modelling stage, it is sufficient to
do so by defining naming conventions to link the models: the two lay-
ers are connected by the Petri net transition names and corresponding
names that label the state diagram entry and exit points (see [60] for
the full definition).

Domain Model (131) > Domain Behaviours (137)

Domain Behaviours (137) : Describe the observed emergent be-
haviours of the underlying system.

The emergent domain behaviour is the cell number ratios (recor-
ded in the Data Dictionary (134)). These change over time from being
indicative of a normal prostate to being indicative of a relevant pro-
state condition such as cancer (modelled in later increments; summar-
ised in figure 3.2).

In this first increment, the emergent property of interest is the nor-
mal prostate cell number ratios.

Domain Model (131) > Basic Domain Model (133)

Basic Domain Model (133) : Build a detailed model of the basic
domain concepts, components and processes.

Generic model of cell division/differentiation

The various division/differentiations possibilities shown in the car-
toons above (figs 3.4 and 3.3) can be captured in a single Petri net
model, shown in fig 3.5.

3.3 Discovery phase 65

Fig. 3.5 An abstract Petri
net model of cell division
and differentiation. A cell
of type p1 divides into
two daughter cells, each
of which either remains of
type p1, or differentiates to
type p2.

div
p1

d1

d2

diff2

diff1

p2

rem1

div

p1 d
diff

p2

rem2

rem

This abstract model combining several concrete cases was de-
veloped by the Domain Modeller, and then discussed with and
agreed by the Domain Scientist (102) and the team during a re-
view meeting. The abstract ‘daughter cell’ concept is a modelling
concept, not present in the Domain or in any domain model Car-

toon. So it is important to check whether this modelling concept
is acceptable at a Domain level, or whether it should be deferred
to a later modelling stage.

Model of stem cell division/differentiation

See figure 3.6. A stem cell can divide (divSC); its daughters DSC can
each either remain a stem cell (remSC), or differentiate (diffdSC) to a
Transit Amplifying cell TA. A stem cell can also differentiate (diffSC)
directly to a TA cell without division, or can undergo apoptosis (apSC),
and become dead (DeadSC). A TA cell can revert (revTA) to a stem cell.

Fig. 3.6 A Petri net model
of stem cell (SC) division
and differentiation.

divSC

SC

DSC

TA

remSC

apSC

DeadSC

diffSC

revTA

diffdSC

66 3 The CoSMoS approach in miniature

The TA place is shown as a “fusion place”, indicating that it occurs
in another Petri net model.

The models for the division and differentiation for the other cell
types are similar; see [60] for the full model.

Model of stem cell state transitions

See figure 3.7. A stem cell SC has two sub-states: quiescent and active.
It is produced (via reversion, or from a divided daughter cell) in the
active state, and it exits to differentiate or divide from the active state.
It can apoptose from any state. The entry and exit points correspond
to the respective transitions in the Petri net.

Fig. 3.7 A state machine
model of a stem cell SC

quiescent

active
revTA

remSC

divSC

diffSC

apSC

SC

The state machine models for the other cell types are given in [60].

Transition rates

A final consideration is the control of the transitions in both the Petri
nets and the state charts. The Domain Scientist can provide approx-
imate cell ratios in each type, some indicative cell counts, and some
suggestions of proportions of time cells spend in their various states.

We can convert the information on ratios and counts into probab-
ilities, and use random numbers to determine whether a transition is
available. At this stage, we give each cell a mutable, heritable pseudo-
genome, which stores (at least) its transition probabilities. These prob-
abilities could mutate during transition (Petri net transitions), due
to intra-cellular factors (such as the overall-cell-count surrogate for

3.3 Discovery phase 67

crowding), or due to extra-cellular factors introduced when we seek
to simulate cancer neogenesis.

Domain Model (131) > Domain Experiment Model (137)

Domain Experiment Model (137) : Define relevant experiments
in the Domain, as the basis for analogous Simulation Experiments
and results analyses.

The relevant experiments take sections of prostate tissue, investig-
ated under the microscope, and provide counts of the different cell
types.

Domain Model (131) > Data Dictionary (134)

Data Dictionary (134) : Define the modelling data used to build
the simulation, and the experimental data that is produced by
domain experiments and the corresponding Simulation Experi-

ments.

We define the Data Dictionary, the specific data that is used to build
the Domain Model:

• Modelling data (parameter values) : cell differentiation, division, and
death rates; derived from the relevant sources in the Domain

• Experimental data : cell number ratios, #SC : #TA : #CB : #L, in a
normal prostate; derived from the relevant sources in the Domain

The aim of the simulation here is to reproduce the cell number ratios
in a normal prostate, before going on to model the propagation of ab-
normalities. Hence the experimental data comprises only Calibration

(165) data; there is no need for further validation or unseen acceptance
test data.

The specific values of the ratios are omitted here. In the full de-
velopment, they are recorded at this point, and links to the re-
search data provided.

68 3 The CoSMoS approach in miniature

Domain Model (131) > Stochasticity Model (156)

Stochasticity Model (156) : Model any required stochasticities
explicitly.

Stochasticity arises from variations across tissue, and variations
between samples. This is captured by the error bounds, variations and
ranges acceptable on the cell number ratios, in the Data Dictionary.

Domain Model (131) > Document Assumptions (109)

Our prostate cell division and differentiation model abstracts away
from low-level detail (cell signalling, intra-cell mechanisms, biochem-
istry, spatial aspects, physics, etc.) The Domain Model ignores concepts
other than the identified and agreed cell types and transitions. In or-
der to achieve a model that is computationally feasible, other concepts
are simplified (for example, the information contained and transmit-
ted in a cell’s genome).

A.10 We can model the elastic constraint of the size of the prostate, an
environmental “stop growing” signal, as a function of the total
cell number, not the number or ratio of individual epethelial cell
types; we can model this as a global constant that can be transmit-
ted to all cells, as a “pressure surrogate”.

reason: In reality, the elastic constraint of the prostate is related
to organ membrane physics: the complexity of this militates
against its inclusion in the model (which is, in any case, aspa-
tial); however, cancer is a consequence of out-of-control di-
vision, so a model that allows cell types to divide indefin-
itely would be unable to clearly distinguish cancerous from
non-cancerous outcomes; furthermore, we need to be able to
model cell death, and the elastic constraint is one of the re-
cognised promoters of cell death, for example among the (ma-
ture) luminal cells.

justification: The modelling assumption and its consequences
has been discussed and agreed by the Domain Scientist and
Domain Modeller.

3.3 Discovery phase 69

A.11 We can model division as a transition from one cell to two daugh-
ter cells (which then differentiate); this is an acceptable surrogate
for natural division, which results in differentiated cells.

reason: For model simplicity: to allow separation of cell division
and cell differentiation, without proliferating cases.

justification: This approach, suggested by the Domain Modeller,
was discussed with and agreed by the Domain Scientist. Whilst
we cannot systematically identify and count such daughter
cells in biological assays, it is sometimes possible to identify
cells that are in the process of division; it may be useful to
be able to add delays or other factors to the daughter cells
to account for the time taken to divide. Although there is no
direct analogy in the biological system, this is close to how
biologists mentally visualise the process.

consequence: This representation cannot readily capture the cor-
related asymmetric transition probabilities of the two daugh-
ter cells (with one being highly likely to remain a p1 cell, and
the other being highly likely to differentiate to p2); such asym-
metry could be devolved to some internal state, but we do not
have a state machine model for these surrogates.

consequence: Because daughter cells are a modelling concept not
a biological concept, daughter cells do not die.

A.12 We can model individual cell types with discrete substates.

reason: In the biological system, not all cells of a given type can
divide or differentiate: there is a cell-level behaviour, as well
as a system-level behaviour; the precise controls on division
are not fully understood, but include intra-, inter- and extra-
cellular factors. At the level of abstraction of our model, we
need to be able to control when each cell divides or differ-
entiates, as well as modelling overall rates of transition; for
example, a stem cell is considered to be active or quiescent
(figure 3.7); it can die from either state, but it can only be con-
sidered for transition if it is in the active state.

justification: Discussed with and agreed between the Domain Sci-

entist and Domain Modeller; the modellers rely on the domain
scientists to identify which cell states (if any) are relevant.
Separating the state diagram of cells from the Petri net model
of the system maintains clarity, and allows the potential to in-
fluence division and differentiation at the individual cell level

70 3 The CoSMoS approach in miniature

(that is, mutations that arise due to environmental damage to
single cells).

3.4 Development phase

CoSMoS Simulation Project (93) > Development Phase (96)

Development Phase (96)

Build the scientific instrument: produce a simulation platform to
perform repeated simulation, based on the output of the Discov-

ery Phase (95).

• revisit the Research Context (121)

• develop a Platform Model (151)

• develop a Simulation Platform (163)

The initial Discovery Phase (95) has focused firstly on the area of
interest the Domain Scientist (102), capturing a specific view of
their take on the Domain (125), and identifying hypotheses that
could drive a Simulation Experiment (179). We now have an ac-
cepted Domain Model (131) that captures this view, and forms a
bridge to the software engineering development.

The Development Phase now creates the Simulation Platform

(163), by way of a Platform Model (151), using systematic, trace-
able software engineering processes.

This section outlines some of the key concepts, focusing on
where the CoSMoS approach might be unexpected or unusual.

3.4.1 Revisit the research context

Development Phase (96) > Research Context (121)

3.4 Development phase 71

The Research Context (121) should be revisited at the start of the
Development Phase, to reflect on what has been learned dur-
ing the Discovery Phase (95), and to check whether anything has
changed due to that.

Resources. Due to resource limitations, we decided to implement
only one differentiation stage (SC to TA), and only the Petri net layer,
not the state layer. Further elaboration is left to a later increment. This
means that the Simulation Purpose is reduced: the proportion only of
SC to TA cells will be measured.

Apart from this, the Research Context is unchanged.

3.4.2 Develop a platform model

Development Phase (96) > Platform Model (151)

Platform Model (151)

From the Domain Model (131), develop a platform model suitable
to form the requirements specification for the Simulation Platform

(163).

• choose a Modelling Approach (112) and application architec-
ture for the platform modelling

• develop the platform model from the Domain Model (131). In
particular:

– remove the Domain Behaviours (137)

– develop the Basic Platform Model (152) from the Basic Do-

main Model (133)

– develop the Simulation Experiment Model (154) from the
Domain Experiment Model (137)

• Document Assumptions (109) relevant to the platform model
• if necessary, Propagate Changes (170)

72 3 The CoSMoS approach in miniature

The Platform Model is an engineering development of the Domain

Model, and a step towards Simulation Platform construction. The
model is shaped by engineering design decisions, detailing the
implementation of the structures, behaviours and interactions
identified in the Domain Model in a way that naturally translates
to Simulation Platform technologies. This might dictate that some
concepts in the Domain Model are abstracted or simplified, to al-
low efficient implementation.

Platform Model (151) > Modelling Approach (112)

The Domain Model (131) is a Hybrid Model (213) that uses both Petri
nets and state diagrams. Seamless Development (216) would suggest
that we should continue to use these for the Platform Model. How-
ever, the team was unable to find a reliable Petri net execution model
that could support millions of cell-processes and incorporated state
diagram components.

Here we need to make formal the linkage between the Petri nets
and state diagram. The descriptive linkage described in [60] is now
formalised through the definition of a Domain Specific Language (230)

(DSL), then using a model transformation approach from model-
driven engineering (MDE) to develop the Simulation Platform (163)

implementation. Our approach is non-standard, because we use two
modelling languages that are already well-defined: our DSL custom-
ises existing languages, rather than starting from the beginning with
domain concepts. For details of the underlying metamodelling and
DSL definition, see [174].

This modelling approach produces a textual Platform Model that
forms an intermediate step between the diagrammatic Domain Model

(131) (amenable to review by the Domain Scientist (102)) and the Simu-

lation Platform implementation.

Platform Model (151) > remove Domain Behaviours (137)

3.4 Development phase 73

High-level emergent Domain Behaviours identified in the Domain

Model should be removed from the Platform Model, if the pur-
pose of the research is to investigate the emergence of these be-
haviours from other model components (see figure 1.3). This en-
sures that the Simulation Platform (163) does not Program In the

Answer (172).

The Domain Behaviours are the desired cell number ratios as recor-
ded in the Data Dictionary (134). These do not appear explicitly in the
Platform Model, but are a consequence of transition probabilities.

The design decision is to use arbitrary probabilities to develop
the Simulation Platform, and then to perform Calibration (165), us-
ing systematic variation of probability parameters until biologically-
acceptable cell ratios are obtained.

Platform Model (151) > Basic Platform Model (152)

Basic Platform Model (152)

Build a detailed model of the basic platform concepts, compon-
ents and processes.

• develop the Basic Platform Model (152) from the Basic Domain

Model (133)

• as needed, develop the Stochasticity Model (156)

• as needed, develop the Space Model (157)

• as needed, develop the Time Model (160)

The move from domain model to platform model requires trans-
forming the Petri net Basic Domain Model into a suitable UML Basic

Platform Model.
The change of modelling language requires us to put some ef-

fort into maintaining the Seamless Development approach. We have
to demonstrate the mapping between the Domain Model and the Plat-

form Model, and show that this maintains the properties of the domain
model. We systematically map the Domain Model concepts using a
Domain Specific Language. The detailed mapping approach is docu-
mented in [60].

74 3 The CoSMoS approach in miniature

Stochasticity Model (156) : The design of the cell and transition prob-
ability mechanisms is kept simple. We use a simple data structure
(a list or array) that records each transition probability for that
cell, and links to the transition probabilities associated with the
place where the cell token is located.

Space Model (157) : The model is aspatial (assumption A.7).
Time Model (160) : The model of time is give by Petri net firing prob-

abilities, as defined in the Stochasticity Model.

[detailed model omitted]

Platform Model (151) > Simulation Experiment Model (154)

Simulation Experiment Model (154)

Define relevant experiments in the simulation, analogous to do-
main experiments.

• build a model to support running Simulation Experiment (179)s
that are analogues of domain experiments

• design a simulation experiment initialisation approach
• design experiment instrumentation and logging

The Platform Model also adds instrumentation and interfaces to
allow observation (visualisation), user interaction, and recording
of the eventual results, for using the simulation platform to run
a Simulation Experiment.

Model: The domain experiments measure cell counts in sections of
prostate tissue: the analogue is to measure simulated cell count
ratios after the simulation has run.

Initialisation: The simulation starts with a population of cells in
“normal” prostate ratios; this ratio should be maintained over
time by the various transition rates.

Instrumentation: Cell number ratios to be extracted from the simu-
lation. The simple solution here is to record the number of cells in
each place at appropriate time points in the simulation.

!! Future: In later increments we will need consider cells in trans-
ition. One choice would be to complete transitions before the counts

3.4 Development phase 75

are made, to avoid “losing” the cells in transition, but this will need
discussion with the Domain Scientist: it may be useful to count cells
in transition as well. This decision will need making, documenting
(Document Assumptions), and including in the Research Context of the
relevant increment.

Platform Model (151) > Document Assumptions (109)

[omitted here]

Platform Model (151) > Propagate Changes (170)

Propagate Changes (170) : Ensure that changes in one part of the
system propagate throughout, to ensure consistency.

The need for changes may be discovered when developing the
Platform Model (151). This is the point where the focus of the mod-
elling changes from domain to computational considerations.
These considerations may expose areas that are over-ambitious,
ill-defined, or otherwise inadequate, and that need to be changed.
The change should be propagated through the Domain Model

(131) as well as being incorporated in the Platform Model. This
allows assumptions to be revisited, a check that the Simulation

Purpose (123) is still achievable, and for the models to be made
compatible.

There are no changes to propagate in this case.

3.4.3 Develop a simulation platform

Development Phase (96) > Simulation Platform (163)

76 3 The CoSMoS approach in miniature

Simulation Platform (163)

Develop the executable simulation platform that can be used to
run the Simulation Experiment (179).

• choose an Implementation Approach (161) for the platform mod-
elling, following the principle of Seamless Development (216)

as much as possible
• coding
• testing
• perform Calibration (165)

• Document Assumptions (109) relevant to the simulation plat-
form

• if necessary, Propagate Changes (170)

The Simulation Platform is an engineering development of the
Platform Model (151). It encodes the Platform Model in software
(and as appropriate, hardware) platforms on which Simulation

Experiment (179)s can be performed.
The Simulation Platform defines a set of parameters (variables)

that allow the encoded model to be manipulated. The parameters
are derived from the Domain Model (131) and interpreted through
the platform model, thus making the simulation platform access-
ible to domain scientists with knowledge of the domain model.

The software (and hardware) engineering development is non-
trivial, both because of the inherent complexity of the simulated
processes, and because of the need to be able to Argue Instrument

Fit For Purpose (189). It is appropriate to put some thought into
the choice of software engineering methods and techniques, as
well as the target languages and program architecture.

Simulation Platform (163) > Implementation Approach (161)

3.4 Development phase 77

Implementation Approach (161)

Choose an appropriate implementation approach and language.

• determine coding language and approach
• determine which existing libraries and generic simulation

frameworks might be used
• determine testing strategy

The approach used to develop the Simulation Platform needs to
lead to an application that is traceable back to the Domain Model

(131), is flexible enough to allow a range of related Simulation Ex-

periment (179)s and hypotheses to be addressed, and for which it
is possible to to Argue Instrument Fit For Purpose (189). The ap-
proach must also be feasible within the resources of the project
as laid out in the Research Context (121).

Based on the team’s existing expertise, and the principle of Seam-

less Development, we chose to use the Java object-oriented program-
ming language. In engineering terms, this choice has the advantage
of being able to use debugging and documentation support inherent
in programming environments such as Eclipse. In personnel terms,
we had good experience with OO development.

We do not use any specific Agent Based Modelling libraries or frame-
works. (In retrospect, a framework like Java Mason might have sim-
plified development.)

[testing strategy omitted here]
!! Future: In later increments we aim to minimise the hand-coding

activity, and maximise generation of code direct from Platform Model

diagrams, or via intermediate model-driven engineering transforma-
tions.

Simulation Platform (163) > coding

The Simulation platform was coded in Java from the UML description
of the Platform Model (151), using best software engineering practices.

[code omitted here]

78 3 The CoSMoS approach in miniature

Simulation Platform (163) > testing

Testing was done according to best software engineering practices.
[test cases and results omitted here]

Simulation Platform (163) > Calibration (165)

Calibration (165) : Tune the Simulation Platform so that simulation
results match the calibration data provided in the Data Dictionary

(134).

Domain (125) data values map to settings or parameter values in
the simulator, through two translations, from Domain Model (131)

to Platform Model (151), and then from Platform Model to Simu-

lation Platform values. Some of these mappings are straightfor-
ward; others involve more complicated surrogating.

Additionally, there are some values needed in the Simulation

Platform that are not known from the Domain, and have to be es-
timated. Calibration tunes the Simulation Platform values. In order
to Argue Instrument Fit For Purpose (189), the tuned values need to
be mapped back to the Domain, and shown to have plausible val-
ues there, or shown not to be crucial through Sensitivity Analysis

(177).

We know approximate rates of transition between states, and ap-
proximate time taken to divide and differentiate. We have data on the
ratio of numbers of dead cells to live cells. We can get some approx-
imate data on the ratio of cells that are dividing relative to those that
are in a particular “place”.

We cannot get any information on the “sort” of dead cell (dead
stem cell, dead luminal cell, etc.). We cannot get data that separates
a “daughter cell” from its transitions, because the daughter cell is an
modelling concept introduced to simplify and clarify the model of
division and differentiation.

We calibrate the simulator’s rates to achieve the observed ratios of
cell numbers in the calibration data.

3.5 Exploration phase 79

Simulation Platform (163) > Document Assumptions (109)

[omitted here]

Simulation Platform (163) > Propagate Changes (170)

No changes to propagate.

3.5 Exploration phase

CoSMoS Simulation Project (93) > Exploration Phase (97)

Exploration Phase (97)

Use the simulation platform resulting from the Development Phase

(96) to explore the scientific questions established during the Dis-

covery Phase (95).

• initially, revisit the Research Context (121)

• develop an experimental Results Model (176)

• finally, revisit the Simulation Purpose (123)

The Exploration Phase pattern expansion is left incomplete below.
This allows us to illustrate how incompleteness can be handled
in CoSMoS Simulation Project documentation, and how it mani-
fests in the argumentation stage.

3.5.1 Revisit the research context

Exploration Phase (97) > Research Context (121)

The Research Context (121) for this phase is unchanged.

80 3 The CoSMoS approach in miniature

3.5.2 Develop a results model

Exploration Phase (97) > Results Model (176)

Results Model (176)

Build an explicit description of the use of, and observations from,
the Simulation Platform (163).

• perform Sensitivity Analysis (177)

• perform relevant Simulation Experiment (179)s
• build a Simulation Behaviours (181) model

The Results Model captures understanding of the Simulation Plat-

form based on the output of simulation runs, and provides the
basis for interpretation of what the simulation results show. Its
relationship to the Simulation Platform is analogous to the rela-
tionship of the Domain Model (131) to the Domain (125).

The Results Model is constructed by experimentation and ob-
servation of Simulation Experiments, and might record observa-
tions, screen-shots, dynamic sequences, raw output data, result
statistics, as well as qualitative or subjective observations. Sens-

itivity Analysis also provides input data to this process.
The contents of the Results Model are compared to the Domain

Model to establish whether the Simulation Platform (163) provides
a suitable representation of the real-world Domain (125) being in-
vestigated. The results model might also provide details to de-
velop new experiments, either on the Simulation Platform or in
the real-world Domain.

Results Model (176) > Sensitivity Analysis (177)

Sensitivity Analysis (177) : Determine how sensitively the sim-
ulation output values depend on the input and modelling para-
meter values.

[omitted]

3.5 Exploration phase 81

Results Model (176) > Simulation Experiment (179)

Simulation Experiment (179)

Design, run, and analyse simulation experiments.

• design the experiment
• perform simulation runs and gather data
• analyse results, for input to the Simulation Behaviours (181)

model
• Document Assumptions (109) relevant to the simulation exper-

iment

Results Model (176) > Simulation Behaviours (181)

Simulation Behaviours (181)

Develop a model of the emergent properties of a Simulation Ex-

periment (179), for comparison with the related emergent Domain

Behaviours (137) of the Domain Model (131).

• build a minimal model, from consideration of the Research

Context (121), the Simulation Experiment Model (154), the Do-

main Behaviours (137), and the Calibration (165) translation of
the raw simulation data

• if needed, build an augmented model including micro-level
observations, and argue the connection to the domain model
data

• if needed, build a Visualisation Model (183)

The Simulation Behaviours model is the analogue of the Domain

Behaviours (137) emergent properties model.
In this example, most of the work is done in Calibration, to

ensure the cell ratios are correctly maintained by the transition
probabilities. The minimal model is simply these ratios, plus the
computational resource requirements. For a more realistic min-
imal model, see the larger case study in Part IV.

• minimal model : cell ratios
• augmented model : not required here

82 3 The CoSMoS approach in miniature

• Visualisation Model (183) : not required here

3.5.3 Revisiting the simulation purpose

Exploration Phase (97) > Simulation Purpose (123)

The overall aim of the project is to: develop a model and simulation of
prostate cell differentiation and division, based on prostate cell pop-
ulations from laboratory research data.

This has been achieved: we have a Domain Model agreed by the
Domain Scientist, which we have developed into a Platform Model and
a fit-for-purpose Simulation Platform. By running Simulation Experi-

ments, we have built an appropriate Simulation Behaviours model.
We have a fit-for-purpose simulator that is documented. The next

increment can start from this point, rather than from scratch. We can
modify and extend these models and simulator to answer more im-
portant questions.

3.6 Argue Instrument Fit for Purpose

CoSMoS Simulation Project (93) > Argue Instrument Fit For

Purpose (189)

3.6 Argue Instrument Fit for Purpose 83

Argue Instrument Fit For Purpose (189)

Provide an argument that the CoSMoS Simulation Project (93) sim-
ulation is fit for purpose.

• Establish the fitness-for-purpose claim, from the intended
purpose of the simulation, as recorded in the Research Con-

text (121).
• Establish the required rigour of the argument, as recorded in

the Simulation Purpose (123).
• Agree a strategy for substantiating the fitness-for-purpose

claim.
• Use a Structured Argument (191) to substantiate the fitness-for-

purpose claim.

The final part of the development (presentationally, if not pro-
cedurally) is the argumentation.

To establish fitness for purpose, it is necessary to create an ar-
gument that an appropriate instrument has been designed, with
respect to its purpose. There should be an argument that justifies
the trust in the Simulation Platform, its use to run Simulation Ex-

periments, and the results it delivers. Fitness for purpose can be
presented as an argument that the simulation meets its scientific
and engineering objectives. The argument is open to scrutiny by
whoever needs convincing.

Where the Simulation Purpose relates to support for laborat-
ory research, the argument should also consider the adequacy of
results of simulation, and their comparison to results of similar
laboratory experiments.

Argue Instrument Fit For Purpose (189) > claim

The Research Context’s Simulation Purpose for this increment is to de-
velop a model and simulation of prostate cell differentiation and di-
vision, where

1. the Domain Model is agreed suitable by the Domain Scientist

2. the simulation replicates observed cell population dynamics, rep-
resented as changing proportions of cells in a “normal” prostate

84 3 The CoSMoS approach in miniature

3. the simulation can be run at a sufficient large scale to investigate
low probability events (mutations of single cells)

The claim is that the developed simulation is fit for this purpose.

Argue Instrument Fit For Purpose (189) > rigour

The Simulation Purpose states: “As a feasibility study, the specific sim-
ulation results are non-critical, and so lightweight arguments of fit-
ness for purpose are all that is needed for these. As the purpose of
this phase is to decide whether to proceed with a full simulation, ar-
gumentation related to scaling properties and resource requirements
is more critical.”

Argue Instrument Fit For Purpose (189) > strategy

The strategy for establishing this claim is to Use Generic Argument, by
suitably instantiating the example generic template given in Create

Generic Argument, and arguing the relevant subclaims using a Struc-

tured Argument.

Argue Instrument Fit For Purpose (189) > Structured Argument

(191)

Structured Argument (191) : Structure and develop the required
arguments in a systematic manner.

Here we show the top level of the argument, in tree form, adap-
ted from [173].

This tree form is used to show a summary of the structure of
the argument, and act as an index into the detailed body of the
argument, cross referenced by the various identifiers (below).

Claims annotated with a black diamond _ are presented sep-
arately elsewhere (below); claims annotated with a white dia-
mond ^ are not further developed; claims annotated with a
have accompanying separately textual commentary (below).

[claim 1] the prostate simulation is fit for purpose

3.6 Argue Instrument Fit for Purpose 85

[context 1.1] Simulation Purpose documents role and criticality
[context 1.1] CoSMoS Simulation Project documents the models and
simulator
[strategy 1.2] argue over: (i) the scientific domain; (ii) the implement-
ation; (iii) the experiments; (iv) the interpretation of the results

[justification 1.2.1] the team agree that this strategy is sufficient for
the stated purpose
[claim 1.2.2] scientific domain: the Domain Model adequately cap-
tures the Domain for the simulation purpose

[strategy 1.2.2.1] argue over the model content and assumptions
[context 1.2.2.1.1] the documented assumptions
[justification 1.2.2.1.2] sign-off from the relevant stakeholders
[claim 1.2.2.1.3–N] ^

[claim 1.2.3] implementation: the implementation adequately cap-
tures the Domain Model for the simulation purpose

[strategy 1.2.3.1] argue over (i) the derivation of the Platform

Model from the Domain Model, and (ii) software engineering,
testing, and calibration of the Simulation Platform

[claim 1.2.3.1.1] derivation: the Platform Model is adequately
derived from the Domain Model _

[claim 1.2.3.1.2] software engineering: the Simulation Platform

is adequately engineered _
[claim 1.2.4] experiments: the Simulation Experiment is adequately
performed ^

[strategy 1.2.4.1] argue over use within calibration, random seeds,
results analysis, and comparison with domain results

[claim 1.2.5] interpretation of results: the Simulation Behaviours are
adequately related to the Domain Behaviours ^

Claim 1.2.2: the Domain Model adequately captures the Domain for
the Simulation Purpose

An argument that the Domain Model is fit for purpose is based on
the explicit statement of the Simulation Purpose (123).

The Simulation Purpose is to explore the dynamics of cell division
and differentiation in normal prostate and cancer neogenesis, in such
a way that mutation and heritability effects could be demonstrated.

86 3 The CoSMoS approach in miniature

This first increment is an initial feasibility study, to demonstrate
whether the simulation approach is computationally feasible.

Many cancer domain scientists would argue that intentionally ig-
noring major aspects of neogenesis (such as angiogenesis, hormonal
signalling, and cell-cell contacts) will render the model useless. This
shows a lack of understanding of the power of the modelling ap-
proach, which is to allow focussed questioning of a part of the system,
rather than attempting to put in all of the detail. By over-complicating
the simulation, no single part of it would be amenable to analysis, and
the effort would be wasted. Implicit in the creating of intentionally in-
complete models is that there is a lot more going on than is present
in the simulation. This will always be the case, but is not necessar-
ily detrimental, as long as the model is not used outside its design
limitations.

During domain modelling, we have presented a range of com-
ments on the appropriateness of modelling notations, scope and scale
of modelling, and the content of the models. This commentary con-
tributes to the Research Context, and also provides the basis for ar-
guing that the domain model is fit for purpose.

Claim 1.2.3.1.1: the Platform Model is adequately derived from the
Domain Model

As in conventional requirements analysis, the most obvious, and
most difficult to bridge, semantic gap in software engineering
is between the Domain and the abstract model or specification
(Platform Model). By using well-defined software engineering
notations, and principles of model-driven engineering such as
Seamless Development (216), we can significantly reduce the risk
of changing the intention of the simulator during development:
since the Domain Model (131) is argued fit-for-purpose, then the
best practice software engineering processes employed should
ensure that the implementation is also fit for purpose.

Removals: The Domain Behaviours of the cell number ratios are not
included in the Platform Model.

Changes: There was no need to make changes (for example, surrog-
ating) in moving between models.

3.7 Real world simulation 87

Translation: The translation from Petri net to UML is correct. A Do-

main Specific Language is used to automate the Petri net-to-UML
translation. The approach has been published and peer-reviewed
[60].

Claim 1.2.3.1.2: the Simulation Platform is adequately engineered

We use the !! Unfit tag to mark aspects of the argument that in-
dicate a weakness or omission discovered in the development,
indicating the instrument may be Unfit (201) for purpose.

Engineering: The translation from UML to Java has used best soft-
ware engineering practices.

Testing: Adequate testing has been performed.
!! Unfit: The resulting ratios are somewhat sensitive to parameter values
(according to a third party reviewer). Sensitivity Analysis needs to be
performed prior to further simulation effort.

Calibration: Calibration has adjusted the various rates to get the cor-
rect cell number ratios.
!! Unfit: A further argument is needed that the resulting calibrated rates
are biologically realistic.

The argument here has exposed two areas where more develop-
ment work may be needed. This needs to be taken back to the
project team, who could decide that the argument as it stands is
sufficient, or that the extra work is needed before results can be
agreed, or that the extra work can wait until a later increment.

3.7 Real world simulation

The example in this chapter demonstrates the basic CoSMoS process. Part II
gives detail of the different patterns making up this basic process, and
Part III gives further patterns suitable for more specialised, or larger, pro-
jects. Part IV provides a much larger, fully worked through, CoSMoS case
study. On the other hand, CoSMoS concepts can also be used in much smal-
ler projects to help organise the components, for example, [1].

Part II
The Core CoSMoS Pattern Language

A CoSMoS simulation project tends to involve three (not necessarily sequen-
tial) phases, each with different motivations, activities, and focus.

The following chapters provide patterns for the various phases, and form
the “core” CoSMoS approach. Start your project at the CoSMoS Simulation

Project pattern, and follow the guidance, using the other referenced patterns
as your specific context demands. The development and use of a simulation
as a scientific instrument will probably include most of these core patterns.

Ch.4 The top level CoSMoS Simulation Project (93) pattern: phases, roles, and
generic patterns

Ch.5 Discovery Phase (95) patterns: determining the Research Context (121),
scoping, exploration, prototyping, building the Domain Model (131)

Ch.6 Development Phase (96) patterns: building the Platform Model (151), soft-
ware engineering the Simulation Platform (163)

Ch.7 Exploration Phase (97) patterns: using the Simulation Platform (163) as a
scientific instrument to perform Simulation Experiment (179)s

Ch.8 Argumentation patterns: how to Argue Instrument Fit For Purpose (189)

using a Structured Argument (191)

Each chapter is split into sections for different aspects of its topic: the
first section is a catalogue of included patterns, and subsequent sections
present each full pattern using the pattern language and templated defined
in chapte 1.

Chapter 4

The CoSMoS Simulation Pattern

Abstract — In which we describe the structure of the overall CoSMoS sim-
ulation phase patterns.

4.1 Catalogue of top level patterns

Phase patterns

CoSMoS Simulation

Project (93)

Develop a fit for purpose simulation of a
complex scientific or engineering system.

Discovery Phase (95) Decide what scientific instrument to build.
Establish the scientific basis of the project:
identify the domain of interest, model the do-
main, and shed light on scientific questions.

Development Phase (96) Build the scientific instrument: produce a
simulation platform to perform repeated sim-
ulation, based on the output of the Discovery

Phase (95).

Exploration Phase (97) Use the simulation platform resulting from
Development to explore the scientific ques-
tions established during the Discovery Phase

(95).

91

92 4 The CoSMoS Simulation Pattern

Role patterns

Roles (99) Assign team members to key roles in the sim-
ulation project.

Domain Scientist (102) Identify the lead provider of Domain (125)

knowledge.

Domain Modeller (103) Identify the lead developer of the Domain

Model (131) and Results Model (176)

Simulation Engineer (105) Identify the lead developer of the Platform

Model (151) and Simulation Platform (163).

Argument Modeller (107) Identify the lead developer of the fitness-for-
purpose argument.

Generic patterns

Document Assumptions

(109)

Ensure assumptions are explicit and justified,
and their consequences are understood.

Modelling Approach (112) Choose an appropriate modelling approach
and notation.

Version Control (114) Use a version control system to store all ver-
sions of code, models, data, and documenta-
tion.

Antipatterns

Box Ticking (115) You are blindly following the process as a
bureaucratic box-ticking exercise.

Cutting Corners (115) You follow the CoSMoS approach initially,
but you do not revisit, update, or iterate.

Divorced Argumentation

(116)

You do the argumentation as a separate exer-
cise.

4.2 Phase patterns 93

4.2 Phase patterns

CoSMoS Simulation Project

Intent

Develop a (single-increment) fit for purpose simulation of a complex
scientific domain or engineering system

Summary

• carry out the Discovery Phase (95)

• carry out the Development Phase (96)

• carry out the Exploration Phase (97)

• Argue Instrument Fit For Purpose (189)

Context

This is the top level pattern, for doing (one iteration of) a CoSMos pro-
ject.

Discussion

CoSMoS provides a way to bring software engineering best practice
into the development of simulations. In common with conventional
software engineering lifecycles (e.g. Royce’s original Waterfall, Boehm’s
Spiral, Sargent’s simulation development), CoSMoS separates concerns
in modelling.

When concentrating on the Domain (125) (the subject of simulation),
create models that abstract from the domain of study, and do not in-
clude implementation details.

On moving to the Platform Model (151), map from Domain concepts
to software engineering concepts (e.g. in an object-oriented platform
context, map from cells to objects, from types of cells to classes). Here,
add concepts that are irrelevant to modelling the Domain but essential
to the implementation, such as ways to collect, save, and perhaps visu-
alise data.

On proceeding to creation and calibration of the Simulation Plat-

form (163), successively convert more of the Platform Model to a con-
crete implementation model, which contains successively more of the
implementation concepts (foe example, in an object-oriented context,

94 4 The CoSMoS Simulation Pattern

add setter and getter methods on classes; in a concurrent context, add
synchronisation mechanisms; in a process-oriented context, determine
mobile and static processes, channels and protocols).

The guiding principles are: (a) to use only the terms and concepts
that are appropriate to the audience at each stage; (b) to explicitly doc-
ument the concepts that persist from the domain into the implement-
ation, so that it is always clear how a domain concept is implemented
(Seamless Development (216), with traceability).

The three phases provide different emphases: on understanding the
domain, on building the platform, on using the platform. These phases
are not intended to be rigidly sequential: earlier phases may be revis-
ited as more is uncovered in later phases; models may be refactored
and refined; fit-for-purpose arguments help glue the phases together.
Indeed, sometimes Discovery Phase modelling is all that is needed or
possible. For example, you may discover something that you take for-
ward via a different route, or discover that you do not have the re-
sources or knowledge needed to progress.

Related patterns

Domain
Cartoon
Expected Behaviours
Glossary

Domain Model
Cartoon / Modelling Approach
Basic Domain Model
Domain Experiment Model
Domain Behaviours
Data Dictionary
Stochasticity Model

Platform Model
Modelling Approach

Seamless Development
Basic Platform Model
Simulation Experiment Model
Propagate Changes

Results Model
Simulation Experiment
Simulation Behaviours

Sensitivity Analysis
Visualisation Model

Simulation Platform
Implementation Approach

Seamless Development
Calibration

CoSMoS Simulation Project
Discovery Phase
Development Phase
Exploration Phase

Argue Instrument Fit For Purpose
Structured Argument
Argument Structuring Notation

Research Context
Simulation Purpose
Document Assumptions
Roles

Fig. 4.1 The core patterns involved in a CoSMoS Simulation Project

The core patterns involved across the three phases are shown in fig-
ure 4.1.

As the scale or complexity of your simulation project grows, you
may also need to consider one or all of Multi-increment Simulation (242),
Multi-domain Simulation (244), and Multi-scale Simulation (245).

4.2 Phase patterns 95

If you have an Engineered Domain (240), rather than a natural domain,
the CoSMoS approach can still be used, but the results need to be inter-
preted differently.

You can tailor the overall process for your particular project; some
examples are discussed in Partial Process (232) and Post Hoc (234).

Discovery Phase

Intent

Decide what scientific instrument to build. Establish the scientific basis
of the project: identify the domain of interest, model the domain, and
shed light on scientific questions.

Summary

• identify the Research Context (121)

• define the Domain (125)

• construct the Domain Model (131)

Context

The first phase of the top level CoSMoS Simulation Project (93).

Discussion

The driving force behind the Discovery Phase is the need to understand
and scope the research that is going to be conducted on the engineered
Simulation Platform (163). The goals, in relation to scientific research sim-
ulation, are:

• to identify the scientific basis for a CoSMoS project, establishing the
domain of interest

• to understand the domain of interest and capture a model of this
understanding

• to establish a set of questions to ask of the domain model via sim-
ulation

Given these goals, the Discovery Phase results in the identification of
the Domain (125) and the creation and modification of the Domain Model

(131) and Research Context (121).

96 4 The CoSMoS Simulation Pattern

Related patterns

Through interaction with the Domain Scientist (102), a Domain Modeller

(103) gains understanding of part of the Domain (125). In later phases,
this understanding can feeds into Simulation Experiment (179), which
should then be discussed and agreed with the Domain Scientist (102), so
that the Research Context (121) is mutually understood.

Development Phase

Intent

Build the scientific instrument: produce a simulation platform to per-
form repeated simulation, based on the output of the Discovery Phase

(95)

Summary

• revisit the Research Context (121)

• develop a Platform Model (151)

• develop a Simulation Platform (163)

Context

The second phase of the top level CoSMoS Simulation Project (93).
If the phases are being performed in the standard order, there will

be a Domain Model (131), expressed in a well-defined language, that has
been accepted by the Domain Scientist (102) as an acceptable represent-
ation of the part of the Domain (125) to be captured in the Simulation

Platform (163).

Discussion

The purpose of the development phase is to engineer a Simulation Plat-

form (163) upon which to carry out the scientific research identified in
the Discovery Phase (95). The Development Phase encompasses two aims:

• to transform the Domain Model (131) into a Platform Model (151) that
describes how to undertake the simulation-based research identi-
fied in the Discovery Phase (95)

• to develop the Platform Model (151) into a Simulation Platform (163)

of appropriate quality, flexibility and reliability

4.2 Phase patterns 97

Depending on the criticality and impact of the intended use of the sim-
ulation results, the Development Phase may be agile, lightweight, or a
rigorous engineering exercise. In most cases the intended use of simu-
lation results is to explore a scientific question as part of a wider set of
scientific research goals and research activities.

The pattern includes the option to revisit the Research Context (121),
as more discoveries are made during development.

Related patterns

At the end of the development phase, the Simulation Platform (163) ex-
ists, and should be in a form suited to the research objectives identified
in the Discovery Phase (95). The Simulation Engineer (105) should be able
to give suitable undertakings on the quality of the engineering – appro-
priate unit testing and other quality-enhancing activities should have
been undertaken. This separates the engineering aspects of validation
from the scientific aspects of validation, which relate to whether the
simulation has anything meaningful to say about the Domain (125).

Exploration Phase

Intent

Use the Simulation Platform resulting from the Development Phase to
explore the scientific questions established during the Discovery Phase

Summary

• initially, revisit the Research Context (121)

• develop an experimental Results Model (176)

• finally, revisit the Simulation Purpose (123)

Context

The third phase of the top level CoSMoS Simulation Project (93).
If the phases are being performed in the standard order, there will be

a tested Simulation Platform (163), in need of Calibration (165), and suit-
able for use to run a Simulation Experiment (179).

98 4 The CoSMoS Simulation Pattern

Discussion

The exploration phase uses the Simulation Platform to address the sci-
entific research identified during Discovery Phase. This is where the rel-
evance of the simulation results has to be addressed. To do this, and
to complete the research objectives that led to simulation, a number of
specific simulations may be derived from the platform (with or without
the need to change the Platform Model or Research Context).

The Exploration Phase applies both to the generic Simulation Platform,
and to the specific Simulation Experiment. The phase can be summarised
as:

• performing Simulation Experiment (179) on the Simulation Platform

(163) to generate results
• building a Results Model (176) including a Simulation Behaviours (181)

model, by assessing outputs and analysing results: evaluation, sci-
entific validation, etc

There are two sorts of output from the exploration phase: discoveries
about the simulation and discoveries from the simulation. The former
relate to the adequacy of the results; the latter contribute to the Results

Model.
Discoveries about the simulation relate to scientific validation activ-

ities of the Exploration Phase and determine whether the simulation
produces qualitatively similar results to the Domain Behaviours. Even
if the simulation is a good engineering product (the endpoint of the
Development Phase), mismatches have many possible causes:

• The Development Phase produces a Simulation Platform that does
not adequately capture the behaviours or interactions of the agents
and/or the environment. This points to issues relating to realisation
of the Domain Model: the simulation may be sound, but the design
decisions or assumptions are at fault.

• The Domain Model contains misunderstandings or inappropriate
abstractions from the Domain. This focuses on issues relating to
the assumptions and decisions taken in arriving at a mutually-
understood and sufficient Domain Model. The problems could re-
late to the understanding of active components of the system, to
understanding of the environment, and/or to understanding of in-
teractions. Furthermore, there are scale issues: failure to produce
emergent behaviours may result from the wrong (absolute or rel-

4.3 Role patterns 99

ative) numbers or types of agents, the wrong relative sizes of com-
ponents, and many other possible failures or omissions.

• In the Domain, there may be fundamental misunderstandings. In
this case, the Simulation Platform may be doing exactly what it is in-
tended and designed to do, but the science identified by the Domain

Scientist is incorrect.

The interpretation problem is compounded by the likelihood of
more than one sort and instance of these causes. Issues uncovered dur-
ing scientific validation often prompt further increments of the CoS-
MoS process. The process is similar to that of laboratory science: a con-
tinual querying of the evidence and the basis of the evidence, until reas-
onable certainty is achieved.

Discoveries from the simulation are the results. These may be data
or visualisations that can be used to complement scientific research,
or they may be qualitative understandings of what processes might or
might not be involved in certain complex behaviours. The discoveries
must always be considered in the context of the Domain Model, the en-
gineering (development phase products) and the Domain. In particular,
they should be analysed and evaluated in the context of the Simulation

Purpose.

4.3 Role patterns

Roles

Intent

Assign team members to key roles in the simulation project.

Summary

• identify the Domain Scientist (102)

• identify the Domain Modeller (103)

• identify the Simulation Engineer (105)

• identify the Argument Modeller (107)

• identify other optional roles
• identify necessary collaborations between roles

100 4 The CoSMoS Simulation Pattern

Context

A component of the Research Context (121) pattern.

Discussion

The team members need to ask certain questions and perform certain
tasks in order to fulfil the intent of the various patterns. To do this,
they take on specific roles, which act as a prompt for those questions
and tasks. It is important to be able to split the science (that the instru-
ment will investigate) and the engineering (the design, building and
deployment of the instrument).

The key roles of Domain Scientist, Domain Modeller, Simulation En-

gineer, and Argument Modeller are core to every use of the CoSMoS ap-
proach. Roles indicate responsibilities, not people. We are not suggesting
that there is one person per role on the team: one person may undertake
many roles during the project; one role may be undertaken by many
people; the person taking on the lead role may change with context or
over time.

(a)

Domain

Domain

Model

Platform

Model

Results

Model

Simulation

Platform

(b)

Domain

Domain

Model

Platform

Model

Results

Model

Simulation

Platform

(c)

Domain

Domain

Model

Platform

Model

Results

Model

Simulation

Platform

(d)

Domain

Domain

Model

Platform

Model

Results

Model

Simulation

Platform

Fig. 4.2 Where the different key roles’ effort is focussed during the project: (a) Do-

main Scientist; (b) DomainModellerX; (c) Simulation Engineer; (d) Argument Mod-

eller. See specific role patterns for more detail.

Other (sub)roles are useful to designate. The purpose of identifying
the roles is to help clarify what needs to be done, when. Such roles
might include:

4.3 Role patterns 101

Scribe: Knowledge elicitation meetings can be very productive, but
only if the knowledge (facts, opinions, data, sources, assumptions,
and so on) is captured. A designated Scribe ensures this occurs. De-
pending on the criticality and size of the project, the Scribe’s task
might range from capturing whiteboard contents to recording and
transcribing interviews.

Experimenter: The Simulation Platform user performing the Simulation

Experiment in order to explore the Domain (125). For small projects,
this will typically be the same person as the holder of the Domain

Scientist role. For larger projects, particularly if the simulation is
being used as the basis of a larger experimental programme, the
experimenter may be a scientist more remote from the original Do-

main Scientist.
Stakeholder representative: There may be external stakeholders in-

volved in the project, such as policy-makers, safety evaluators, sim-
ulation maintainers, and more.

A CoSMoS Simulation Project involves team members with diverse
backgrounds, areas of competence, and work practices working closely
together. It is crucial that the team members should respect each others’
different competencies and priorities. They should realise that different
disciplines have different constraints (for example, the different time-
scales of wet lab and in silico experimental runs).

Team members should develop trust in the input from other mem-
bers with different expertises. Trust should foster an atmosphere where
naive questions can be asked with confidence, and taken seriously.

In addition to mutual trust between team members, trust needs to
be built in the Simulation Platform, and in the Simulation Experiment res-
ults. The CoSMoS approach helps develop that trust, through the use of
disciplined development, and the fitness-for-purpose argumentation.

Related patterns

Beware the role that leads to Amateur Science (139). Despite trust, avoid
the traps of Uncritical Domain Scientist (145) and Uncritical Domain Mod-

eller (145).

102 4 The CoSMoS Simulation Pattern

Domain Scientist

Intent

Identify the lead provider of Domain (125) knowledge.

Summary

• determine the required expertise for the role, within the Research

Context (121)

• identify the team members responsible for providing domain know-
ledge

• agree the lead member, the problem “owner”

Context

A component of the Roles (99) pattern.

Discussion

The Domain Scientist provides all the information (on process, struc-
tures, inputs, expected results, and so on) necessary to create a fit-for-
purpose simulator. The Domain Scientist is usually the owner of the
Research Context (121) and may be the one who designs the Simulation

Experiments to be run on the resulting Simulation Platform.
Determining the required expertise for the role leads to discussion

of the limitations of Domain understanding and the causes of limited
understanding, exposing further assumptions.

Literature is dense, incomplete, inconsistent, potentially irrelevant,
and error-prone. It is not a sufficient resource on its own for building
a simulation (see Amateur Science (139)). The Domain Scientist provides
the necessary interpretation of the literature, and can indicate what is
pertinent, which route to take in the presence of conflicting results, and
where data is unavailable and what assumptions can be made in this
case.

On anything but the smallest project, there will be multiple sources
of input, and multiple (sub)Domain Scientists. But it is essential to
identify a single individual “problem owner”, to arbitrate on conflict-
ing information.

4.3 Role patterns 103

This role should still be called the Domain Scientist, even in an en-
gineering domain. This emphasises that the role requires a scientific
stance, of hypotheses, experiments, etc, rather than a design stance.

Fig. 4.3 The Domain Sci-

entist role effort is focussed
on the Domain, on provid-
ing information for the
Domain Model, on agree-
ing changes made for the
Platform Model, and on
providing information to
ensure the Results Model

is comparable with real
world experiments.

Domain

Domain

Model

Platform

Model

Results

Model

Simulation

Platform

Related patterns

A Multi-domain Simulation (244) in particular will need several Domain

Scientists providing input on potentially quite divergent domains, to
provide the necessary material.

The Domain Modeller (103) must collaborate with the Domain Scient-
ist, else fall into the trap of Amateur Science (139). Avoid the traps of
Uncritical Domain Scientist (145) and Uncritical Domain Modeller (145).

Domain Modeller

Intent

Identify the lead developer of the Domain Model (131) and Results Model

(176).

Summary

• determine the required expertise for the role, within the Research

Context (121)

• identify the team members responsible for performing domain
modelling

• agree the lead member, the domain model “owner”

104 4 The CoSMoS Simulation Pattern

Context

A component of the Roles (99) pattern.

Discussion

The Domain Modeller converts the Domain (125) information produced
by or via the Domain Scientist (102) in to an appropriate Domain Model

(131) and associated Results Model (176). The key responsibilities of the
Domain Modeller include:

• identifying an appropriate Domain Modelling Approach (112) that
can be taken forward to implementation, in consultation with the
Simulation Engineer

• identifying appropriate levels of abstraction, scope and scale
• taking decisions about the design and representation of pertinent

features of the Domain

• building the Domain Model from Domain information, in consulta-
tion with the Domain Scientist

• being an interface between the Domain Scientist and the Simulation

Engineer, to ensure that the implementation remains consistent with
the agreed Domain Model

Determining the required expertise for the role motivates discussion
of appropriate abstraction and modelling approaches.

Separation of the role of Domain Modeller focuses attention on the
obligations and responsibilities that pertain to the capturing domain
knowledge both in a form understandable to the Domain Scientist, and
in a form suitable for taking forward into simulation by the Simulation

Engineer. The Domain Modeller needs to avoid simplifying the Domain

for future implementation reasons, and must consider the validity of
each design decision that is taken. It is important for the Domain Mod-

eller to understand that every step of the development has the potential
to corrupt or invalidate the simulation as a scientific or engineering in-
strument.

Working with the Simulation Engineer (105) and Domain Scientist, the
Domain Modeller is also responsible for devising the Calibration (165) of
the Simulation Platform (163), by the selection of appropriate data and
scenarios with which to tune the simulation platform, to demonstrate
a reliable base-line simulation.

4.3 Role patterns 105

Fig. 4.4 The Domain Mod-

eller role effort is focussed
on building the Domain

Model, on the changes
made for the Platform

Model, and on building the
Results Model.

Domain

Domain

Model

Platform

Model

Results

Model

Simulation

Platform

Related patterns

The Domain Modeller should collaborate with the Argument Modeller

(107) to initiate the process to Argue Instrument Fit For Purpose (189),
to ensure that the Domain Model is accepted as fit for purpose by the
Domain Modeller and the Domain Scientist.

Simulation Engineer

Intent

Identify the lead developer of the Platform Model (151) and Simulation

Platform (163).

Summary

• determine the required expertise for the role, within the Research

Context (121)

• identify the team members responsible for performing platform
modelling and simulator implementation

• agree the lead member, the platform “owner”

Context

A component of the Roles (99) pattern.

Discussion

The Simulation Engineer is responsible for building the Platform Model

and implementing the Simulation Platform, including the verification of
the code using suitable software engineering approaches. The Simula-

tion Engineer converts the Domain Model (131) produced by the Domain

106 4 The CoSMoS Simulation Pattern

Modeller (103) into an appropriate executable Simulation Platform. The
key responsibilities of the Simulation Engineerinclude:

• identifying an appropriate platform Modelling Approach (112) that
can provide a bridge between the Domain Model and the Simulation

Platform implementation
• making, justifying and recording any simplifications needed to

accommodate computational resource constraints, in consultation
with the Domain Modeller and Domain Scientist

• taking design decisions about the implementation of all relevant
features of the Platform Model and Visualisation Model (183)

• identifying the appropriate implementation media (languages, lib-
raries, coding environments, hardware platform etc.)

• identifying appropriate software engineering verification, for in-
stance, writing test plans and test suites

• performing Calibration of the simulator, by running experiments us-
ing selected data and scenarios, and modifying the Simulation Plat-

form, to demonstrate a reliable base-line simulation, in consultation
with the Domain Modeller

Determining the required expertise for the role motivates discussion
of appropriate implementation and testing approaches.

Separation of the role of Simulation Engineer focuses attention on the
obligations and responsibilities that pertain to the implementation of
the Simulation Platform. The Simulation Engineer needs to create a suit-
ably faithful implementation of the Domain Model, in as seamless a
manner as possible, and needs to understand and record the mappings
from the Domain Model to the Simulation Platform, reviewing the valid-
ity of each implementation decision that is taken. It is important for the
Simulation Engineer to understand that every step of the implementa-
tion has the potential to corrupt or invalidate the simulation as a sci-
entific or engineering instrument.

Fig. 4.5 The Simulation

Engineer role effort is fo-
cussed on the design of
the Platform Model, and
on implementing the calib-
rated Simulation Platform

from it.

Domain

Domain

Model

Platform

Model

Results

Model

Simulation

Platform

4.3 Role patterns 107

Related patterns

The Simulation Engineer should collaborate with the Argument Modeller

(107) to extend application of the pattern Argue Instrument Fit For Pur-

pose (189), to ensure that the Simulation Platform is accepted as fit for
purpose by the Domain Modeller and the Domain Scientist.

Argument Modeller

Intent

Identify the lead developer of the fitness-for-purpose argument.

Summary

• determine the required expertise for the role, within the Research

Context (121)

• identify the team members responsible for developing and docu-
menting the fitness-for-purpose arguments of the various models

• agree the lead member, the argument “owner”

Context

A component of the Roles (99) pattern.

Discussion

The Argument Modeller is responsible for facilitating and capturing con-
sensus among the team members on what is to be modelled, how it is
modelled, and how it is implemented. Typically, all team members are
involved at some point, but it is useful to have a lead person identified,
who is responsible for capturing the fitness-for-purpose argument and
presenting it to the rest of the team for review, revision and extension
as appropriate.

Determining the required expertise for the role motivates discussion
of appropriate argumentation approaches and detail.

The key responsibilities of the Argument Modeller include:

• to Document Assumptions (109) as they arise, and get agreement on
their reasons, justifications, and consequences

108 4 The CoSMoS Simulation Pattern

• to get agreement on how the fitness-for-purpose argument will be
represented (for example, the prostate study uses Structured Argu-

ment (191), represented using Argument Structuring Notation (192))
• to determine the criticality of the simulation, and thus the extent to

which the Claim (194) of fitness for purpose needs to be substanti-
ated: in a simulation deemed highly critical, they would be neces-
sary to also identify the review process to be applied to the claim
of fitness for purpose

• to determine a strategy for arguing fitness-for-purpose (for ex-
ample, in the prostate study we decided to Use Generic Argument

(204), which presents a high-level Strategy (196) that breaks the prob-
lem into three elements: capturing the domain, software engineer-
ing quality, and results analysis)

• to use the strategy to challenge the Domain Scientist, Domain Model-

ler and Simulation Engineer, extracting their understanding of why
any Claim (194) is acceptable

Fig. 4.6 The Argument

Modeller role effort is fo-
cussed on demonstrating
that the four key artefacts
of the project have been de-
signed and implemented
in a manner that is fit for
purpose.

Domain

Domain

Model

Platform

Model

Results

Model

Simulation

Platform

Related patterns

The Argument Modeller should collaborate with the Domain Scientist

(102), Domain Modeller (103), and Simulation Engineer (105), to Argue In-

strument Fit For Purpose (189), to ensure that the Simulation Platform

(163) is accepted as fit for purpose by the Domain Scientist (102).

4.4 Generic patterns

This section documents some generic patterns that are relevant across all
phases.

4.4 Generic patterns 109

Document Assumptions

Intent

Ensure assumptions are explicit and justified, and their consequences
are understood.

Summary

• identify that an assumption has been made, and record it in an ap-
propriate way

• for each assumption, determine its nature and criticality
• for each assumption, document the reason it has been made
• for each reason, document its justification, or flag it as “unjustified”

or “unjustifiable”
• for each assumption, document its connotations and consequences
• for each critical assumption, determine the connotations for the

scope and fitness-for-purpose of the simulation
• for each critical assumption, achieve consensus on the appropri-

ateness of the assumption, and reflect this in fitness for purpose
arguments

• revisit the Research Context (121) in light of the assumption, as ap-
propriate

Context

Any situation in which abstraction or simplification arises; representa-
tions are chosen; modelling, implementation or experimentation is un-
dertaken, including: Research Context (121), Domain (125), Domain Model

(131), Platform Model (151), Simulation Platform (163), Simulation Experi-

ment (179). It is a responsibility of holders of all the relevant Roles (99) to
make explicit the assumptions they may be making; it is the respons-
ibility of the Argument Modeller (107) to ensure these assumptions are
fully documented and agreed upon.

Discussion

A simulation that aims to support scientific research makes many sim-
plifications and abstractions from the Domain, and may be based on
uncertain scientific data. Further design decisions are needed to rep-
resent a continuous complex domain in a discrete digital computation.

110 4 The CoSMoS Simulation Pattern

The assumptions that are made need to be explicit and documented.
Consideration needs to be given to the implications of assumptions.
The assumptions are important in determining the fitness-for-purpose
of the simulation, understanding the scope and capabilities of the simu-
lation, and in interpreting results. So the assumptions need to be stated
explicitly, the reasons given, and justified. Documented assumptions
allow different team members with different assumptions to disagree,
with the points of disagreement documented.

Reasons could include such things as “standard practice in the re-
search domain”, “to enable comparison with other results”, “a con-
sequence of a modelling decision or other assumption”, “for ease of im-
plementation”, “for computational tractability”, “this is the only data
we have”, “this is only the first increment of development, and will be
revisited later”, and so on.

The justification is relative to the Research Context (121) and Simula-

tion Purpose (123) and must be checked if these change. Justifications
could include such things as “this number of agents is representative”,
“the simulation result is insensitive to the precise assumption made”,
“appropriate given the research context”. An assumption may be un-
justified, and may even be unjustifiable. The justification may require a
further argument to establish it, and may include reference to the liter-
ature that back up the justification.

Assumptions have consequences. Is the assumption critical to the
development of a simulator? What are the consequences for the scope
and fitness-for-purpose of the simulation? Does the assumption af-
fect the interpretation of results? What are the importances of the con-
sequences? The consequences may have an impact on the Research Con-

text (121) and Simulation Purpose (123), for example, demonstrating that
the stated purpose cannot be achieved under the assumption. For this
reason, it is important to consider the potential consequences of each
assumption.

Even for low criticality results requiring only lightweight argu-
mentation, it is good practice to Document Assumptions, and to provide
at least the reasons; justifications and consequences should be included
where non-obvious. The Domain Scientist or Domain Modeller may make
a simplifying assumption that is later found to be unnecessary or coun-
terproductive. The Simulation Engineer may make an assumption to
ease implementation issues that is later found to contradict or limit the
use of the simulator for its intended Simulation Purpose. Assumptions
justified at one time may become invalid later, in the light of new Do-

4.4 Generic patterns 111

main knowledge, or new understanding of the Research Context, or if
the Simulation Purpose changes.

We can never hope to capture all the assumptions, or all the con-
sequences of any assumption, but the more we capture, the better our
understanding of the limitations of the simulation and the results that
it produces. Assumptions may be identified as they are made, but are
often identified retrospectively, and are often found when people Ask

[Silly] Questions (219), and during argumentation.
As everywhere in the CoSMoS approach, documenting assumptions

does not happen in one discrete, well-defined place. These patterns ex-
press the desired outcome, not the process by which it was obtained.
Documenting assumptions and examining their consequences should
ideally happen as soon as they are made. Assumptions may neverthe-
less be uncovered late in the project, and may lead to backtracking, and
possibly redefining of the scope. This can be an important and valu-
able part of the scientific endeavour. Conversation between the team
members, and iteration through the process, should help reaching a
usable compromise, and a revised Research Context. In this case, the
documented justification might end up as “fits the research context”:
the assumption is justified as fitting the research context that has been
modified in light of the uncovered assumption. In such a case, it is im-
portant to add a further assumption to the modified Research Context

giving the full justification for the modification, so that the reasoning
does not become lost.

Publication of results based on simulation should include docu-
mented assumptions (for example, in supplementary material). Read-
ers can then understand the limitations of the results and their inter-
pretation, such as what can and cannot be extrapolated. Andrews et
al. [11] consider the role of assumptions in modelling and interpreting
simulation results.

Related patterns

There are assumptions made by the Domain Scientist about their do-
main before modelling even begins; Ask [Silly] Questions (219) to help
tease these out, and beware of being an Uncritical Domain Modeller (145).
Also, domain experiment compromises are different from simulation
compromises; avoid being an Uncritical Domain Scientist (145) in accept-
ing simulation compromises.

112 4 The CoSMoS Simulation Pattern

The Argument Modeller (107) ensures that assumptions are properly
considered in order to Argue Instrument Fit For Purpose (189). Not all
assumptions need go into the argument; by the end of the process, they
have done their job of making the simulation fit-for-purpose.

Modelling Approach

Intent

Choose an appropriate modelling approach and notation.

Summary

• choose an approach that is suitable for analysis and argumentation
• choose and set up a Version Control (114) system

Context

A component of the Domain Model (131) and of the Platform Model (151).

Discussion

The Domain Model is a rigorous descriptive (scientific) model of the
Domain (125) of study. For building a Domain Model, choose an approach
that is:

• understandable by the Domain Scientist (102), Domain Modeller (103),
Simulation Engineer (105), Argument Modeller (107)

• suitable for expressing the Basic Domain Model (133) content and the
Domain Behaviours (137)

• suitable for expressing the Simulation Behaviours (181) part of the
Results Model (176)

The Platform Model (151) is a rigorous prescriptive (engineering) model
of the Simulation Platform (163) implementation. For building a Platform

Model, choose an approach that is:

• understandable by the Domain Modeller, Simulation Engineer, Argu-

ment Modeller

Choose a modelling approach with a well-defined notation, under-
pinned by a conceptual Metamodel (236) or a formal semantics. Choose
a modelling approach capable of traceable mapping between models

4.4 Generic patterns 113

at different levels of abstraction (e.g. specification to design to imple-
mentation), ideally by supporting Seamless Development (216).

Where possible, use the same modelling approach for both models
to support Seamless Development; however, as the models have different
purposes and different audiences, there may not be a single modelling
approach that is suitable for both models. If not, the argumentation
between Domain Model and Platform Model will need more detail. Use
a modelling approach for the Platform Model that supports Seamless

Development to the Simulation Platform; it is better to have the complic-
ation of a change of approach at the higher level of models, than the
lower level of moving from model to implementation.

Standard modelling approaches include Agent Based Modelling (210)

(ABM), cellular automata (some authors class these as ABMs, but they
are much more specialised), reactive systems, differential equation-
based modelling, network-based models, stocks and flows systems
models, Petri nets, and so on.

Modelling notations are the formal languages used to write down
the model. The language used depends on the approach. For example,
ODE models use differential calculus mathematical notations.

Beware making up your own modelling approach: it is unlikely
to have a well-defined semantics, making it essentially impossible to
verify fitness-for-purpose. However, principled use of a well-defined
Domain Specific Language (230) tailored for the Domain can enhance
model comprehension. Webb and White [223] use UML for ABM of
biological cells; Bauer and Odell [25] discuss the use of UML 2.0 for
ABMs. Read et al. [184, 185] provide some guidance and discuss some
limitations of UML for modelling certain aspects of biological systems.

Use your chosen modelling approach in a way that respects its
defined semantics as much as possible. Record (Document Assumptions

(109)) any variation from established semantics (e.g. the use of a class
diagram to model agents not classes), and review its connotations (e.g.
does the changed semantics affect the way that OO classes are imple-
mented?).

Beware using an informal version of a language that does not respect
its semantics.

Beware using an inappropriate notation that cannot express (or can-
not express naturally) the model properties you want.

Beware using executable notations: they will include too much im-
plementation detail, making it much harder to understand, and to ar-
gue fitness-for-purpose.

114 4 The CoSMoS Simulation Pattern

Related patterns

Examples of particular modelling approaches include Agent Based Mod-

elling (210), and Environment Orientation (212).
Use a Hybrid Model (213) if different parts of the domain are naturally

modelled using different approaches.
Use Seamless Development (216) where possible, but do not let it com-

promise building a natural domain model that is readily verifiable.

Version Control

Intent

Use a version control system to store all versions of code, models, data,
and documentation

Context

A component of the Modelling Approach (112) pattern.

Discussion

A CoSMoS Simulation Project generates many artefacts: arguments;
models; code; experiments including parameter values, input data,
random seeds, and results. These artefacts are generated iteratively,
and in parallel. It is important to keep all of them under version control
in a suitable repository, to allow the whole team access to the latest ver-
sion, and to ensure that previous versions can be accessed as required.

In particular, it is important to have access to the set of documenta-
tion, models, data, software, results, and analysis used to produce par-
ticular public artefacts, such as published papers, for transparency and
reproducibility.

Related patterns

Beware Tweaking Code (185) and failing to make an updated version.
Version control is essential in order to Propagate Changes (170) meth-

odically. Document the approach taken in your House Style (231).
A Multi-increment Simulation (242) will need especially careful version

control to separate out the results and understanding gained in each
increment.

4.5 Antipatterns 115

4.5 Antipatterns

Box Ticking

Problem

You are blindly following the CoSMoS approach in name only, as a
bureaucratic box-ticking exercise. You are missing many of the benefits
by not taking things seriously, or are doing too much work, by blindly
following irrelevant patterns.

Context

The team has not bought in to the benefits of the CoSMoS approach,
but the project is required to use it. Or the team is not thinking critically
enough about the process.

Discussion

CoSMoS is a flexible approach, and needs to be tailored for each differ-
ent project. It can be used in a “lightweight” manner for small projects,
or in rigorous detail for larger critical projects. This tailoring requires
buy-in from the team. If trying to use it on a large project, particularly
for the first time, the details may seem burdensome, and so engage-
ment drops, and “box ticking” starts. This can seriously impact the
project, without providing any benefits.

Solution

Try building a smaller increment at first, to help appreciate the ap-
proach and its benefits.

Use the various arguments to decide whether you have enough de-
tail, or whether a particular pattern is necessary at all.

Document the needed detail in your House Style (231). Think critically
about whether a Partial Process (232) is suitable.

Cutting Corners

116 4 The CoSMoS Simulation Pattern

Problem

You follow the CoSMoS approach initially, but you do not revisit, up-
date, or iterate.

Context

The team has used the CoSMoS approach initially, but is no longer us-
ing it.

Discussion

A symptom of Cutting Corners is out of date models, and inconsisten-
cies between Domain Model, Platform Model, and Simulation Platform.
This is a potential pitfall if development is rapid (see also Premature

Implementation (171)), or if the value of the models is not appreciated.

Solution

Assign a Documentation Officer role. Ensure that Version Control (114)

is being used. Document the needed steps in your House Style (231).

Divorced Argumentation

Problem

You do the argumentation as a separate exercise.

Context

The Argument Modeller (107) is divorced from the rest of the project
team, and Argue Instrument Fit For Purpose (189) happens in isolation,
or the role has not been assigned.

Discussion

You can argue fitness retrospectively if given a pre-existing simulation.
In this case, the argument is necessarily built separately.

You can argue fitness incrementally during the development of a sim-
ulation. In this case, the argument should be built hand-in-hand with
the development of the models and with the implementation and use
of the platform. This helps the right level of detail to be modelled, and

4.5 Antipatterns 117

ensures that the necessary evidence is produced. If the argument is
built in parallel, but as a separate exercise, these benefits are missed.

Solution

The Argument Modeller must actively collaborate with the rest of the
team.

Chapter 5

Discovery Phase Patterns: building the
domain model

Abstract In which we describe building an appropriate simulation platform
— with patterns for the research context, the domain, and the domain model

5.1 Catalogue of discovery phase patterns

Context setting patterns

Research Context (121) Identify the overall scientific context and
scope of the simulation-based research being
conducted.

Simulation Purpose (123) Agree the purpose for which the simulation
is being built and used, within the research
context.

Domain (125) Identify the subject of simulation: the real-
world or engineered system and the relevant
information known about it.

Cartoon (126) Sketch an informal overview picture.

Expected Behaviours (129) Describe the hypothesised behaviours and
mechanisms.

Glossary (130) Provide a common terminology across the
simulation project.

119

120 5 Discovery Phase Patterns: building the domain model

Domain modelling patterns

Domain Model (131) Produce an explicit description of the relev-
ant domain concepts.

Basic Domain Model (133) Build a detailed model of the basic domain
concepts, components and processes.

Data Dictionary (134) Define the data used to build the simulation
and run experiments.

Domain Behaviours (137) Describe the observed emergent behaviours
of the underlying system.

Domain Experiment Model

(137)

Define relevant experiments in the domain,
as the basis for analogous simulation exper-
iments and results analyses.

Antipatterns

Amateur Science (139) You do not engage with a domain scientist,
because you think you know the domain sci-
ence well enough, or that the domain literat-
ure is sufficient input

Analysis Paralysis (140) You are spending too much time analys-
ing and modelling the domain, trying to get
everything perfect, and never getting to the
simulation

A Bespoke Too Far (141) You invent a new modelling approach from
scratch for your project

Cartoon as Model (142) Your domain model consists of nothing but
cartoon sketches

Executable Domain Model

(142)

You write your domain model in an execut-
able language, and use it as the simulation
platform

One Size Fits All (144) You have a pre-determined modelling ap-
proach in mind

Uncritical Domain

Scientist (145)

The domain scientist accepts the domain
model or the platform model on trust

Uncritical Domain

Modeller (145)

The domain modeller accepts everything the
domain scientist says on trust

5.2 Context setting patterns 121

5.2 Context setting patterns

Research Context

Intent

Identify the overall scientific context and scope of the simulation-based
research being conducted.

Summary

• provide a brief overview of the research context
• document the research goals and project scope
• agree the Simulation Purpose (123), including criticality and impact
• identify the team members and their experience, and assign Roles

(99)

• Document Assumptions (109) relevant to the research context
• note the available resources, timescales, and other constraints
• determine success criteria
• decide whether to proceed, or walk away

Context

A component of the Discovery Phase (95), Development Phase (96), and
Exploration Phase (97) patterns. Setting (and resetting) the scene for the
whole simulation project.

Discussion

The role of the Research Context is to collate and track any contextual
underpinnings of the simulation-based research, and the technical and
human limitations (resources) of the work.

The Research Context comprises the high-level motivations or goals
for the research use, the research questions to be addressed, hypo-
theses, general definitions, requirements for validation and evaluation,
and success criteria (how will you know the simulation has been suc-
cessful).

Consideration should be given to the intended criticality and impact
of the simulation-based research. If these are judged to be high, then an
exploration of how the work can be validated and evaluated should be
carried out.

122 5 Discovery Phase Patterns: building the domain model

The scope of the research determines how the simulation results can
be interpreted and applied. Importantly, it captures any requirements
for validation and evaluation of simulation outputs. Assumptions may
well constrain the project scope. Later assumptions at specific points
in the project may imply a need to revisit the scope. It should also be
revisited between phases, and potentially rescoped in the light of dis-
covered knowledge.

Determine any constraints or requirements that apply to the project.
These include the resources available (personnel and equipment), and
the timescale for completion of each phase of the project. Any other
constraints, such as necessity to publish results in a particular format
(for example, using the ODD Protocol (223)), should be noted at this
stage (and potentially added to the House Style (231)). This helps ensure
that later design decisions do not violate the project constraints. Ensure
that the research goals are achievable, given the constraints.

Limited resources, including staffing, competencies, data, and times-
cales, will limit the scope of the research. The project must lie within
the team’s Domain expertise, and within its modelling and implement-
ation capabilities. Probing resourcing limits leads to discussion of fac-
tual and technical limitations, and helps to establish what is feasible,
and to scope the simulation project appropriately.

Acknowledging limitations also exposes further assumptions. Prob-
ing of assumptions is intended to motivate discussion of the limitations
of Domain knowledge and understanding, the appropriate Modelling

Approach (112) and Implementation Approach (161), possible approaches
to testing, and the approach to Argue Instrument Fit For Purpose (189).

Good software engineering practice is crucial for anything other
than the simplest of simulations: a fit-for-purpose simulator to be used
as a scientific instrument must be properly engineered. Prior software
engineering expertise is useful, not least in avoiding well-known de-
velopment pitfalls, but it is possible to develop a demonstrably fit-for-
purpose simulation using good programming skills and practices, and
following good practice guidelines such as the CoSMoS approach.

Decide relevant success criteria. What would constitute a success-
ful project? Are you expecting or hoping for failure (that is, to dis-
cover model inadequacies), or expecting confirmation of a hypothes-
ised mechanism? Such confirmation will require good argumentation

Having established a realistic scope for the project, now is the time
to decide whether to proceed, or walk away. The constraints (compet-

5.2 Context setting patterns 123

encies, timescales, etc) may have limited scope so much that it is too
narrow, and the project not worthwhile.

Related patterns

The research context scopes what should go in the models and simula-
tion: it can help avoid Analysis Paralysis (140).

It is important to identify if, when, why and how the Research Con-

text changes throughout the course of developing and using the Simu-

lation Platform (163).

Simulation Purpose

Intent

Agree the purpose for which the simulation is being built and used,
within the research context.

Summary

• define the role of the simulation
• determine the criticality of the simulation results

Context

A component of the Research Context (121).

Discussion

The simulation project has a purpose, a role to play, within the overall
Research Context (121). The purpose of a simulation exercise is the single
most important concept. Without a defined purpose, it is impossible to
scope the Research Context, and it is impossible to arrive at a consensus
over fitness for purpose.

The purpose might be a proof of concept, to explore a mechanism, to
suggest new experiments, to test a hypothesis, to predict an outcome,
to educate, or more [62, 80]. The purpose needs to be made explicit,
as it forms the basis of the fitness for purpose arguments. A simula-
tion might be fit for an exploratory purpose, but not rigorously enough
developed for a predictive purpose; it might be suitable only as a Pro-

totype (215). Alternatively, a simulation built for a predictive purpose

124 5 Discovery Phase Patterns: building the domain model

might be expensively overengineered for a simpler exploratory pur-
pose.

The purpose determines the appropriate levels of abstraction for
modelling, the appropriate implementation languages and platform,
and the appropriate analysis and interpretation of results.

Purpose is closely tied to criticality and impact. If the purpose is to
provide first-class evidence for major research, then the development
approach should exploit state-of-the-art software engineering meth-
ods, validation, and documentation approaches; the simulator and its
fitness-for-purpose must be capable of international expert scrutiny. An
exploration of how the work can be validated and evaluated should be
carried out.

In the more usual case, the purpose is to provide a test-bed for
hunches and a generator of hypotheses, all of which will then be subject
to conventional experimental analysis and confirmation before public-
ation. Here the development and argumentation need to be just good
enough: internal consensus and internal documentation are sufficient.

A key feature of purpose is its role in scoping. A Simulation Platform

(163) that is designed for one purpose may or may not be modifiable
for another purpose. Ideally, we want flexible, extensible platforms,
but this should not be at the expense of quality. For example, our run-
ning example of the prostate cell differentiation and division model
(chapter 3) has the explicit purpose of simulating cancer neogenesis.
Based on the particular Domain Scientist view of cancer neogenesis, we
break this into two purposes, allowing the phasing of the simulator
development: (a) capturing “normal” prostate cell differentiation and
division; (b) expressing biologically-realistic mutability and heritabil-
ity. Note that the purpose is firmly rooted in the Domain, and in the
needs of the Domain Scientist; it is not a computational goal.

Related patterns

It is important to identify if, when, why and how the simulation pur-
pose changes throughout the course of Multi-increment Simulation (242)

project. Revisit the Research Context (121) and Simulation Purpose (123),
and associated models and arguments.

5.2 Context setting patterns 125

Domain

Intent

Identify the subject of simulation: the real-world or engineered system
and the relevant information known about it.

Summary

• draw an explanatory Cartoon (126) of the domain
• provide an overview description of the domain
• define the Expected Behaviours (129)

• provide a Glossary (130) of relevant domain-specific terminology
• Document Assumptions (109) relevant to the domain
• define the scope and boundary of the domain — what is inside and

what is outside — from the Research Context (121)

• identify relevant sources: people, literature, data, models, etc

Context

A component of the Discovery Phase (95). The Research Context (121) sets
the boundaries of the domain: what is within and out of scope.

Discussion

The Domain is the part of the real world of interest, the part that the sim-
ulation project is “about”. Domain knowledge is “owned” by the Do-

main Scientist (102), who provides information and approves the form
and content of the captured knowledge.

The general domain will have been identified by the Research Con-

text (121). This pattern refines that identification, by identifying the re-
quired source of the information that will inform the Domain Model

(131), and relevant underlying assumptions.
No formal modelling takes place at this stage: that is the job of the

Domain Model (131). However, an informal Cartoon (126) and descrip-
tions help set the scene and provide links into the literature, particu-
larly with respect to defining the scope and boundary: what will be
modelled, and what will not.

126 5 Discovery Phase Patterns: building the domain model

Related patterns

For a Multi-increment Simulation (242), the scope and boundary define
the current increment, and will potentially be expanded in later incre-
ments.

If the domain is an Engineered Domain (240), rather than a natural
domain, the CoSMoS approach can still be used, but the results need to
be interpreted differently.

Cartoon

Intent

Sketch an informal overview picture.

Context

A component of the Domain (125) and Domain Model (131).

Discussion

The Cartoon captures the important aspects of the Domain or Domain

Model. It gives an initial view of the relevant components and beha-
viours that need to be captured, in informal, domain-specific terms. It
provides the initial view of the scope and level of detail.

We use the term “cartoon” for any figure that has informal compon-
ents1. This may be due to it simply being a sketch, or because various
arrows and boxes are used in ill-defined or ambiguous ways.

A Cartoon can be an abstract sketch of the spatial properties of the
system, such as the layout of prostate cells (figure 3.1, p.55). It can be a
sketch map of terrain. A Cartoon may be provided by the Domain Sci-

entist (102) to help explain the Domain; it might be drawn by the Domain

Modeller to help express their understanding of the Domain. In either
case, the Domain Scientist should confirm that the Cartoon is useful, and
is a suitable representation of the knowledge being captured.

Checkland uses ‘rich pictures’ as part of Soft Systems Methodology
[47, 48]. A rich picture is a Cartoon that provides a conceptual map
of the objects of interest and the relationships between them Further
examples of using rich pictures during the process of object oriented
systems modelling can be found in [147].

5.2 Context setting patterns 127

Fig. 5.1 A typical biological Cartoon, of the yeast life cycle. It is clear, given ac-
companying explanation, what this means. Parts of this cartoon have superficial
resemblance to a state diagram, parts to a Petri net. But there are ambiguities. For
example, in the “haploid growth” cycle, two arrows leave the “budding n” state:
this is cell division, both arrows are taken. Yet in the main cycle, two arrows leave
the “2n” state: this is a behaviour “choice”, and one or other arrow is taken. Dif-
ferent cartoons may use similar arrows with yet further conventions: every cartoon
has its own specific diagrammatic “semantics”.

A Cartoon may be a sketch of the dynamics of the system, such as
the lifecycle (figure 5.1).

128 5 Discovery Phase Patterns: building the domain model

Fig. 5.2 A biological cartoon, of the citric acid (Krebs, or TCA) cycle, a metabolic
pathway. The notation here is conventional, with different arcs representing the re-
action in the main cycle, and showing the incoming and outgoing components.

A Cartoon may include feedback loops and other causal arrows (fig-
ure 5.2).

Any biology textbook, for example [2], makes heavy use of such Car-

toons. Systems Analysis also makes use of feedback pictures, sketching
the stocks and flows in a system, see for example, [69, 169].

A Cartoon can be thought of as a proto-model, with no (explicit)
Metamodel (236), and no (explicit) semantics or even syntax. A Cartoon

is more analogous to an architect’s conceptual sketch, whereas the Do-

main Model is more analogous to the architectural plans; continuing this
analogy, the Platform Model is analogous to the builders’ plans. Other
places where cartoons or sketches are used as part of a design process
include [40].

Do not spend effort “prettifying” a Cartoon. It should be sketchy
enough to be obviously informal, and for it to be clear that more in-
formation than shown is needed to build the Simulation Platform. It is
for communication between people, so it should be laid out for under-
standing, not just splattered down at random on the page.

5.2 Context setting patterns 129

A spectrum of Cartoons of increasing abstraction and formalism can
help provide a bridge between the Domain and the Domain Model itself.
For example, compare the Domain cartoon of figure 3.1, p.55 with the
associated Domain Model cartoons of figures 3.3 and 3.4, p.62.

Expected Behaviours

Intent

Describe the hypothesised behaviours and mechanisms.

Context

A component of the Domain (125), in the context of the given Research

Context (121).

Discussion

The Expected Behaviours is a description that encapsulates a summary
of what is observable in the Domain, what concepts are probably in-
volved and how, and what hypotheses related to these observables we
want to investigate.

The Expected Behaviours includes documentation of the hypotheses
related to the Domain that are to be investigated and tested by simu-
lation. It captures the system level, or global, emergent properties of
interest in the Domain, and the local mechanisms hypothesised to give
rise to these global properties.

It can take the place of some traditional requirements analysis, cap-
turing what aspects of the domain are to be modelled, and how to link
them back to the domain. See, for example, figure 3.2. So it provides
a focus for determining what should be observable in the simulator’s
Results Model (176), either directly or through a surrogate.

This deceptively simple cartoon can take much effort to construct
by the Domain Scientist (102) and Domain Modeller (103), as they unpick
what is known about the observable Domain, and what is measurable.

Related patterns

The relevant expected behaviours should be observable through meas-
urements captured in the Domain Experiment Model (137).

The hypotheses will be investigated in a Simulation Experiment (179).

130 5 Discovery Phase Patterns: building the domain model

Glossary

Intent

Provide a common terminology across the simulation project.

Summary

• provide a list of key terms and standard abbreviations for use in
the project.

Context

A component of the Domain (125) description.

Discussion

It is important to agree a common vocabulary (and its meaning) for
use in a project. Good names are crucial to communication. Developers
have to invent names in their models and code. Where possible, they
should use ones meaningful to the domain scientists, to aid communic-
ation. A glossary provides the source of such names.

Each name should have a short definition, and may be accompanied
by a standard abbreviation. Note when alternative names are used in
the literature.

Add key terms to the glossary as they become important in the pro-
ject: do not try to build a list of the entire domain vocabulary.

Beware of these names changing from the Domain meaning on the
move from the Domain to the Platform Model. In particular, do not ab-
stract several domain types into a single platform type and give it the
name of one component type: do not abstract the combination X, Y, Z
as X. Also, do not split one domain type into platform subtypes and
give one of the subtypes the name of the main type: do not split X into
X, Y, Z.

Related patterns

If the glossary gets inconsistent, Refactor (235) it, and its use in project
documentation.

5.3 Domain modelling patterns 131

5.3 Domain modelling patterns

Domain Model

Intent

Produce an explicit description of the relevant domain concepts.

Summary

• draw an explanatory Cartoon (126)

• discuss and choose the domain Modelling Approach (112) and level
of abstraction

• define the Domain Behaviours (137)

• build the Basic Domain Model (133) using the chosen modelling ap-
proach

• build the Domain Experiment Model (137)

• build the Data Dictionary (134)

• build the domain Stochasticity Model (156)

• Document Assumptions (109) relevant to the domain model

Context

A component of the Discovery Phase (95), in the context of a given Do-

main (125) and Expected Behaviours (129) description.

Discussion

The Domain Model is an explicit model of the agreed scientific basis for
the development of a Simulation Platform (163)2. It is a descriptive (sci-
entific) model of the Domain, as understood from domain experiments,
observations, and hypotheses of underlying mechanisms.

A model (domain or otherwise) can have several components, each
expressed in some notation: text, Cartoon, formal diagram, mathem-
atics, pseudocode, code. Choose the most appropriate notation(s) for
each component. Criteria include naturalness of the form, level of ab-
straction, required precision, and comprehensibility to intended read-
ership.

The Domain Model is more formal than the description of theDomain,
and potentially of more limited scope, since the Domain may have con-

132 5 Discovery Phase Patterns: building the domain model

textual information not captured here. A new Cartoon can help high-
light this change of formality and scope.

The Domain Model itself has three main component (see figure 1.3,
p.21):

1. a Domain Experiment Model (137), capturing the experimental proto-
cols

2. a Basic Domain Model (133), capturing the low level core compon-
ents, structures, interactions and behaviours of the system

3. a Domain Behaviours (137) model, capturing the high level properties
observed of the system.

These models rest on a common Data Dictionary (134).
The domain model should as far as possible be platform neutral. Do-

main model simplifications and abstractions must make sense in do-
main terms, and not be made purely for implementation reasons. Any
further simplifications and assumptions necessary for implementation
should be made on moving to the Platform Model.

Any domain will have some degree of stochasticity, due to noise,
uncertainties, small samples, or other effects. This should be captured
in a Stochasticity Model (156), enabling the simulation of stochasticity to
be in domain terms.

Collaboration between the Domain Modeller (103), Argument Model-

ler (107), and Domain Scientist (102) is essential when working in cross-
disciplinary science. Building fit-for-purpose models requires expertise
from both the specific domain and the modelling process. This level of
interconnection of skill is greatly helped by face-to-face collaboration
where free discussion to take place. Questioning should be actively en-
couraged, as many implicit assumptions can be identified by asking for
the rationale underlying various statements.

Related patterns

If the domain is an Engineered Domain (240), its domain model is instead
a prescriptive (engineering) model. However, it is still a distinct model
from the Platform Model.

5.3 Domain modelling patterns 133

Basic Domain Model

Intent

Build a detailed model of the basic low level domain concepts, com-
ponents and processes.

Context

A component of the Domain Model (131), in the context of a given Do-

main (125), built by the Domain Modeller (103), using the chosen domain
Modelling Approach (112).

Discussion

The Basic Domain Model should capture the low level components and
processes, using the domain Modelling Approach. These are the concepts
that will be transferred into the Platform Model and Simulation Platform,
albeit with some modifications. These concepts should be captured in
sufficient detail for subsequent simulation, but in Domain terms, such
that the model can be agreed by the Domain Scientist.

For example, in the running example in chapter 3, the Basic Domain

Model comprises the Petri net and state machine models of the vari-
ous cell division and differentiation processes. The four main cell types
were supplied by the Domain Scientist. An auxiliary type, the ‘daugh-
ter cell’, was introduced by the Domain Modeller to simplify and clarify
the model. This simplification was discussed in detail with the Domain

Scientist, to ensure that it was acceptable to them.
For example, in the CellBranch case study in part IV, the Basic Do-

main Model is presented as two models, of increasing abstraction. The
‘Transcription Factor Branching Process’ description is already an ab-
straction away from the actual processes occurring in transcription, de-
veloped by the Domain Scientist: testing the adequacy of this abstrac-
tion is the major part of the Research Context. This model is further
abstracted to the ‘sparking posts’ model, by the Domain Modeller, for
use as the basis for further development. Again, this final model was
discussed in detail with the Domain Scientist, and their approval of the
abstract gained. The model is formalised in a UML class diagram and
state diagram.

134 5 Discovery Phase Patterns: building the domain model

Related patterns

The Domain Experiment Model (137) captures concepts of the experi-
mental setup, and the Domain Behaviours (137) model captures high
level, or emergent properties, so these concepts should not be included
in the Basic Domain Model. Parameters and variables are captured in
the accompanying Data Dictionary (134).

Data Dictionary

Intent

Define the modelling data used to build the simulation, and the exper-
imental data that is produced by domain experiments and correspond-
ing simulation experiments.

Summary

• define and capture the modelling data used to build the simulation
• define and capture the experimental data that provides the com-

parison between the Domain Model (131) and the Results Model (176)

• determine whether there is sufficient domain experimental data
to provide Calibration (165), validation, and unseen acceptance test
data sets

Context

A component of the Domain Model (131), Platform Model (151), and Res-

ults Model (176).
The Data Dictionary links the various data sources and results in the

Domain Experiment Model (137), the Simulation Experiment Model (154),
and the Simulation Experiment (179).

There is observational data that is present in the Domain Model. It
needs to have instrumentation provided for in the Platform Model and
the Simulation Platform, to extract the analogous data from the simula-
tion. This model is also used to capture the simulation outputs as part
of the Results Model.

5.3 Domain modelling patterns 135

Discussion

The Domain includes identification of the data sources that populate
the Data Dictionary. There are two kinds of data considered:

1. modelling data (parameter values): used to parameterise the various
models, by providing numbers, sizes, timescales, rates, and other
system-specific values; this usually comes from the raw data from
previous experiments, analysed and reduced using previous mod-
els and theories

2. experimental data: comprising the input values and output results
of the domain experiments and corresponding simulation experi-
ments; this is broken into three parts:

a. Calibration (165) data, for tuning the platform parameter values
b. validation data, to allow the calibrated Simulation Platform plat-

form to be validated against the Domain Model3.
c. further unseen data, for comparing with Simulation Experiments

In some systems there may be insufficient experimental data to per-
form calibration and validation. If so, an argument should be used to
demonstrate why this is not considered to be a problem.

If the simulation has high criticality (determined from the Research

Context (121)), it would be reasonable to require a further set of truly un-
seen validation data, to form the basis for an “acceptance test”, before
the system is used in any critical capacity.

Domain Model parameter and data values might be directly used
in the Platform Model and Simulation Platform. For example, environ-
mental parameters such as rainfall rates in an ecological simulation, or
robot sensor data in an engineering simulation, might carry over un-
changed. However, Domain Model parameter and data values are not
necessarily identical to their Platform Model counterparts. For example,
a single value represented in the Simulation Platform might be a proxy
for a collection of values in the Domain. So there needs to be a well-
defined translation that maps these values between models, captured
by the “informs” arrow in figure 5.3. Similarly, the data output from
a Simulation Experiment, captured and analysed in the Results Model,
needs to be translated into Domain Model terms, to allow comparison.
The form of these translations is guided by the translation of domain
model concepts to platform model concepts, and the precise structure
is determined by Calibration.

136 5 Discovery Phase Patterns: building the domain model

Results Model

Domain Model Platform Model

compare /

validate /

predict

inform /

translate

(Calibration)

platform model

parameters

domain model

parameters

domain expt

input data

domain raw

output data

translated

raw output

simulation expt

input data

domain

experiment /

observation

simulation

experiment

domain

results

domain

data analysis

simulation raw

output data

translate

(Calibration)

simulation

results

simulation

data analysis

Fig. 5.3 The components of the data dictionary in the Domain Model, and how they
relate to components in the Platform Model and the Results Model. The specific
translations are established during Calibration.

It is possible to extract much more information from a Simulation

Experiment than from a domain experiment, but if it is not observable
(even indirectly, through surrogates, or by investigating predictions) in
the Domain, it is of little use.

The necessity for suitable data in the Results Model implies require-
ments on the Platform Model: it must be of a form that can produce the
required data, and must be suitably instrumented to output the data.

This careful separation of modelling data (used to build the model)
and experimental data (to be produced by the domain experiment or
analogous Simulation Experiment) is important, in order not to Program

In the Answer (172).

5.3 Domain modelling patterns 137

Related patterns

A Visualisation Model (183) can be used for presenting Simulation Experi-

ment output data to the user in Domain terms.

Domain Behaviours

Intent

Describe the observed emergent behaviours of the underlying system.

Context

A component of the Domain Model (131), in the context of a given Do-

main (125), built by the Domain Modeller (103).

Discussion

The Domain Behaviours is the model the emergent system level, or
global, properties and behaviours of the Domain. It formalises the emer-
gent behaviours captured in the Expected Behaviours (129) model. It
provides the link between the Domain Model and how the simulation
Results Model should to relate to it.

Related patterns

The model has a simulated analogue in the Results Model (176). The rel-
evant domain behaviours should be observable through measurements
captured in the Domain Experiment Model (137), and their analogues in
the Simulation Experiment (179) model.

Domain Experiment Model

Intent

Define relevant experiments in the Domain, as the basis for analogous
Simulation Experiments and results analyses.

138 5 Discovery Phase Patterns: building the domain model

Context

A component of the Domain Model (131), in the context of a given Do-

main (125), built by the Domain Modeller (103).

Discussion

The Domain Experiment Model captures how the concepts, structures
and behaviours in the Domain Model are controlled and manipulated,
such as in wet lab experiments or measurements in the field.

It details what data is collected from the experiments and how that
data is then manipulated and interpreted, for example, using statist-
ical methods, to produce the experimental results. This provides the
link to the Results Model (176), which provides analogous measurements
and manipulations, to allow the domain and simulation outputs to be
meaningfully compared.

An example of where the structure of domain experiments is mirror-
ed in a simulator is Aevol, an in silico experimental artificial evolution
platform [24], which encapsulates an in silico laboratory to test evolu-
tionary scenarios mimicking those used in real bacterial evolutionary
studies4.

The assessment of Simulation Experiment results in terms of system-
level emergent domain properties can pose a challenge to the corres-
ponding Simulation Experiments. The simulated domain typically cap-
tures only a subset of the experimental domain system, of which no
corresponding observation can be made. For example, the domain ob-
servation might be on a six point scale from “no symptoms” to “death”
of an experimental organism, whereas the simulation might be at the
tissue level, complicating both Calibration (165) and eventual compar-
ison between simulation and domain experiments5.

Related patterns

The specific details of the experimental data and parameters are cap-
tured in the Data Dictionary (134). Relevant details of the Domain Exper-

iment Model are carried over to the Simulation Experiment (179) model.
The data and analyses have simulated analogues in the Results Model

(176).

5.4 Antipatterns 139

5.4 Antipatterns

Amateur Science

Problem

The Domain Modeller does not engage with a Domain Scientist, because
they think they know the Domain science well enough, or that the Do-

main literature is sufficient input.

Context

Building the Domain Model (131); making simplifying assumptions in
the Platform Model (151); performing platform Calibration (165); building
the Results Model (176); running a Simulation Experiment (179).

Discussion

While modelling it can be easy for the Domain Modeller to use their
own understanding of the Domain rather than referring to the Domain

Scientist (102). This understanding is, however, nearly always oversim-
plified and at too shallow a level: even if a Domain looks relatively
straightforward from the outside, it can have hidden subtleties and sur-
prises. After all, if it really were that simple, there would be no need for
a simulation instrument.

The Domain Modeller may assume that the scientific literature is com-
plete, consistent, pertinent, and correct, and that it is sufficient to build
the Domain Model. However, technical scientific literature relies on
much tacit knowledge for understanding. The literature is vast, and the
Domain Scientist can help filter the material that is relevant for the Sim-

ulation Purpose (123). The literature contains terminology clashes, with
sometimes different names referring to the same concept, and worse,
the same name referring to different concepts. It contains errors. The
Domain Scientist can help the Domain Modeller navigate this morass.

If you are finding it difficult to Document Assumptions (109) about the
Domain or Domain Model, you may be engaged in Amateur Science.

Solution

Engage with the Domain Scientist, who will soon make it clear that the
real world Domain “is more complicated than that”. They can advise

140 5 Discovery Phase Patterns: building the domain model

which literature is key, which is peripheral, which is mistaken, and can
provide the tacit domain wisdom not present in any literature. Use the
Glossary (130) to record terminology clashes and ambiguities.

But beware being an Uncritical Domain Modeller (145) placing blind
trust in the Domain Scientist.

Analysis Paralysis

Problem

You are spending too much time analysing and modelling the Domain,
trying to get everything perfect, and never getting to the implementa-
tion.

Context

Building the Domain Model (131), the Platform Model (151), or the Results

Model (176).

Discussion

Analysis Paralysis is a classic problem in many areas where a problem
needs to be analysed and modelled before it can be solved. It can be
due to a combination of wanting to get it “right first time”, and a fear
of implementation failure.

One symptom is to Refactor (235) over and over, to “improve” the
model’s structure or genericity, without making progress.

Another symptom is putting irrelevant information or detail into a
model, just because you can. This leads to large, clumsy, buggy, incom-
prehensible models that are hard to develop, simulate, analyse, and
understand. Even if the model “works”, it may provide no more in-
sight into the problem than the actual (complicated) Domain does. The
key to good models is finding a suitable level of abstraction, and sup-
pression of irrelevant detail. Everything in the model needs “to earn its
keep”.

Solution

Keep the Research Context (121) constantly in mind: do not analyse,
model or debate anything that does not serve that context. If the con-

5.4 Antipatterns 141

text requires different levels of detail, consider building a Multi-scale

Simulation (245).
Do not fear making a mistake; recognise that you will not get it

“right first time”. Instead, Prototype (215) to explore possible approaches,
and use Multi-increment Simulation (242) to focus on smaller parts of the
problem. There are some techniques for simplifying simulations, such
as Grimm et al’s “pattern-oriented modelling” [103], and the method
of Van Nes and Scheffer [163].

Beware also the opposite anti-pattern: Premature Implementation (171).

A Bespoke Too Far

Problem

You invent a new modelling approach from scratch for your project.

Context

Building the Domain Model (131).

Discussion

Very often, none of the modelling approaches that exist will perfectly
fit what you want to capture in your Domain Model. Since the Domain

Model is for communication with the Domain Scientist, not for direct ex-
ecution, you decide to invent an appropriate modelling approach from
scratch.

Inventing sound modelling approaches is difficult. Such an approach
will either take up all or more of your project resources, or, more likely,
will result in a modelling approach that is ill-defined and ambiguous,
leading to difficultly in transforming your Domain Model to a suitable
Platform Model (151).

Solution

Instead, you might consider developing a Domain Specific Language

(230) that interfaces to a well-defined modelling language.
Beware also the opposite anti-pattern: One Size Fits All (144).

142 5 Discovery Phase Patterns: building the domain model

Cartoon as Model

Problem

Your domain model consists of nothing but Cartoon sketches.

Context

Building the Domain Model (131).

Discussion

A Cartoon (126) provides a good overview or summary of a model, but it
is not sufficient as a model itself. It lacks detail, and specificity: some of
the properties that make it a good overview. A full Domain Model needs
more information, and needs to be more formally defined, in order to
form a sound basis for transformation to a Platform Model (151).

Solution

Use the Cartoon as an overview, that accompanies a full Domain Model.
Explicitly label it “cartoon” in order to emphasise that it is not the
model itself. But avoid the Executable Domain Model (142).

Executable Domain Model

Problem

You write your Domain Model in an executable language, and use it as
the Simulation Platform.

Context

Building the Domain Model (131).

Discussion

You have to write your Domain Model in some notation, so why not
chose an executable one, and save all the hassle of having to do more
work to implement a Simulation Platform? (There are practitioners who
advocate this approach.)

5.4 Antipatterns 143

There are several problems with such an approach if you are engin-
eering a simulation for use as a scientific instrument.

• The Domain Model is a scientific (descriptive) model of the Domain;
the Platform Model is an engineering (prescriptive) model of the
simulation of the Domain. Although they overlap to some degree,
they address different concerns.

• An Executable Domain Model will be cluttered with implementation
details, making it hard for the Domain Scientist (102) to understand,
and hard to Argue Instrument Fit For Purpose (189).

• An Executable Domain Model may contain Domain details that should
not be in the Platform Model or Simulation Platform, such as emer-
gent Domain Behaviours (137), or other hypothesised results.

• Alternatively, an Executable Domain Model may comprise only the
Basic Domain Model (133), and omit the definition of the Domain Be-

haviours, forestalling any rigorous validation.
• It is very easy to start “hacking” an executable model, making it

harder to understand, and to forget the necessary accompanying
documentation of assumptions and simplifications that allow you
to Argue Instrument Fit For Purpose (189).

Solution

Model in Domain terms, in a platform neutral manner. Explicitly split
the model into its components (Basic Domain Model (133), Domain Beha-

viours (137), Domain Experiment Model (137)), so that emergent properties
are captured.

In some cases, using an appropriate high level Domain Specific Lan-

guage (230), it may be possible to express some or all of the Domain

Model in an executable language at a suitable level of abstraction. In
such a case, examine carefully whether this level of detail and precision
is necessary for the Research Context (121) and Simulation Purpose (123).
If done, rigorously avoid adding detail that is only for implementation
purposes. The relevant Platform Model should then be derived from the
Basic Domain Model and Domain Experiment Model following the same
process as for a non-executable model. This is an extreme example of
Seamless Development (216).

Beware the opposite extreme: Cartoon as Model (142).

144 5 Discovery Phase Patterns: building the domain model

One Size Fits All

Problem

You have a pre-determined Modelling Approach in mind. Irrespective
of the specific Research Context or scientific question, you build the Do-

main Model using this given modelling approach, and disregard its pos-
sible disadvantages.

Context

Discovery Phase (95), Development Phase (96)

Discussion

A Domain Modeller (103) may become proficient in using a certain
Modelling Approach (112). Being expert in defining models in a given
paradigm (for example, Agent Based Modelling (210), or ODEs), their in-
teraction with the Domain Scientist (102) is structured according to that
paradigm’s concepts.

The team will potentially fail to acknowledge the limitations of their
approach; the project may overrun its agreed resources. Using an in-
appropriate Modelling Approach may lead towards complicated, costly
simulators, or the problems may not be solvable in the given time.

Similar comments apply to using a pre-determined Implementation

Approach (161): beware of using an implementation framework simply
because it is familiar. And beware of biassing the choice of Modelling

Approach in order to target a such a framework.

Solution

Ideally, choose an appropriate Modelling Approach based on the Re-

search Context (121). Ensure that any pre-determined choice in your
House Style (231) is properly scrutinised.

However, the modelling expertise may be a fixed component of the
project team. If so, the Domain Modeller should inform the Domain Sci-

entist of the approach’s advantages and limitations. Because the Model-

ling Approach influences the type of data that is required (e.g. for build-
ing bottom-up ABMs, data describing individual entities is more im-
portant than population-level data), the team must identify if such data
can be obtained. If not, the Research Context may need to be redefined.

Beware also the opposite anti-pattern: A Bespoke Too Far (141).

5.4 Antipatterns 145

Uncritical Domain Scientist

Problem

The Domain Scientist accepts the Domain Model or the Platform Model

on trust.

Context

Discovery Phase (95); Argue Instrument Fit For Purpose (189): reviewing
arguments to ensure consensus

Discussion

A Domain Scientist (102) should not have to understand software engin-
eering, but uncritical acceptance of a computer simulation may mean
that misinterpretations or inappropriate assumptions of the Domain

(125) and Domain Model (131) are not identified. This may be detected
during Calibration (165) or in construction of the Results Model (176). In
the worst case, uncritical acceptance of the simulation leads to the Do-

main Scientist making inappropriate inference from the simulation res-
ults.

An Uncritical Domain Scientist may arise because there is insufficient
buy-in to the collaboration, or because each expert is too inclined to
accept at face value the expertise of others.

Solution

Nominate a person within the Domain Scientist role who is respons-
ible for challenging the modelling and coding decisions of the Domain

Modeller. The person must feel empowered to Ask [Silly] Questions (219).

Uncritical Domain Modeller

Problem

The Domain Modeller accepts everything the Domain Scientist says on
trust.

146 5 Discovery Phase Patterns: building the domain model

Context

Discovery Phase (95); Argue Instrument Fit For Purpose (189): reviewing
arguments to ensure consensus

Discussion

The Domain Modeller (103) should not have to understand all the back-
ground of the Domain (125): it is the role of the Domain Scientist (102) to
select and interpret the Domain for the Domain Modeller. However, the
Domain Modeller must challenge and probe the understanding of the
Domain Scientist in order to uncover meanings, limitations, uncertain-
ties etc.

A common situation that is revealed by probing is the Domain “com-
mon knowledge” problem: something that was introduced to address
a problem many years ago, and has been used habitually since, but was
never justified or rationalised. A “why” question might reveal that the
Domain Scientist uses the “something” because that is “the established
practice”: it may be a perfectly good fix, but equally it may be hiding
or surrogating a real issue.

Another common situation is where the Domain Scientist makes a
confident assertion about the structure of a complex system, or the res-
ults of a well-known set of experiments. Probing questions can reveal
uncertainties, missing links, data that is collected from many (differ-
ent) subjects, data point values that would be better stated as ranges of
possible values etc.

Sometimes the Domain Scientist will make tacit assumptions based
on their own belief about how the simulation will work. They may
make unnecessary and unwarranted simplifications, to help “improve
efficiency”. Alternatively, they may try to insist on too much detail,
because they fail to see simplifications and generalisations that the Do-

main Modeller can make.

Solution

Nominate a person within the Domain Modeller role who is respons-
ible for challenging the input of the Domain Scientist. The person must
feel empowered to Ask [Silly] Questions (219); they should understand
the reason and justification for all assumption and details, and should
Document Assumptions (109).

5.4 Antipatterns 147

It is important to understand the basis on which any categorical
statement is made, and an argument can be used to record the source
of facts, assumptions, justifications etc. Construction of the argument
can be used to motivate the search for sources of domain knowledge
etc.

Also avoid Amateur Science (139).

Chapter 6

Development Phase Patterns: developing the
platform

Abstract — In which we describe developing the simulation platform ap-
propriately, with patterns for the platform model and the simulation plat-
form

6.1 Catalogue of development phase patterns

Platform Modelling patterns

Platform Model (151) From the Domain Model, develop a platform
model suitable to form the requirements spe-
cification for the Simulation Platform

Basic Platform Model (152) Build a detailed model of the basic platform
concepts, components and processes

Simulation Experiment

Model (154)

Define relevant experiments in the simula-
tion, analogous to domain experiments

Stochasticity Model (156) Model any required stochasticities explicitly

Space Model (157) Define how physical space is modelled

Time Model (160) Define how physical time is modelled

149

150 6 Development Phase Patterns: developing the platform

Implementation patterns

Implementation Approach

(161)

Choose an appropriate implementation ap-
proach and language

Simulation Platform (163) Develop the executable simulation platform
that can be used to run the Simulation Experi-

ment

Calibration (165) Tune the Simulation Platform so that sim-
ulation results match the calibration data
provided in the Data Dictionary

Debug by Video (169) Use visualisation to help debug the simula-
tion platform

Propagate Changes (170) Ensure that changes in one part of the system
propagate throughout, to ensure consistency

Antipatterns

Amateur Coding (171) You believe that “anyone can write code”

Premature Implementation

(171)

You start writing Simulation Platform code be-
fore having a proper understanding of the
domain or platform requirements

Program In the Answer

(172)

The results from the simulation are an inevit-
able consequence of the simulation program-
ming, not an emergent consequence of the
operation of the simulation

Independent Simulation

Engineer (173)

The Simulation Engineer diverges from the Do-

main Model in order to create a more aesthetic
or efficient computer program

6.2 Platform modelling Patterns

There is considerable traditional software engineering involved in develop-
ing the platform model and simulation platform. We do not cover all of that
here here; we cover only the parts that are CoSMoS specific.

6.2 Platform modelling Patterns 151

Platform Model

Intent

From the Domain Model (131), develop a platform model suitable to
form the requirements specification for the Simulation Platform (163).

Summary

• choose a Modelling Approach (112) and application architecture for
the platform modelling

• develop the platform model from the Domain Model (131). In partic-
ular:

– remove the Domain Behaviours (137)

– develop the Basic Platform Model (152) from the Basic Domain

Model (133)

– develop the Simulation Experiment Model (154) from the Domain

Experiment Model (137)

• Document Assumptions (109) relevant to the platform model
• if necessary, Propagate Changes (170)

Context

A component of the Development Phase (96), with an existing Domain

Model (131).

Discussion

The Platform Model is a prescriptive (engineering) model, and provides
the high level specification of the Simulation Platform. It is developed
from the Domain Model. Whereas the Domain Model is a model of the
real world Domain, the Platform Model is a model of a software simula-
tion of that Domain.

The chosen Modelling Approach should be of a form, and use a nota-
tion suitable for, proceeding to an implementation. This choice should
be made in concert with choosing an Implementation Approach for the
Simulation Platform (163), since they are so closely linked, and because
some of the design decisions made in building the Basic Platform Model

may be contingent on the eventual implementation route. However,

152 6 Development Phase Patterns: developing the platform

the Platform Model should be kept as free from implementation details
as is practical.

As far as possible, this should follow the principle of Seamless Devel-

opment (216) and not introduce an unnecessary significant change from
the chosen Domain Model approach. However, as noted above, the pur-
poses of the two models are different: the Domain Model captures the
Domain in terms comprehensible to the Domain Scientist (102); the Plat-

form Model captures the specification of the simulator in terms and at
a level of precision suitable for development. As such, different mod-
elling approaches and notations may be needed. In such a case, there
will need to be more argumentation of how the Platform Model correctly
captures the Domain Model.

This is the point to determine the application architecture for the
Simulation Platform, as this will affect the structure of the Platform

Model.
The Platform Model can be developed from the Domain Model in the

following manner:

• It is important not to carry over aspects of the Domain Behaviours

(137) model that capture the “answer”, or hypotheses to be invest-
igated, emergent properties, etc.

• The Basic Platform Model (152) should be developed from the Basic

Domain Model (133).
• The Simulation Experiment Model (154) should be developed from

the Domain Experiment Model (137).

In general, given a hypothesis under consideration, components
in the Domain Model that are outcomes of hypothesised mechanisms
should not appear in the Platform Model: the answer should not be ex-
plicitly coded into the Simulation Platform; but it needs to appear in
some model, for validation purposes.

During the process of developing the Platform Model, ambiguities,
errors or inadequacies may be discovered in the Domain Model. If so,
it is important to Propagate Changes through all the models and argu-
ments to ensure that the whole development is consistent.

Basic Platform Model

6.2 Platform modelling Patterns 153

Intent

Build a detailed model of the basic platform concepts, components and
processes.

Summary

• develop the Basic Platform Model (152) from the Basic Domain Model

(133)

• as needed, develop the Stochasticity Model (156)

• as needed, develop the Space Model (157)

• as needed, develop the Time Model (160)

Context

Part of the Platform Model (151); the computational realisation of the
Basic Domain Model (133).

Discussion

The Basic Platform Model captures the computational realisation of the
domain micro structures and behaviours, in a form suitable for im-
plementation in software. This moves from a model of the real-world
micro-domain, to a model of the simulation of components of the
micro-domain. This move requires a translation of concepts between
the chosen Modelling Approach (112) for the Domain Model and for the
Platform Model. Seamless Development (216) reduces, but does not obvi-
ate, the need for such a translation; even if the modelling approach is
common between models, the models are of different entities: domain
entities versus simulation entities. This translation process has several
aspects:

• Determine a systematic conversion between the Domain Model lan-
guage and the Platform Model language, paying attention to the
Glossary and record of assumptions and justifications. For the Pro-
state example in chapter 3, this involves a translation from a Petri
net to a UML model.

• Where the Domain Model components do not map directly to Plat-

form Model language concepts (e.g. agents or classes or processes),
determine a suitable construction of appropriate implementation
structures (e.g. state diagrams implemented by a suite of classes),
keeping a record of the traceability, and of any assumptions that
need to be made

154 6 Development Phase Patterns: developing the platform

• Some components may be changed from Domain Model to Platform

Model: there may be a need for further simplifications, proxies, sur-
rogates, and so on. Determine the needed changes, and the neces-
sary additions to the Data Dictionary (134), and document the rela-
tionships, for use in Calibration (165).

• Walk through the resulting Platform Model to check that it is syn-
tactically and semantically consistent (for example, where trans-
itions are guarded with Boolean expressions, there is a transition
for every possible condition)

Further components need to be added to the Basic Platform Model,
particularly to simulate features of the Domain taken as “given”: these
include the platform Stochasticity Model (156), Space Model (157) and
Time Model (160), any physical properties such as movement, gravity,
temperature, that are required, and any further environmental proper-
ties and constraints.

The Basic Platform Modelneeds to lead to an executable Simulation

Platform, and so requires inclusion of initialisation and termination be-
haviours: the Simulation Experiment Model (154) provides appropriate
specific values for each run.

Simulation Experiment Model

Intent

Define relevant experiments in the simulation, analogous to domain
experiments.

Summary

• build a model to support running Simulation Experiment (179)s that
are analogues of domain experiments

• design a simulation experiment initialisation approach
• design experiment instrumentation and logging

Context

Part of the Platform Model (151); the computational counterpart of the
Domain Experiment Model (137).

6.2 Platform modelling Patterns 155

Discussion

The Simulation Experiment Model details how the Simulation Platform is
to be used to run Simulation Experiments, in a manner that allows the
results to be compared to Domain results, through the Results Model

(176). It includes interfaces to allow user access to simulation, instru-
mentation to provide outputs for the Results Model, and possibly visu-
alisation of these outputs through the Visualisation Model (183).

The Simulation Experiment Model includes:

• what the explicit parameters of the system are, and how these
might be controlled (e.g. fixed constants or variables)

• suitable ranges of operation of the parameters (e.g. sensible para-
meter ranges or agent numbers)

• termination conditions for experiments (e.g. time condition);
• approach to simulating randomness, derived from the Stochasticity

Model (156), including the relevant distributions

One addition from the analogous Domain Experiment Model needed
in the Simulation Experiment Model is handling initialisation of the sim-
ulation. In a natural biological system, for example, the experimental
subject is usually some mature organism or tissue. The simulation may
need to start from some “immature” basis and “grow” to a mature sys-
tem prior to the experiment start, or it may be possible to start it as an
already mature system, possibly with the need for Calibration (165). It
may be initialised in a random setting, an arbitrary setting, a specific
‘initial condition’, or a physically-realistic setting. It may be initialised
to a single common setting for all runs, or to a range of settings. A run
may be considered to start at timepoint zero, or after a sufficient time
to allow transient behaviour to subside. Choices need to be justified
(possibly as a result of preliminary experimentation) and recorded for
argumentation purposes.

The Simulation Experiment Model also captures the necessary instru-
mentation, monitoring the core behavioural concepts that are provided
by the Domain Model. Concepts in the Domain Experiment Model get
translated into Simulation Experiment Model concepts such as:

• experiment manager, that determines how parameters can change
across replicate runs

• instrumentation to collect, measure and process data from simula-
tion experiments; this can include:

– visualisers and data loggers

156 6 Development Phase Patterns: developing the platform

– Simulation Platform variables and outputs to measure and re-
cord

– random number seeds
– conditions that determine the when and how to record and pro-

cess certain statistics

Related patterns

Outputs need to interface to the Results Model (176) analyses, and to the
Visualisation Model (183)

Stochasticity Model

Intent

Model any required stochasticities explicitly

Summary

• characterise the relevant distributions, using real-world data

Context

Modelling stochasticity in the Domain Model (131) and Platform Model

(151).

Discussion

The Domain almost certainly contains stochastic properties, due either
to true non-determinism, entropy, uncertainty, or the inability to meas-
ure in enough detail. These properties can be modelled as randomness
in the Platform Model.

Modelling is needed to capture the relevant distributions of the
stochastic properties. Pseudo-random number generators (PRNGs) pro-
vided in programming language libraries can produce a variety of dis-
tributions. An inappropriate choice of distribution can lead to skewed
results. Domain sources of entropy can have various kinds of distribu-
tion, including, but not limited to, normal (gaussian), exponential, or
power law. Where possible, you should use Domain data to character-
ise the necessary distribution(s).

6.2 Platform modelling Patterns 157

Different parts of the model may require different distributions, or
different parameter values.

The Simulation Platform (163) should exhibit reproducibility. The mo-
del may be stochastic, but the simulation should be deterministic, so
that runs can be replayed if necessary. The log of a Simulation Experi-

ment (179) should include the relevant PRNG seeds. If there are multiple
processes each needing its own stream of random numbers, a further
process may need to be implemented to handle the distribution and re-
cording of suitable seeds. If the Simulation Platform is distributed over
a cluster, further care needs to be taken to ensure determinism between
processors.

Related patterns

Calibration (165), Sensitivity Analysis (177)

Space Model

Intent

Define how physical space is modelled

Summary

• decide on suitable model(s) for physical space
• relate spatial Domain Model (131) parameters and values in the Data

Dictionary (134) to their Platform Model (151) counterparts
• Document Assumptions (109)

Context

Design decisions when moving from Domain Model (131) to Platform

Model (151).

Discussion

Choosing a good model of space is a critical step in a simulation: too
fine grained, and the simulation is inefficient; too coarse grained, and
it has quantisation artefacts; the wrong topology, and it is impossible
to calibrate.

Potential models include:

158 6 Development Phase Patterns: developing the platform

• aspatial, or well-mixed
• spatial

– continuous: 1D, 2D, or 3D
– discrete
· regular: lattice (grid) topology
· irregular: general network topology

• hierarchical: eg, a network where each node is a (sub)space; eg a
tree modelling membrane structures

Aspatial, or well-mixed, models are arguably the simplest. If key
parameter values are constant across physical space, an aspatial model
may be sufficient. For example, ODE models are aspatial: they describe
only change through time, not change across space.

However, if properties vary across physical space, this may need to
be captured in the simulation. Behaviours are possible in spatial en-
vironments that are not possible in aspatial ones: different reactions
or interactions can occur at the same time in different places because
of their localisation in different environments and states. This includes
examples such as a reaction-diffusion system making spatial patterns
because of spatially varying concentrations, and different reactions oc-
curring in different compartments separated by some form of mem-
brane.

There are different spatial models appropriate in different cases.
Space may be continuous (items can exist at any location) or dis-

crete (items are constrained to occupying only grid cells or network
nodes).

Continuous space or grids may be may be 1, 2, or 3 dimensional
(lines, planes, or volumes). The dimensionality is often chosen to be
2D, for computational efficiency reasons, and for ease of visualisation.
Faithfully capturing an essentially 3D physical process in a 2D model
can be non-trivial, as the dimensionalities have different properties. For
example, intersections are different: in 3D paths can cross without in-
tersecting. Volumes and areas scale differently. For example, consider
a simulation of a 3D structure such as a vacuole (compartment) in a
plant cell. If the real world vacuole occupies, say, half the volume of
the cell, how big should the 2D surrogate be? Should it be half the area,
to preserve “volumes”, or should it preserve lengths? The answers will
depend on the questions being asked of the Research Context (121) and
Simulation Purpose (123). Determining suitable scaling may require Cal-

6.2 Platform modelling Patterns 159

ibration (165); such calibration may not be possible, and a 3D model may
be needed to capture the relevant behaviours.

Discrete spaces can be used to quantise an essentially continuous
space (for example, by using a grid space modelling a tissue), or used to
partition different kinds of environments into different network nodes,
modelling the transport between regions through the network graph
connectivity, for example, in a Multi-domain Simulation (244).

Where a grid is being used to discretise a continuous space, the grid
size needs to be chosen carefully. The grid should be as coarse as pos-
sible for efficiency, but not so coarse it introduces quantisation artefacts.
Quantisation artefacts can also be introduced due to the grid reducing
the symmetry of otherwise-isotropic continuous space. Also, the grid
should respect any natural physical spatial scales. Determining an ap-
propriate grid size can be part of Sensitivity Analysis (177).

Spaces can be hierarchical, particularly in the case of a Multi-scale

Simulation (245), potentially with different spatial models on different
length scales. For example, a network space may use different subspace
models at each node (for example, one node representing an aspatial
region of well-mixed reactions linked to another node of agents diffus-
ing in a continuous subspace). Another form of hierarchical space is a
tree representing the structure of regions enclosing other regions, such
as a set of nested membranes.

Spatial parameters in the Data Dictionary (134) need to be related
to corresponding Platform Model (151) parameters dependent on the
model of space chosen. The relationship may be calculable, or may be
established via Calibration (165). Calibration against real domain data is
typically problematic, either because of the way space has been mod-
elled, or, as is often the case in real biological domains, real world data
is uncertain (for example, component sizes and relative sizes are of-
ten quite approximately known). The uncertainties and mismatches
between real-world and simulation dimensionality need to be recor-
ded, so that the effects are recognised even if these cannot be analysed
and quantified in any meaningful way.

Related patterns

Shortcuts (217) for moving around in space will be dependent on the
model chosen.

See also the related Time Model (160), particularly for calibrating
speeds and accelerations.

160 6 Development Phase Patterns: developing the platform

Time Model

Intent

Define how physical time is modelled

Summary

• decide on suitable model(s) for physical time
• relate temporal Domain Model (131) parameters and values in the

Data Dictionary (134) to their Platform Model (151) counterparts
• Document Assumptions (109)

Context

Design decisions when moving from Domain Model (131) to Platform

Model (151).

Discussion

Simulating physical time can be difficult.
Computations take processor time that might not be simply related

to the corresponding physical times being simulated. A mechanism
that needs a lot of computation to simulate might happen relatively
quickly in the physical system, whereas a mechanism that is computed
more quickly (especially if using Shortcuts (217)) might happen relat-
ively slowly in the physical system. So computation time cannot neces-
sarily be used as a simple proxy for physical time: a more sophisticated
model of time may be needed. The issue is made more complicated in
distributed simulation running across a range of processors that poten-
tially run at different speeds.

Simple simulations often ignore this issue, conflating processor time
and simulated time, and assume that all agents or processes execute in
lockstep, in a single simulated discrete timestep, and enforce a form of
synchronisation. More sophisticated simulations might use some form
of event scheduling, explicitly simulating physical time and calculating
when the next relevant occurs, allowing agent behaviours or processes
to occur asynchronously.

Different parts of the model might require different models of phys-
ical time, particularly in a Multi-domain Simulation (244) or Multi-scale

Simulation (245). For example, a cell that moves according to a random

6.3 Implementation Patterns 161

walk may execute a fixed number of steps in each “travel” timestep, but
collision detection may need to check its relative location many times
during a “travel” time step to avoid the cell occupying the same space
as another cell at some point in its travel.

When discretising continuous time, the simulation timestep size
needs to be chosen carefully. The timestep should be as large as pos-
sible for efficiency, but not so large it introduces quantisation artefacts.
The chosen timestep should respect any natural physical and experi-
mental timescales: for example, bio-systems are typically measured at
specific time intervals (hourly, daily, weekly); engineered systems have
characteristic timescales. Fourier transforms of time-series data can be
used to find the highest frequency events of relevance (although be-
ware artefacts due to measurement timescales); the Nyquist-Shannon
sampling theorem implies that the maximum timestep should corres-
pond to an update frequency of at least twice this event frequency,
∆t ≤ 1/2 f , in order to be able to resolve such events. The timestep
should also respect any spatial discretisation: for example, the physical
size corresponding to a grid cell combined with a speed implies a max-
imum timestep: agents typically should not cover multiple spatial grid
cells in a single timestep. Determining an appropriate timestep can be
part of Sensitivity Analysis (177).

Temporal parameters in the Data Dictionary (134) need to be related
to corresponding Platform Model (151) parameters dependent on the
model of time chosen. The relationship may be calculable, or may be
established via Calibration (165).

Related patterns

See also the related Space Model (157), particularly for calibrating speeds
and accelerations.

6.3 Implementation Patterns

Implementation Approach

Intent

Choose an appropriate implementation approach and language.

162 6 Development Phase Patterns: developing the platform

Summary

• determine coding language and approach
• determine which existing libraries and generic simulation frame-

works might be used
• determine testing strategy

Context

A component of the Simulation Platform (163) pattern. Chosen in concert
with the Modelling Approach (112) for the Platform Model (151).

Discussion

The Implementation Approach used to develop the Simulation Platform

needs to lead to an application that is traceable back to the Domain

Model (131), for it to be possible to Argue Instrument Fit For Purpose (189).
So the implementation approach should use Seamless Development (216)

where possible, but do not let that compromise building a natural Sim-

ulation Platform that is readily arguable as fit for purpose. Determine
whether use of existing libraries or frameworks1 will help or hinder
such traceability.

The approach must also be feasible within the resources of the pro-
ject as laid out in the Research Context (121), particularly the skills of the
team, and the effort available.

The approach should be flexible enough to allow a range of related
Simulation Experiment (179)s and hypotheses to be addressed during the
Exploration Phase (97).

The testing strategy should be considered in the context of needing
to Argue Instrument Fit For Purpose. It needs to suitable for the critic-
ality as laid out in the Simulation Purpose (123). Test Driven Develop-
ment (TDD) [27] can provide a suite of well-designed tests that can be
incorporated into the argumentation. Specific aspects to consider for
simulation testing are:

• stochasticity: different runs naturally give different results, so test-
ing may need to include a statistical analysis over multiple runs;
this is related to the Stochasticity Model (156)

• concurrency: if the simulator is implemented as a concurrent ap-
plication, there may be fairness aspects to consider, to ensure that
each process is simulating sufficient activity: this may be related to
the Time Model (160)

6.3 Implementation Patterns 163

Related patterns

Consider implementing or using an existing Domain Specific Language

(230) where appropriate.
If the domain has parts that would benefit from different modelling

or implementation approaches, combine them in a Hybrid Model (213).
Beware One Size Fits All (144) if using a pre-determined implement-

ation framework.

Simulation Platform

Intent

Develop the executable simulation platform that can be used to run
Simulation Experiment (179)s.

Summary

• choose an Implementation Approach (161) for the platform modelling,
following the principle of Seamless Development (216) as much as
possible

• coding
• testing
• perform Calibration (165)

• Document Assumptions (109) relevant to the simulation platform
• if necessary, Propagate Changes (170)

Context

A component of the Development Phase (96), with an existing Platform

Model (151).

Discussion

This is possibly the most straightforward part of a CoSMoS develop-
ment project. There is a well-defined Platform Model available, which
forms the specification for the code to be implemented and tested. The
development should follow traditional software engineering best prac-
tices. The process of software engineering elaborates (reifies, refines)
the abstract design specified in the Platform Model to a specific code

164 6 Development Phase Patterns: developing the platform

target. The exact changes depend on the target code medium and the
level of detail in the platform model.

Some components may be changed from Platform Model to Simula-

tion Platform: there may be a need for further simplifications, refine-
ment of data structures, and so on. There will be additions, as design
decisions are made, and detail is added to allow implementation. These
require additions to the Data Dictionary (134), and documentation of the
relationships, for use in Calibration (165).

The development of the code typically requires at least the following
conventional and boilerplate additions, of which there are equivalents
in most programming languages. Note that, where a programming lan-
guage is supported by a development environment, such as Eclipse2, it
is possible to create some of these additions automatically.

• choice of development location (folder, directory), and assignment
of appropriate paths and settings to permit compilation

• package and module structure
• data import and export
• choice of libraries
• choice of data structures, variables, etc.
• choice of concurrency mechanisms, as well as which behaviours

occur in parallel in the program

There are four main occasions for executing the simulation platform:

• testing and debugging during development
• Calibration (165) runs
• performing Sensitivity Analysis (177)

• running a Simulation Experiment (179)

As for the Exploration Phase (97) and Platform Model, implementation
gives rise to design decisions and assumptions. During the process of
developing the simulation platform, ambiguities, errors or inadequa-
cies may be discovered in the Domain Model (131) or the Platform Model.
If so, it is important to Propagate Changes (170) through all the models
and arguments to ensure the whole development is consistent.

In order to Argue Instrument Fit For Purpose (189), there needs ongo-
ing activity to Document Assumptions relevant to the simulation plat-
form. The correctness of the platform may need further analysis: Cal-

ibration tunes the simulator, but in order to understand the behaviour
of the simulator under different experimental conditions, it is likely to
need to conduct Sensitivity Analysis on the parameters. This may lead

6.3 Implementation Patterns 165

to further development activity to improve the robustness of the simu-
lator, or to Refactor (235) out components that have no effect on simula-
tion outcomes.

Calibration

Intent

Tune the Simulation Platform (163) so that simulation results match the
calibration data provided in the Data Dictionary (134).

Summary

• select calibration data (inputs and outputs)
• select validation data (inputs and outputs)
• calibrate instrument

– determine a translation from domain input data to simulation
input data

– determine a translation from raw simulation output data to res-
ults data

– compare domain outputs to translated simulation outputs
– iterate until sufficiently similar

• validate that the calibrated result is not overfitted
• if calibration cannot be achieved, revisit the models and assump-

tions

Context

A component of the Simulation Platform (163).

Discussion

Calibration is a standard part of the manufacture and deployment of
any scientific instrument. It often refers to setting the correct zero point
and scale. Physical scientific instruments may need to be recalibrated if
environmental conditions change (such as temperature causing expan-
sion of parts of the device). Simulation scientific instruments should
only need to be calibrated once before use, but do need to be recalib-
rated if the simulation platform is changed in any way (see Tweaking

Code (185)).

166 6 Development Phase Patterns: developing the platform

Calibration is required in order to bring the Simulation Platform to
an experimentation-ready state. Domain parameter values need to be
translated to appropriate platform values, and values for proxies and
surrogates determined. Uncertainties in parameters (and potentially in
sub-models) can be addressed by exploring the parameter space (or
trying different sub-models). The aim is to obtain outputs from the Sim-

ulation Platform that are in agreement with calibration data, without
overfitting. Calibration can be performed through simple, manual tun-
ing or more elaborate methods, such as gradient techniques or evolu-
tionary algorithms. Multi-objective optimisation can be used to calib-
rate to a range of performance metrics [183].

The various kinds of data involved are part of the Data Dictionary

(134). Figure 5.3 (p.136) shows the various data components in detail.
The calibration data is used to adjust the translations and parameter
values until the Results Model (176) data fits the Domain Model (131) ex-
perimental results as captured in the Domain Experiment Model (137).
The validation data is used to ensure the model has not overfitted the
calibration data.

The Domain Model has input data, including model parameter values
in the Basic Domain Model (133), and experimental parameter values
in the Domain Experiment Model (137). A domain experiment based on
this experimental data produces raw output data. After the appropriate
scientific data analyses, this yields the domain results data.

To move to the simulated world, the domain data needs to be trans-
lated to appropriate Simulation Platform values. A simulation experi-
ment given simulation input data (simulation parameters and exper-
imental setup) produces raw simulation data. This needs to be trans-
lated back into domain world terms, and then similarly analysed in the
Results Model, to yield the simulation results. The translation and ana-
lyses are designed so that the simulation results in the Results Model

are directly comparable to the domain results.
The Calibration exercise is to adjust the translations to simulation

inputs and from simulation outputs to achieve suitably similar sim-
ulation and domain results, on the calibration data. Even if you have
values in the Domain Model for most of these parameters, they often
come from different sources (for example, animal and human, differ-
ent laboratories) and from a real world system most of which you have
abstracted or outright ignored in the simulation. This means that some
adjustment can be expected in aligning simulation results with Domain

Behaviours. For some parameters, you may not have values available

6.3 Implementation Patterns 167

in the the Domain Model because they are not known; then Calibration

becomes not only translation, but finding appropriate values.
The relationship between domain and simulated results need not be

exact equality, but can be statistical similarity. The domain and simu-
lation experiments are not functions in the mathematical sense, since
different experimental runs on the “same” input data will yield dif-
ferent output data, due to variation, experimental error, and stochasti-
city. This similarity should be compared by analysing the simulated
outputs using the same statistical tests as in the Domain Experiment

Model (137), for comparability. For example, Domain experiments typ-
ically have control and experimental groups, between which there is
a difference in emergent behaviours, detected through some statistical
test. Do analogous experiments in simulation, and observe the differ-
ence between control and experimental groups through the same stat-
istical test. This does not compare results data directly between the do-
main and simulation experiments, but compares the results of the same
statistical test.

Consideration should also be given to calibrating the initial condi-
tions. A simulation often has an initial state, whereas the domain being
simulated is often an ongoing process. Suitable initial states need to be
captured and calibrated, or the amount of running time needed to go
take the system beyond transient behaviour needs to be determined.

The translation from domain to simulation values may be relatively
trivial (not much more than the identity transformation) if the Domain

Model and Platform Model are very similar. However, it might be soph-
isticated, if the Platform Model has introduced differences, such as sur-
rogate entities standing in for multiple Domain entities, change of spa-
tial dimension (see Space Model (157)), non-trivial discretisation, and so
on. If information is lost by the translation, it will not be available dur-
ing analysis of the simulation results, and so should not be critical in
the analysis of the domain experiment results either.

Where the Domain Experiment Model (137) results are in terms of
emergent properties, the Domain Scientist (102) will need to agree on a
suitable translation from simulation micro-states to appropriate macro-
states. This process will need to consider the Domain Behaviours (137)

model and the Research Context (121), and be captured in the Simula-

tion Behaviours (181) model. This can be challenging when the emer-
gent properties observed in the Domain are many levels and scales
away from the micro-state properties being simulated: what levels of
simulated chemicals in a simulated tissue correspond to the observed

168 6 Development Phase Patterns: developing the platform

“mouse is sick; mouse died”? Metrics acting as in silico proxies for these
emergent behaviour observations themselves require calibration, and
this must be performed on a calibrated simulation3. It may be neces-
sary to change some aspects of the Simulation Purpose (123), or identify
new domain data, in order to calibrate the system.

One technique that can be used to help calibrate surrogates is to ex-
press parameters in terms of dimensionless quantities (for example, the
Rayleigh Number or the Reynolds Number) to minimise the effect of
unit choices and other changes.

Calibration data should be selected to ensure good calibration cov-
erage of the domain of interest, encompassing the range of possible
outcomes, and of relevant experiment types. The system should not
be used “out of calibration”, that is, in an area of experimental space
not well covered by the calibration data; this should form part of the
fitness-for-purpose argument. If a system is used out of calibration, for
extrapolation, the resulting predictions should be checked by further
domain experiments.

Calibration is a “data-fitting” process: translation is tuned so that the
simulation adequately reproduces the calibration data. As such, com-
mon data-fitting issues such as “overfitting” need to be avoided. In
particular, the form of the translation should not be arbitrarily fitted;
its design should be constrained and guided by the kinds of changes
made moving from Domain Model to Platform Model. Validation data,
providing the same coverage as the calibration data, should be used to
test that the calibration is not over-fitted; this should form part of the
fitness-for-purpose argument.

If the model is fit for purpose, Calibration should be achievable by
setting the relevant parameter values (eg, of surrogates). However, the
calibration exercise may demonstrate that the model is inadequate in
some way, for example, a missing behaviour, and it cannot be calib-
rated to produce suitable output. The response to this is to return to
the Discovery Phase (95), revisit and rework the underlying models to
discover the holes, possibly with the aid of a Prototype (215), Propagate

Changes (170), and recalibrate the new system.
Tweaking Code (185), on the other hand, is “forcing” the model to fit

the data, for example, by using domain-implausible parameter values
(for example, many orders of magnitude away from real-world values),
or altering the code, independent of the models, to make it “work”.
Where the over-arching purpose of the simulation exercise is to un-

6.3 Implementation Patterns 169

derstand the Domain science, failure to calibrate is an opportunity to
improve this understanding, not a reason to paper over the holes.

Related patterns

Calibration is distinct from Sensitivity Analysis (177), but the latter can be
used to help determine how rigorous calibration need be for paramet-
ers with ill-defined domain values.

Translation from, say, 3D physical space to a 2D simulated Space

Model (157) may need to be performed through Calibration.
Translation of time from domain time to simulated time can be cap-

tured in the Time Model (160), and refined during Calibration.

Debug by Video

Intent

Use visualisation to help debug the simulation platform

Summary

Implement the Visualisation Model (183) as early as possible, and use it
to help debug the implementation.

Context

Debugging the implementation of the Simulation Platform (163).

Discussion

Visualisation can be useful for visual debugging [99]. It can provide a
rapid intuition of what is happening, and help build confidence that
the simulation is not completely wrong. The human visual system
is good at spotting subtle problems and patterns that are difficult to
quantify, even if you know to look for them. The Domain Scientist (102)

should be recruited to spot if things look wrong in Domain terms.

Related patterns

Not to be confused with Proof by Video (184).

170 6 Development Phase Patterns: developing the platform

Propagate Changes

Intent

Ensure that changes in one part of the system propagate throughout,
to ensure consistency.

Summary

• identify the original source of the problem, and fix it there
• propagate the fix throughout the system models and arguments
• make a large fix through a series of small independents steps, and

propagate small changes only, to keep the process manageable

Context

Whenever development of a particular model or argument requires
changes to other models or arguments.

Discussion

If a problem is found during development, for example when imple-
menting the Simulation Platform, there is a great temptation to fix it
there and then. However, the entire rationale for the CoSMoS process
is to have models and arguments that ensure the simulation is fit for
purpose. So these models and arguments must all be describing the
same system. An error discovered in one phase or model may well be
due to a problem in a different phase or model. It is essential to fix the
problem where it originates, and to propagate the changes due to that
fix throughout the system.

Don’t make radical changes to one part, then try to propagate; in-
stead, make small individual changes throughout the system. This is
analogous to the Refactor (235) philosophy of improvements through a
controlled series of small changes, and to the idea of incremental de-
velopment through a controlled series of small additions, as in a Multi-

increment Simulation (242).

Related patterns

Use Version Control (114) to manage the different versions of the models,
software, and experiments.

6.4 Antipatterns 171

Tweaking Code (185) can also lead to problems of models not being in
sync.

6.4 Antipatterns

Amateur Coding

Problem

You believe that “anyone can write code”.

Context

The Domain Scientist (102) building the Platform Model (151) and Simula-

tion Platform (163).

Discussion

After all, how hard can it be?
If you are finding it difficult to Document Assumptions (109) about the

Platform Model or Simulation Platform, you may be engaged in Amateur

Coding.
Compare Amateur Science (139) for the other side of this anti-pattern.

Solution

Realise that in all but the simplest simulations, software engineering
expertise is needed.

Premature Implementation

Problem

You start writing Simulation Platform (163) code before having a proper
understanding of the Domain or platform requirements.

172 6 Development Phase Patterns: developing the platform

Context

During Discovery Phase (95) or Development Phase (96).

Discussion

Also known as “hacking”. Such leaping into code before the require-
ments (Domain Model (131)) or simulation architecture (Platform Model

(151)) are properly understood leads to opaque simulators that are im-
possible to argue fit-for-purpose, and to the inability to build or inter-
pret the Results Model (176) in any meaningful manner.

Solution

Remember to Argue Instrument Fit For Purpose (189): you will not be able
to if there is a significant code with no corresponding platform model.
If you really need to explore coding or other ideas, Prototype (215).

Beware of the opposite anti-pattern: Analysis Paralysis (140). A related
antipattern is Tweaking Code (185).

Program In the Answer

Problem

The results from the Simulation Experiment (179) are an inevitable con-
sequence of the simulation programming, not an emergent consequence
of the operation of the simulation.

Context

Building the Platform Model (151) and Simulation Platform (163).

Discussion

The simulator is being used to explore scientific questions, such as
“does this hypothesised set of behaviours lead to that observed set
of outcomes”? If the observed set of outcomes are themselves pro-
grammed in to the simulator, independent of the hypothesised beha-
viours, then a misleading answer will be inferred.

6.4 Antipatterns 173

Solution

Have a careful separation of concerns in the Domain Model (131) to
identify what the required answers are, captured in the Domain Beha-

viours (137), and ensure that they are not available to the Platform Model

(151) or to the simulation.

Independent Simulation Implementor

Problem

The Simulation Engineer (105) diverges from the Domain Model (131) in or-
der to create a more aesthetic or efficient computer program, and pro-
duces a program that breaks the Seamless Development (216) on which
the engineering fitness for purpose relies.

Context

Argue Instrument Fit For Purpose (189): reviewing arguments to ensure
consensus

Discussion

Computer system developers are often expert programmers, who know
many idioms or styles that can create efficient computational solutions
that produce the required outputs. However, when simulating a com-
plex system, it is usually important that the mechanism creating the
outputs bears some relationship to the mechanism in the simulated sys-
tem. It is hard to complete a fitness-for-purpose argument if it cannot
be shown how the structures and behaviours of the simulation map the
structures and behaviours of the subject of simulation.

Note: there are some short-term prediction simulations where the
fitness-for-purpose depends only on mirroring the output patterns of
the simulated system. In this case, part of the purpose may relate to the
speed of computation, and the Seamless Development (216) is less im-
portant than the computer performance. In such a case, the fitness-for-
purpose argument needs to reveal the limitations of the results, par-
ticularly the likelihood that simulation and reality may significantly
diverge beyond the very-short-term.

174 6 Development Phase Patterns: developing the platform

Solution

If the Simulation Engineer believes that there is an efficient implement-
ation which is inconsistent with the Domain Model, it may be possible
to revisit the Domain Model, making changes that are consistent with
the efficient implementation. However, any changes must be consist-
ent with the Domain, and must be revisited with the Domain Modeller

and the Domain Scientist: the Structured Argument that the appropriate
instrument has been designed must be re-evaluated.

If it is not possible to accommodate the efficient implementation, it
is essential that the quality of software engineering (e.g. Seamless Devel-

opment) takes precedence over the performance of the computer pro-
gram. A slow program that gives usable results will always be better
than a fast program that gives untrustworthy results.

Chapter 7

Exploration Phase Patterns: using the
platform

Abstract — In which we describe: using the simulation platform as a sci-
entific instrument appropriately; running simulation experiments; patterns
for the results model.

7.1 Catalogue of exploration phase patterns

Model and usage patterns

Results Model (176) Build an explicit description of the use of, and
observations from, the Simulation Platform.

Sensitivity Analysis (177) Determine how sensitively the simulation
output values depend on the input and mod-
elling parameter values

Simulation Experiment

(179)

Design, run, and analyse simulation experi-
ments

Simulation Behaviours (181) Develop a model of the emergent properties
of a simulation experiment, for comparison
with the related Domain Behaviours model.

Visualisation Model (183) Visualise the simulation experiment results in
a manner relevant to the users

175

176 7 Exploration Phase Patterns: using the platform

Antipatterns

Proof by Video (184) The visualisation model is all there is

Tweaking Code (185) You make a series of small, “unimportant”
changes to the working Simulation Platform

Tweaking Experiments

(186)

You make a series of small, “unimportant”
changes to the defined Simulation Experiment

7.2 Model and usage patterns

Results Model

Intent

Build an explicit description of the use of, and observations from, the
Simulation Platform (163).

Summary

• perform Sensitivity Analysis (177)

• perform relevant Simulation Experiment (179)s
• build a Simulation Behaviours (181) model

Context

A component of the Development Phase (96), with an existing Simulation

Platform (163).

Discussion

The Results Model is a descriptive model of the simulation domain, as
understood from Simulation Experiments and observations. It contextu-
alises the simulator output in a way that makes it useful and informat-
ive to the Domain Scientist (102), but it must avoid making the simula-
tion results seem more reliable or authoritative than they are.

It is built from Simulation Experiment data in an analogous manner
to how the Domain Model (131) is built from the Domain (125) data, and
focusses on the emergent properties (figure 1.3). Sensitivity Analysis (177)

also provides input data to this process.

7.2 Model and usage patterns 177

Sensitivity Analysis

Intent

Determine how sensitively the simulation output values depend on the
input and modelling parameter values.

Summary

Clearly identify the purpose of the analysis: there are many SA tech-
niques, each of them capable of revealing different information. Con-
sult the technical literature to perform the appropriate technique.

Context

Arguing the Results Model (176); Calibration (165).

Discussion

Sensitivity Analysis is an umbrella term given to statistical methods that
discover how perturbation of a system’s inputs is reflected in its out-
puts. Sensitivity Analysis can be used to quantify how influential partic-
ular simulation parameters are on simulation output, and what range
of output values results from a range of input values4.

Whilst Sensitivity Analysis operates over a simulation’s parameters,
its results may be considered representative of how influential simula-
tion components are. Parameters provide values for the rates, probab-
ilities, quantities and timings concerning components and their inter-
actions. If a parameter is found to be influential, this indicates that the
respective component and/or interaction is influential.

Sensitivity Analysis has a variety of uses in complex simulation.

• It has a role in checking the Domain Model (131). If it is known which
components of the domain are highly influential (or otherwise),
similar patterns should be reflected in the simulation. Discrepan-
cies between influences of corresponding real-world and simula-
tion components motivates further investigation to ensure that the
Domain Model, Platform Model (151), and Simulation Platform (163) are
in fact representative of the real world Domain (125).

• Sensitivity Analysis results can inform Calibration (165), highlight-
ing influential parameters and the direction of correlation between
parameter adjustments and the effect on simulation behaviours.

178 7 Exploration Phase Patterns: using the platform

Where a simulation requires adjustment to better align its beha-
viour with the Domain, Sensitivity Analysis can reveal which para-
meters to adjust, and in which direction.

• Results of Sensitivity Analysis form an important part of the Results

Model. Along with an understanding of the uncertainty concern-
ing particular aspects of the Domain, and hence simulation para-
meters, Sensitivity Analysis results that highlight the influence of
parameters on simulation behaviour indicate how representative
those behaviours are of the Domain. If highly influential simulation
parameters cannot be specified because of uncertainty in the Do-

main, then simulation results may simply represent parameterisa-
tion artefacts. These results are important when attributing confid-
ence to simulation results, and are an important component of the
related argument.

• Sensitivity Analysis represents a powerful means for exploring a sim-
ulation’s dynamics, and generating hypotheses from this. Applied
at various times during simulation execution, Sensitivity Analysis

can highlight how the influence of particular simulation compon-
ents changes over time.

• Results of Sensitivity Analysis may also help in understanding how
the model could be simplified. Where the analyses suggest com-
ponents that have no effect on simulation behaviour when the
parameter value is perturbed, this may direct statistical analyses to
focus in other areas, saving execution time, and provide reasoning
to the simplification of that component.

The application of Sensitivity Analysis requires that simulation re-
sponses be defined: the specific outputs of the simulation that are ana-
lysed whilst perturbing its inputs. Any aspect of simulation behaviour
can be selected as a response, there is no limit on the number of re-
sponses that can be selected, and as demonstrated in the examples of
use below, responses can be elaborate metrics that require calibration.

Sensitivity analyses may be broadly categorised as being local (one-
at-a-time, or OAT) analyses or global analyses. Local techniques vary
and analyse a single parameter at a time, holding all other paramet-
ers at default values. Global techniques simultaneously perturb mul-
tiple parameters during analysis. Since local techniques perturb only
a single parameter at a time, only first-order sensitivities are revealed.
Global techniques can reveal sensitivities where one parameter’s in-
fluence depends on the value held by another. This does not render

7.2 Model and usage patterns 179

global techniques necessarily superior: the choice in technique should
be driven by the information that is to be acquired. In a stochastic simu-
lation in particular, local techniques can provide more accurate inform-
ation relating to particular aspects of a single parameter’s influence.
When applied to stochastic simulations, global techniques are subject
to considerable variation in the data, since the inherent stochasticity in
the simulation is compounded with the fact that multiple influential
parameters are randomly perturbed by substantial quantities.

Multiple runs, requiring considerable computational power, may be
required to ensure that patterns observed through Sensitivity Analysis

are not merely due to stochasticity. Such multiple runs provide the op-
portunity to analyse variance in simulation behaviours. Variance may
not be equal at all points in parameter space.

Sensitivity Analysis can be qualitative as well as quantitative. For
example, HAZOP (Hazard and Operability) and similar studies per-
turb systems qualitatively, with probes such as ‘negation’, ‘less’, ‘more’,
‘part’, ‘reverse’. These can be viewed as a qualitative Sensitivity Analysis

technique, and can be adapted to certain aspects of simulation.
Saltelli et al. [196] provide a comprehensive review of sensitiv-

ity analysis techniques. An example of how using Sensitivity Analysis

within a CoSMoS Simulation Project resulted in a novel scientific discov-
ery is provided in the endnotes5. We have developed an open source R
implementation that performs many of the analyses discussed here [4,
6].

Related patterns

Contrast with Calibration (165).
Document Assumptions (109): an assumption might rely on Sensitivity

Analysis for the justification.
Sensitivity Analysis can be used to design appropriate grid sizes in the

Space Model (157) and Time Model (160).

Simulation Experiment

Intent

Design, run, and analyse simulation experiments.

180 7 Exploration Phase Patterns: using the platform

Summary

• design the experiment
• perform simulation runs and gather data
• analyse results, for input to the Simulation Behaviours (181) model
• Document Assumptions (109) relevant to the simulation experiment

Context

A component of the Results Model (176). Using the Simulation Platform

(163) in the context of a Simulation Experiment Model (154).

Discussion

Using the Simulation Platform to run Simulation Experiments should be
approached in the same way as running experiments in the Domain: the
experiments need to be designed, run, and the results analysed in an
analogous manner.

Detailed advice on the conduct of experiments is outside the scope
of this work. Certain aspects are CoSMoS-specific, however. The Simu-

lation Experiment Model provides the basis for the design and running,
and the Simulation Behaviours (181) model provides the basis for the ana-
lysis.

The Simulation Experiment Model provides a model for simulation ex-
periments that are appropriate analogues of Domain experiments. For
each individual experiment, we need to consider the specific instanti-
ation of the model. This includes:

Design: Instantiating the Simulation Experiment Model as a single Sim-

ulation Experiment instance:

Initialisation: The initial state of the simulation run.
Transient behaviour: When data collection starts, possibly after

some initial transient behaviour that should be ignored while
the system “settles down”.

Number of simulation runs: Different authors have different philo-
sophies and give different advice [41, 190]. A traditional reas-
oning would be based on the required statistical significance,
statistical power, and effect size. Argumentation should in-
clude consideration of the number of domain experiment rep-
licates. Calibration (165) runs can be used to determine distribu-
tions, and whether they satisfy the normality requirements of
parametric statistics.

7.2 Model and usage patterns 181

Run: Executing the Simulation Experiment:

Parameters: The specific parameter values for this run.
Repeatability: Repeatability is crucial. The Stochasticity Model (156)

covers where randomness is included, and with what distri-
bution. Run records should record the relevant random seeds
used, to ensure repeatability. The Simulation Experiment includes
experiment logging requirements to ensure repeatability.

Termination: When the run is considered complete, and data col-
lection stops.

Analyse: Analysing the results of the Simulation Experiment:
Calibration (165) defines how the raw simulation outputs can be
transformed to data comparable with domain output data. The
simulation outputs should be analysed using the same techniques
as the domain data, to allow comparison. The Simulation Behaviours

model provides the requirements for this.

Simulation Behaviours

Intent

Develop a model of the emergent properties of a Simulation Experiment

(179), for comparison with the related emergent Domain Behaviours (137)

of the Domain Model (131).

Summary

• build a minimal model, from consideration of the Research Context

(121), the Simulation Experiment Model (154), the Domain Behaviours

(137), and the Calibration (165) translation of the raw simulation data
• if needed, build an augmented model including micro-level obser-

vations, and argue the connection to the domain model data
• if needed, build a Visualisation Model (183)

Context

A component of the Results Model (176).

182 7 Exploration Phase Patterns: using the platform

Discussion

This model is the simulation analogue of the domain model’s Domain

Behaviours.
The Calibration (165) translation (figure 5.3, p.136) says how to trans-

late simulation raw output data into a form that can be compared with
domain data. The Simulation Behaviours model is built using this trans-
formation, along with the analyses captured in the Simulation Experi-

ment Model (154), to present Simulation Experiment results in form that
is comparable to Domain experiment results. The form of the compar-
ison is dictated by the Research Context (121) and Simulation Purpose

(123): what hypotheses is the Simulation Experiment testing?
The comparison requires that the analysis be performed using the

same statistical tests as used for the Domain. However, there are deep
issues with standard statistical testing, from the use of parametric stat-
istics on inappropriate distributions, to the whole concept of statist-
ical significance [144], and the need to calculate effect sizes. So do not
blindly follow what the Domain Scientist (102) uses: challenge it, and
add a justification to the arguments. Where there are deep disagree-
ments over the correct test to use, one compromise is simply to doc-
ument the results of both tests, for example, a parametric and a non-
parametric one.

A minimal Simulation Behaviours model maps directly on to the Do-

main Behaviours (137), or emergent properties, model (figure 1.3). The
Results Model does not contain an explicit analogue of the Basic Do-

main Model (133); there is no explicit model of the simulated agent-level
behaviours.

However, simulation allows access to much more data, particularly
of micro-level behaviours and values. An augmented Simulation Beha-

viours model can contains such extra information, which may allow
more analysis and conclusions compared to what is possible with Do-

main experiments. An explicit relationship must be defined between
the Research Context and such an extended results model, to give prin-
cipled guidance for the analysis. This relationship will need to be ar-
gued.

It may not be possible to make a direct mapping between the emer-
gent Simulation Behaviours and the emergent Domain Behaviours (137),
because these may be at different emergent levels. For example, the
simulated emergent behaviours may be at the level of a tissue (with
the agents at the level of cells), whilst the domain emergent behaviours

7.2 Model and usage patterns 183

may be observed at the level of the whole organism (at the most ex-
treme, whether it dies or not). In such cases, it will be necessary to
develop further analysis approaches to translate the observed Simula-

tion Behaviours into results that are meaningful in the Domain [182, 185].
This will also give rise to separate arguments of appropriateness and
fitness for purpose.

Related patterns

The simulation data may be presented in a visual form too, via a Visu-

alisation Model (183).

Visualisation Model

Intent

Visualise the Simulation Experiment (179) results in a manner relevant to
the users.

Summary

Model how the experimental data from the Domain (125) is presented to
the user. Present the simulation results in a similar way in the Results

Model (176).

Context

A component of the Results Model (176).

Discussion

Domain experiment results can be presented in a wide range of forms,
such as tables, graphs, charts, maps, images, animations. Use an ana-
logous style when presenting the Simulation Experiment results (in ad-
dition to providing the actual data), to help the Domain Scientist (102) in-
terpret what the simulation is showing. Proper analysis is also needed:
just because the results superficially look the same does not necessarily
mean that they are the same.

Any such visualisation should be scientifically sound, to build visu-
alisations that communicate the correct information effectively. One ap-
proach is using techniques from visual analytics [132]. Interactive visu-

184 7 Exploration Phase Patterns: using the platform

alisation can provide potential added value in the ability to explore the
simulation data at depth.

Fig. 7.1 A visualisation model example. A) Simulation visualisation of a Peyer’s
Patch; B) Actual confocal microscopy image. Image from [39, fig.3]

Related patterns

Visualisation can be used to Debug by Video (169). But beware of Proof
by Video (184).

7.3 Antipatterns

Proof by Video

Problem

The Visualisation Model (183) is all there is.

Context

Using a Visualisation Model (183) as part of the Results Model (176).

Discussion

The visualised results from the simulation look superficially similar to
the visualised results from the Domain (be it a static figure or an anima-
tion), and so you judge the simulation to be a “success”. But there is no

7.3 Antipatterns 185

quantification of the similarity of the results, so you cannot be sure the
correspondence is more than an optical illusion, and you cannot make
any quantitative statements or predictions.

Solution

Define an appropriate Calibration (165) and Results Model (176), and rig-
orously compare simulation output with Domain experimental values.

Not to be confused with Debug by Video (169).

Tweaking Code

Problem

You make a series of small, “unimportant” changes to the working Sim-

ulation Platform (163).

Context

Running a Simulation Experiment (179).

Discussion

You have a working, calibrated, validated Simulation Platform (163), and
are performing Simulation Experiments. You notice a small problem, or
a place where an improvement could be made, and “tweak” the code.
Your Simulation Platform is now slightly out of sych with the models
and arguments. The changes are small enough that you do not think
that this is a problem. Then you notice an opportunity another small
improvement. And another. Very soon the Simulation Platform has drif-
ted far enough away from the models and arguments that you are
no longer justified in having confidence in the results, but since each
change has been small, you do not realise this.

In actuality, any change to the Simulation Platform needs to be re-
tested, recalibrated, and revalidated. This can need anything from a
trivial walk-through, to a full scale Calibration (165) exercise, depending
on how many assumptions are changed.

Experimental results from different versions of the Simulation Plat-

form should never be combined, as there may be small but systematic
differences in the results.

186 7 Exploration Phase Patterns: using the platform

Solution

Refactor (235) the Simulation Platform to make disciplined improvements
that do not change its functionality. This minimises the need for reval-
idation and recalibration.

Propagate Changes (170) through the system.
Use Version Control (114) to associate experimental parameters and

results with the particular Simulation Platform version.
Combine experimental results only if they are from the same Simu-

lation Platform version. Rerun experiments as necessary.
A related antipattern is Premature Implementation (171).

Tweaking Experiments

Problem

You make a series of small, “unimportant” changes to the defined Sim-

ulation Experiment (179).

Context

Running a Simulation Experiment (179).

Discussion

You can run your simulator to get a lot of results. You find it easy to do
some tweaking of the experimental parameters, to get some more data.
You obtain many results for which you do not have associated Domain

data. You find yourself eventually with high volume, low confidence
data, not easy to publish or analyse.

Solution

Be methodical. Ensure that each simulation run is part of a well-defined
Simulation Experiment, with well-defined goals.

Chapter 8

Structured Argumentation Patterns

Abstract — In which we describe patterns for developing structured argu-
ments using a specific notation.

8.1 Catalogue of argumentation patterns

Argument patterns

Argue Instrument Fit For

Purpose (189)

Provide an argument that the CoSMoS Simu-

lation Project is fit for purpose

Structured Argument (191) Structure and develop the required argu-
ments in a systematic manner

187

188 8 Structured Argumentation Patterns

Basic Structured Argument patterns

Argument Structuring

Notation (192)

Provide a diagrammatic summary of an argu-
ment, to highlight the structure, and provide
an index into the detailed argument

Claim (194) Represent a claim in an argument

Strategy (196) Outline how a Claim will be substantiated; the
reasoning step that shows that the sub-claims
would substantiate a claim

Evidence (197) Indicate evidence that substantiates a Claim

Argument Context (199) Provide information about the context in
which a Claim or Strategy should be inter-
preted

Assumption (200) Record assumptions that must hold for a
Claim or Strategy

Justification (201) Record the justification for a Claim or Strategy

Unfit (201) Record a development weakness in an argu-
ment step

Generic Argument patterns

Create Generic Argument

(202)

Generalise part of a Structured Argument, so
that it can be instantiated in different contexts

Use Generic Argument

(204)

Instantiate a generic argument for use in a
specific context

8.2 Argument patterns

A computer simulation is developed for a purpose. It is important to con-
sider its fitness for its intended purpose. We use structured arguments to
capture the consensus of Domain Scientist (102), Domain Modeller (103), and
Simulation Engineer (105) that the simulation is fit for purpose.

In this chapter, we present patterns for one particular approach to present-
ation of structured arguments, which has been adapted from critical systems
engineering and, particularly, safety case argumentation.

8.2 Argument patterns 189

Argue Instrument Fit For Purpose

Intent

Provide an argument that the CoSMoS Simulation Project (93) is fit for
purpose.

Summary

• Establish the fitness-for-purpose claim, from the intended purpose
of the simulation, as recorded in the Research Context (121).

• Establish the required rigour of the argument, as recorded in the
Simulation Purpose (123).

• Agree a strategy for substantiating the fitness-for-purpose claim.
• Use a Structured Argument (191) to substantiate the fitness-for-pur-

pose claim.

Context

Part of the overall CoSMoS Simulation Project (93). The responsibility of
the Argument Modeller (107).

Discussion

The aim in creating an argument is to express the rationale for the de-
velopment and use of the simulation (e.g. Domain Scientist (102), Domain

Modeller (103), and Simulation Engineer (105)). The argument may be used
simply as an internal reference for assumptions, what was decided etc.,
or it may be exposed to external scrutiny. The argument may also form
a review mechanism, to expose limitations or areas where improved
confidence is needed.

An important aspect of a simulation fitness-for-purpose argument
is that, if the Simulation Purpose (123) changes, the argument must be
revisited. The purpose must therefore capture the context of the sim-
ulation as well as its intended use: a critical simulation that will be
used as primary evidence in research needs a much stronger fitness-for-
purpose argument than a simulation that is used to generate or explore
hypotheses that can be confirmed by other means (e.g. by conventional
laboratory experimentation). Similarly, if the results of a simulation are
likely to have significant external impact, then a much stronger fitness-

190 8 Structured Argumentation Patterns

for-purpose argument is needed than if the simulation results are only
of interest “internally”, to the Domain Scientist.

An argument may be developed incrementally, alongside the de-
velopment of the simulation, or may be developed retrospectively,
after development (complete or partial). An argument may act as an
analysis guide for the development, highlighting areas of concern, the
need to explore the effect of assumptions, or areas where some of those
involved are not convinced of fitness for purpose.

A fitness-for-purpose argument developed incrementally can be a
living argument, and can help to direct the ways in which the simula-
tion development proceeds. The advantage of constructing the fitness-
for-purpose argument in parallel with development is that all those
involved in development (e.g. Domain Scientist, Domain Modeller, and
Simulation Engineer) are prompted to Ask [Silly] Questions (219), and to
follow approaches that improve their understanding of the Simulation

Purpose, Argument Context (199), Assumption (200), and Justification (201).
An argument may be constructed retrospectively in order to analyse

an existing simulation possibly not developed using the CoSMoS ap-
proach. Such a process will almost certainly reveal holes in the system.

Sometimes, a simulation development is itself an exploration of the
Domain: the purpose evolves as the simulation develops, because only
the detailed exploration involved can identify the right questions to
ask through simulation (see for example [184]). In this case, it may
be more appropriate to argue fitness-for-purpose retrospectively, either
after completion of the Development Phase, or as part of the Exploration

Phase.
When we argue for fitness-for-purpose in parallel with develop-

ment, the argument is constructed with increments in each of the Dis-

covery Phase (95), Development Phase (96), and Exploration Phase (97). Each
increment may revisit and revise earlier argument structures. It may be
more practical to start the argument later in the discovery phase, and to
argue retrospectively up to that point in the development, rather than
to argue incrementally from the very start, because the purpose and
scope of the simulation may be revised many times in the early stages
of discovery.

Related patterns

When building various models, there are patterns whose content forms
much of the rationale for arguing claims, including Research Context

8.2 Argument patterns 191

(121), Simulation Purpose (123), Document Assumptions (109), choice of
Modelling Approach (112), choice of Implementation Approach (161), Cal-

ibration (165), Sensitivity Analysis (177), and Propagate Changes (170).
Seamless Development (216) helps to make some claims more readily

establishable.
The ODD Protocol (223) provides much content to help establish im-

plementation claims.

Structured Argument

Intent

Structure and develop the required arguments in a systematic manner.

Summary

• Use the argument strategy agreed from Argue Instrument Fit For

Purpose (189) to establish sub-claims.
• For any sub-claim that can be immediately substantiated with evid-

ence, indicate a resolved claim, with reference the appropriate evid-
ence.

• For a sub-claim that cannot be immediately substantiated with
evidence, agree a strategy and sub-claims for resolving it.

• Iterate the process of establishing strategies, sub-claims, context,
assumptions, justifications etc. until all claims have been resolved,
or have been agreed to be left unresolved.

• Use an agreed notation to record the structured argument, for ex-
ample, Argument Structuring Notation (192).

Context

To Argue Instrument Fit For Purpose (189), when presenting an argu-
ment, or argument fragment. The responsibility of the Argument Mod-

eller (107).

Discussion

A Structured Argument is an informational structure composed of items
of reasoning and evidence, organised in a structured textual or dia-
grammatic way.

192 8 Structured Argumentation Patterns

The use of argument for simulation fitness-for-purpose tends to
need less rigour than, say, critical system safety case argumentation.
Except for the most critical of simulations (established in the Simula-

tion Purpose (123)), it is not necessary to substantiate every claim with
Evidence.

A structured argument starts from a top-level Claim that needs to
be substantiated. The argument structure lays out the substantiation of
the claim as a connected hierarchy of sub-claims representing a chain
of reasoning. Structured Arguments make use of the structures of Claim

(194), Strategy (196), and Evidence (197); these can be further detailed
through Argument Context (199), Justification (201), and Assumption (200).
A Claim may be resolved by Evidence, or may decomposed into sub-
claims until evidence can directly resolve them, or until an agreement
is reached (by the Domain Scientist, Domain Modeller, and Simulation En-

gineer) that the remaining claims can be left unresolved [173, 177].
Avoid over-rigorous arguments that are unnecessary for the level of

criticality. And avoid trivial arguments that do not probe the design or
add any other value.

Related patterns

Argument Structuring Notation (192) provides a notation for presenting
a structured argument.

8.3 Basic Structured Argument patterns

Argument Structuring Notation

Intent

Provide a diagrammatic or textual summary of an argument, to high-
light the structure, and provide an index into the detailed argument.

Summary

• Use the tree-based notation to record the logical structure of a Struc-

tured Argument (191)

8.3 Basic Structured Argument patterns 193

• Use this tree to provide an index into the full Structured Argument

(191)

Context

Presenting a full or partial fitness-for-purpose Structured Argument

(191).

Discussion

CoSMoS provides an Argument Structuring Notation developed from
Goal Structuring Notation (GSN) [104, 133, 225], itself developed to
represent safety arguments in the domain of safety-critical systems en-
gineering.

The nature of scientific research is somewhat different from the en-
gineering of safety-critical systems, so we find that a ‘goal’-oriented
notation is not particularly suited. This is not because research does
not have goals, but because the scientific discourse is usually based on
claims. Safety-critical systems are constructed for the purpose (goal) of
being used, and their evaluation ends through a binary decision (to
be or not to be given the go-ahead for mass-production), whereas sci-
entific research is open-ended. As Nicolesc says, “Knowledge is forever
open” [165]. Goals associate more naturally with “facts”, e.g. the sys-
tem is safe within a given context, rather than with the uncertainties of
research. Consequently, we consider an argument as aiming to resolve a
claim [3, 173, 177, 214].

This discussion does not preclude the use of CoSMoS for building
a simulation of an Engineered Domain (240), but there the desired claim
and the details of the relevant argument structure will need to be care-
fully developed.

The key components of the notation are:

• the Claim (194) of some aspect of fitness for purpose
• the Strategy (196) to be used to substantiate the claim
• the Evidence (197) that resolves the claim

The hierarchical claim structure is shown as a tree in which a Claim

links to a sub-claim or a Strategy. If a sub-claim is fully resolved, it is
linked to the Evidence that resolves it, which terminates that branch of
the hierarchy.

In addition, any component can be qualified or annotated with any
of the following:

194 8 Structured Argumentation Patterns

• Argument Context (199)

• Justification (201)

• Assumption (200)

We also adopt GSN conventions for argument modules and generic
arguments as appropriate [104].

A tree form (diagrammatic, or textual) is used to show a summary
of the structure of the argument, and to act as an index into the de-
tailed body of the argument, cross referenced by the provided identifi-
ers. An example application of this diagrammatic approach can be seen
in arguments constructed to support the implementation of a model of
immune system development [3].

Related patterns

This notation is an example of a Domain Specific Language (230).

Claim

Intent

Represent a claim in an argument.

Summary

Fig. 8.1 Diagrammatic
notation for a claim (based
on GSN Goal notation).

Claim Identifier

<Claim statement>

Textual notation for a claim:
[claim <Claim id>] <Claim statement>

8.3 Basic Structured Argument patterns 195

Fig. 8.2 Diagrammatic
notation for a claim that
is not (yet) expanded
further in the argument
structure (based on GSN
Undeveloped Entity nota-
tion).

Claim Identifier

<Claim statement>

Textual notation for an unexpanded claim:
[claim <Claim id>] <Claim statement> ^

Fig. 8.3 Diagrammatic
notation for a claim when
the argument substantiat-
ing that claim is presented
elsewhere, as a separate
structure.

Claim Identifier

<Claim statement>

Textual notation for a claim continued elsewhere:
[claim <Claim id>] <Claim statement> _

Context

In an Structured Argument (191) captured in Argument Structuring Nota-

tion (192).

Discussion

The Structured Argument always starts from a Claim. A Claim may have
associated Argument Context, Justification and Assumption. The claim
can be substantiated by a Strategy or by one or more sub-claims. The
notation and semantics of a sub-claim is the same as that for a claim: it
forms the start of a sub-argument. Additionally, however, a sub-claim
may be associated with the Evidence that substantiates it.

The claim concept is very similar to the goal concept in GSN. Like a
goal, a claim may be incomplete, and this is represented by a white dia-
mond below the claim. By the end of the argument development, there
should be no incomplete claims remaining. However, in our Argument

Structuring Notation there is no obligation to fully evidence claims in
order to finish the argument structure: it may be the case that those

196 8 Structured Argumentation Patterns

involved in the development (Domain Scientist (102), Domain Modeller

(103), and Simulation Engineer (105)) did not consider it important to re-
cord further substantiation of this part of the argument; such a claim
should be associated with ‘Evidence’ to this effect.

A Structured Argument may be developed in stages, with incomplete
claims being revised, or completed claims revisited. Where a Structured

Argument is considered to have become too large, it may be broken
down such that incomplete sub-claims in one argument tree become
root claims in other trees. The continuation of an argument is indic-
ated in the parent tree by a black diamond attached to the relevant
sub-claim.

Strategy

Intent

Outline how a Claim (194) will be substantiated; the reasoning step that
shows that the sub-claims would substantiate a claim

Summary

Fig. 8.4 Diagrammatic
notation for the strategy in
support of a Claim (based
on GSN Strategy notation):
the strategy supports the
claim, and provides a ra-
tionale for the sub-claims.

Claim Identifier

<Claim statement>

Claim Identifier

<Claim statement>

Claim Identifier

<Claim statement>

Strategy Id

<Strategy
statement>

Textual notation for the strategy in support of a claim:
[claim <id>] <Claim statement>

8.3 Basic Structured Argument patterns 197

[strategy <id>] <Strategy statement>
[claim <id>] <Claim statement>
[claim <id>] <Claim statement>

Context

In an Structured Argument (191) captured in Argument Structuring Nota-

tion (192): linked to a Claim (194).

Discussion

Whilst in principle a Claim can be directly broken down into sub-
claims, it is useful to record the Strategy for this breakdown. As in GSN,
Strategy is always in support of one Claim, but may be supported by one
or more sub-claims. The Strategy should be acceptable to the relevant
parties.

The argument fragments associated with particular strategies can
form generic argument patterns. For example, an argument of fitness
for purpose may be addressed by a three-part strategy over the ad-
equacy of domain capture, the adequacy of the software engineering,
and the quality of the simulation results. The three sub-claims that sup-
port the fitness for purpose claim are thus rationalised by the strategy.

The Strategy statement is typically worded in the form “Argument
over . . . ”, or “Argument by appeal to . . . ”

Evidence

Intent

Indicate evidence that substantiates a sub-claim.

198 8 Structured Argumentation Patterns

Summary

Fig. 8.5 Diagrammatic
notation for the evidence
that substantiates a claim
(based on GSN Evidence
notation).

statement>

Evidence Id

<Evidence

Claim Identifier

<Claim statement>

Textual notation for the evidence that substantiates a claim:
[claim <id>] <Claim statement>

[evidence <id>] <Evidence statement>

Context

In a Structured Argument (191) captured in Argument Structuring Notation

(192): linked to a Claim (194) used as a sub-claim in an argument.

Discussion

An argument is fully substantiated when all its branches end in Evid-

ence: this equates to a GSN argument in which solutions present evid-
ence of the truth of every goal in the structure. In an argument of fit-
ness for purpose of a scientific simulation, it is relatively rare to be able
to provide definitive evidence to substantiate a goal, because the sci-
ence behind many complex systems is incomplete, and the mappings to
computational structures are usually “unproven”. However, in an en-
gineering context, a simulation may be more amenable to complete fit-
ness for purpose argumentation, with evidence to support each claim.

Evidence represents the substantiation of a Claim in the sense that
those involved in the simulation accept this as the end-point. Review of
an argument structure may lead to further analysis of the basis of evid-
ence, and extension of the argument: in this case, the original Evidence
is replaced by strategy and/or sub-claims.

8.3 Basic Structured Argument patterns 199

Argument Context

Intent

Provide information about the context in which a Claim (194) or Strategy

(196) should be interpreted.

Summary

Claim Identifier

<Claim statement>

Context Identifier

<Context statement>

Fig. 8.6 Diagrammatic notation for the context of a claim (or strategy): the context
references definitions and other contextual information that is relevant to the claim
(or strategy). (Based on GSN Context notation.)

Textual notation for the context of a claim (or strategy):
[claim <id>] <Claim statement>

[context <id>] <Context statement>

Context

In a Structured Argument (191) captured in Argument Structuring Notation

(192): linked to a Claim (194) or Strategy (196).

Discussion

A Claim or Strategy may make general statements that need to be ex-
plained or elaborated by the Argument Context. For example: a Claim

that applies across a range of components may have an Argument Con-

text that states that all the relevant (types of) component(s) have been
enumerated; a Strategy that applies across a range of components may
have an Argument Context noting that each component must be con-
sidered explicitly for the Claim to be substantiated under this strategy.

The normal use of Argument Context in our Argument Structuring

Notation follows the GSN syntax, in which a context is only associated
with goals and strategies, and is a terminal concept (there cannot be

200 8 Structured Argumentation Patterns

another context, a justification or assumption directly linked to a con-
text).

Assumption

Intent

Record assumptions that must hold for a Claim (194) or Strategy (196).

Summary

Claim Identifier

<Claim statement>

Assumption Identifier

<Assumption statement>

A

Fig. 8.7 Diagrammatic notation for an assumption associated with a claim (or
strategy), used in support of the argument. (Based on GSN Assumption notation.)

Textual notation for an assumption associated with a claim (or strategy):
[claim <id>] <Claim statement>

[assumption <id>] <Assumption statement>

Context

In a Structured Argument (191) captured in Argument Structuring Notation

(192): linked to a Claim (194) or Strategy (196).

Discussion

A Claim or Strategy may depend on some Assumption to hold. In GSN, a
common argument strategy is “Argument by appeal to elimination of
all hazards”, which makes the Assumption that “All credible hazards
have been eliminated” [104]. Such an assumption may itself be subject
to a separate argument. In our Argument Structuring Notation, an argu-
ment Assumption may be used in this strict way, or may be simply be
an annotation that points out to some documented assumptions (see
Document Assumptions (109)) that affect the credibility of the Claim of
fitness-for-purpose at this point in the argument.

8.3 Basic Structured Argument patterns 201

Justification

Intent

Record the justification for a Claim (194) or Strategy (196).

Summary

Claim Identifier

<Claim statement>

Justification Identifier

<Justification statement>

J

Fig. 8.8 Diagrammatic notation for the justification of a claim (or strategy), which
can be used in support of the argument. (Based on GSN Justification notation.)

Textual notation for the justification of a claim (or strategy):
[claim <id>] <Claim statement>

[justification <id>] <Justification statement>

Context

In an Structured Argument (191) captured in Argument Structuring Nota-

tion (192): linked to a Claim (194) or Strategy (196).

Discussion

A Claim or Strategy may be used in a Structured Argument because those
involved in the simulation have some prior knowledge or are following
some defined approach. The Justification annotation allows the reason
for a Claim or Strategy to be referenced explicitly.

Unfit

Intent

Record a development weakness in an argument step

202 8 Structured Argumentation Patterns

Summary

Tag an argument step as indicating the instrument is !! Unfit, and ex-
plain the weakness

Context

Any step of a Structured Argument (191)

Discussion

When developing a fitness for purpose argument, it is quite possible
that you will discover places where the development has not been suf-
ficiently rigorous to allow the argument to progress.

In the argument, tag the uncovered weakness with !! Unfit, explain
what the development is lacking, and what needs to be provided to
allow the argument to progress. See, for example, the running example
on p.87.

8.4 Generic Argument patterns

Create Generic Argument

Intent

Generalise part of a Structured Argument (191), so that it can be instanti-
ated in different contexts

Summary

Following the GSN conventions (used but not defined in [104]), we can
create a generic argument by replacing all specific terms in all relevant
components of the argument with appropriate generic terms or para-
mters.

Context

Argument Structuring Notation (192)

8.4 Generic Argument patterns 203

Discussion

It is often the case that an argument structure is generic to particular
situations. In this case, it is useful to have a structural template that
can be instantiated.

Examples of cases where generic arguments can be suitable include
statistical tests and calibration arguments

One possible structured argument template is based on the appro-
priateness of each stage of the overall CoSMoS Simulation Project (93),
essentially capturing the argument that:

• the appropriate instrument has been built: arguing over the Domain

Model (131) sicence
• the instrument has been built appropriately: arguing over the Plat-

form Model (151) design and Simulation Platform (163) implementa-
tion

• the instrument has been used appropriately: arguing over the Sim-

ulation Experiment (179)

• the results have been interpreted appropriately: arguing over the
Simulation Behaviours (181) and Domain Behaviours (137)

This structure can be captured as a generic argument template:

[claim 1] the CoSMoS Simulation Project simulation is fit for purpose
[context 1.1] Simulation Purpose documents role and criticality
[strategy 1.2] argue over (i) the scientific domain, (ii) the implementa-
tion, (iii) the experiments, (iv) the interpretation of the results

[claim 1.2.1] the Domain Model adequately captures the Domain for
the Simulation Purpose ^

[strategy 1.2.1.1] argue over the model content and assumptions
[context 1.2.1.1.1] the documented assumptions
[justification 1.2.1.1.2] sign-off from the relevant stakeholders
[claim 1.2.1.1.3. . .] <project specific subclaims> ^

[claim 1.2.2] implementation: the implementation adequately cap-
tures the Domain Model for the simulation purpose

[strategy 1.2.2.1] argue over (i) the derivation of the Platform Model

from the Domain Model, and (ii) software engineering, testing,
and calibration of the Simulation Platform

[claim 1.2.2.1.1] derivation: the Platform Model is adequately de-
rived from the Domain Model ^

[claim 1.2.2.1.2] software engineering: the Simulation Platform is
adequately engineered ^

204 8 Structured Argumentation Patterns

[claim 1.2.3] experiments: the Simulation Experiment is adequately
performed

[strategy 1.2.3.1] argue over use within Calibration, random seeds,
analysis within the Results Model, and comparison with Domain

results
[claim 1.2.3.1.1. . .] <project specific subclaims> ^

[claim 1.2.4] interpretation of results: the Simulation Behaviours are
adequately related to the Domain Behaviours ^

Each undeveloped claim in this template need to be developed with
an argument strategy relevant to the specific simulation development.

Use Generic Argument

Intent

Instantiate a generic argument for use in a specific context.

Summary

• Check that all generic elements are correctly instantiated
• Check that Argument Context (199) is an accurate expression of the

context of the instantiated Claim (194) and Strategy (196) compon-
ents, and modify as appropriate

• Check that Assumption (200) and Justification (201) annotations are
appropriate and sufficient in the instantiated form, and modify as
appropriate

Context

Argument Structuring Notation (192)

Discussion

When a generic argument structure meets the needs to a particular ar-
gument or part of an argument, it can be inserted, instantiated, and
perhaps modified, to express the particular argument.

There are particular obligations when we use a generic argument, to
ensure that the annotations and details of the generic argument hold
for each specific instantiation.

8.4 Generic Argument patterns 205

Figure 8.9 shows a generic argument over the domain modelling,
the software engineering, and the simulation results, instantiated for
the prostate cell modelling example. An argument using this approach
is most easily constructed retrospectively, or at least after the domain
modelling phase, because it assumes a broad overview of the project
development.

A generic argument may not be very useful early in development,
because not enough is known to instantiate and extend it.

Simulation results are
consistent with results
of <scientific activity>

CLAIM 1.3

CONTEXT 1

Intended research and purpose

Context and <reference sources

(a) <domain science>
(b) software engineering
(c) results

Argued over
STRATEGY 1

CLAIM 1

Simulation of <simulation
subject>
is suitable for intended
research

of simulator defined in Research

of Research Context and Purpose>

<Domain science> of
simulation subject> is
adequately modelled

CLAIM 1.1

Software engineering of
simulator is of sufficient
quality to trust the
simulation results

CLAIM 1.2

Simulation of prostate
cancer cell behaviour
is suitable for intended
research

CLAIM 1

(a) biological basis
(b) software engineering
(c) results

Argued over
STRATEGY 1

Biology of prostate
cell behaviour is
adequately modelled

CLAIM 1.1

Software engineering of
simulator is of sufficient
quality to trust the
simulation results

CLAIM 1.2

Simulation results are
consistent with results
of lab experiments

CLAIM 1.3

CONTEXT 1

Intended research and purpose

Context, and published in CoSMoS
of simulator defined in Research

Workshop 4, 2011

Fig. 8.9 The instantiation of a generic argument over domain, software engineering
and results. It shows the top two levels of claim in such an argument, both in generic
form and in instantiated form for the prostate model. See Argument Structuring

Notation (192) and its composite patterns for explanation of notations.

Part III
The CoSMoS Helper Patterns

This part presents “helper” patterns. These are more specific patterns of use
only in certain domains, for certain purposes, or with certain modelling and
implementation approaches.

Ch.9 Modelling and implementation patterns: how to build the the models
and simulation platform

Ch.10 Real world simulation patterns: building bigger simulations

This is not an exhaustive collection of patterns relevant to building sci-
entific simulations. There will be other patterns specific to your domain.
There are many existing software engineering patterns, some of which are
referenced in the text and the endnotes.

Chapter 9

Modelling and Documentation Patterns

Abstract — In which we describe patterns covering particular modelling
and documentation techniques.

9.1 Catalogue of patterns

Modelling approaches

Agent Based Modelling

(210)

Model the system in terms of agents, their be-
haviours, and their interactions

Environment Orientation

(212)

Mediate all inter-agent communication
through the environments within which they
co-exist

Hybrid Model (213) Use the most appropriate Modelling Approach

for each part of the model

Prototype (215) Build an experimental model to explore or
test ideas

Seamless Development

(216)

Use a consistent Modelling Approach across
Domain Model, Platform Model, and Simulation

Platform, to make validation arguments sim-
pler and clearer

Shortcuts (217) Hard-code non-central mechanisms

209

210 9 Modelling and Documentation Patterns

Communication and documentation

Ask [Silly] Questions (219) Ask questions to improve understanding,
even if you think the questions will seem
trivial to the other person

Take Notes (220) Provide a record of key events

Project Repository (221) Use a project-wide repository to coordinate
the simulation project information

ODD Protocol (223) Publish the simulation details conforming to
the ODD protocol

9.2 Modelling approaches

This section presents some specific examples of a possible Modelling Ap-

proach (112). Other approaches are possible; what is important is that they
are chosen for a good fit with the Research Context (121), the Simulation Pur-

pose (123), and the structure of the Domain (125).

Agent Based Modelling

Intent

Model the system in terms of agents, their behaviours, and their inter-
actions.

Summary

• identify components and model as individual agents, with state
and behaviour

• identify and model interactions between agents
• identify and model the environment, and how agents interact with

it

Context

One possible choice of Modelling Approach (112).

9.2 Modelling approaches 211

Discussion

Agent Based Modelling (ABM) is a standard and well-established com-
putational modelling technique. It provides a model expressed in terms
of a population of agents, which can have state and behaviour, and which
interact with other agents and their environment. This approach is also
known as multi-agent simulation, and as Individual-based modelling1

(IBM) [102].
The agent may be an atom or molecule, it may be a biological cell,

it may be an organism, it may be a human agent, it may be an artefact
such as a road vehicle or a building, it may be a star or a galaxy. Agents
may act, react, and interact; their interactions may be determined by
laws of physics or biology, or they may be governed by the rules used
by intentional agents.

Agents more complex than atoms or small molecules have internal
state. This can be modelled using state diagrams. These are the indi-
vidual behaviours that will be implemented in the simulation.

Interactions between agents can be modelled using, for example,
activity diagrams or Petri nets. These are the interaction behaviours
that will be implemented in the simulation.

Growth – a change in the number of agents – can be modelled using
growth grammars such as L-systems, or using Petri nets.

Some ABMs may comprise only agents. However, many will have
a (non-agent-based) environment. It too must be simulated, and hence
modelled. The choice of whether something is an agent or part of the
environment is a modeling decision.

ABMs can exhibit high level system, or emergent, properties. These
are typically the kind of behaviours seen in the Domain (125), and hypo-
thesised to be emergent consequences of the agent behaviours. These
properties should not be implemented in the simulation, but captured
in the Domain Behaviours (137) model. If the hypotheses are correct, sim-
ulated analogues of these behaviours should emerge.

More on the background and philosophy of ABM can be found in
[32]. Examples of ABMs abound. In biology, they are used to model
everything from cells and bacteria, stigmergic systems, to ecology and
population dynamics. In the social sciences, they are used to model
cities [23], for simple world models such as Sugarscape [63], and as a
general description of technique [87].

212 9 Modelling and Documentation Patterns

The CoSMoS approach is modelling language and implementation
language independent. It can be used with ABM libraries and frame-
works such as NetLogo, MASON or FLAME2.

Related patterns

Environment Orientation (212) is a way of modelling agent interactions
mediated by their environment.

Environment Orientation

Intent

Mediate all inter-agent communication through the environments within
which they co-exist.

Summary

• represent all agent communication as being mediated by the envir-
onment

• move environment-specific information (for example, location, ori-
entation, local chemical concentration levels) from agents into the
environment

• as the environment mediates communication, use it to for a simu-
lation of real world physics

• allow agents to exist simultaneously in multiple environments,
thereby allowing a rich world to be simulated

• allow agents to merge information from their multiple environ-
ments into a complete picture (from their point of view) of the
world and other agents

Context

A possible choice of Modelling Approach (112), as a variant of Agent Based

Modelling (210).

Discussion

In standard Agent Based Modelling, there is frequent reference to com-
munication between agents. However, communication between Do-

main agents is mediated their environment. For example, one flocking

9.2 Modelling approaches 213

bird sees another because the former receives photons from the envir-
onment, which has transmitted them from the seen bird. The environ-
ment controls the direction of the photons (they might be refracted be-
cause of the medium they are in), how many there are (taking account
of the inverse square relationship with distance, and atmospheric ab-
sorption), etc.

When using Environment Orientation, all agent communication is me-
diated by the environment. Agents deposit information into the envir-
onment, and retrieve it from the environment.

Agents might be able to communicate simultaneously in multiple
environments. For example, flocking birds might communicate both
by light and by sound. These separate environments might have very
different effects on the communications they mediate; that for light
could relatively easy transfer information about direction, while that
for sound, especially low frequency sound, only transfers partial direc-
tion information.

When multiple environments are used to mediate communications,
explicit consideration is given to merging the information, in the con-
text of each agent, from those environments. The information in each
environment is expressed in the context of a particular accuracy and
resolution in the dimensions of the environment; for example, some en-
vironments might be 2 dimensional, some 3 dimensional. When com-
bining this information the agent must use the multiple observations
to build up a more complete “picture” of the complete world.

For more information on Environment Orientation, see [117].

Related patterns

Implementation Approach (161): Full environment orientation may not be
compatible with the way in which some Agent Based Modellinglibraries
support agents; for example, they may require location to be an inher-
ent characteristic of agents, or may be unable to support more than one
environmental model, or may not support processing at the environ-
ment level.

Hybrid Model

214 9 Modelling and Documentation Patterns

Intent

Use the most appropriate Modelling Approach (112) for each part of the
model

Summary

• choose an appropriate Modelling Approach (112) for each of the vari-
ous components and aspects of the system

• define in a rigorous manner how the approaches combine

Context

When choosing a Modelling Approach, if a single notation cannot ex-
press particular concepts without significant change or extension, or if
it leads to unwieldy or difficult-to-read models.

Discussion

A hybrid model uses an appropriate kind of Modelling Approach for
each aspect of the system.

When using more than one notation or modelling approach, it is im-
portant to record how the approaches are integrated: are there common
modelling concepts between the approaches? does a stimulus from one
kind of model form an input in another kind of model?

Hybrid models may be intra-model (more than one kind of model at
the same stage of the CoSMoS process) or inter-model (different kind
of models at different stages of the process). In our prostate running
example (chapter 3), we use Petri nets to model a reactive system with
state machines to model transitional aspects (intra-hybrid); how these
models formally combine and relate is defined in [60]. The Platform

Model (151) for a Java based implementation would then require us to
derive a class diagram (inter-hybrid).

Other examples of hybrid models include a model of plant growth
using L-systems combined with an ODE formulation of hormone trans-
port [180], and a combination of Geographic Information Systems (GIS)
and ABM for simulating social and ecological processes [88].

Related patterns

A hybrid model can be seen as a form of Domain Specific Language

(230), in which the semantics of one or more notations are modified

9.2 Modelling approaches 215

and linked to form a coherent variant of the original notations that can
cleanly express the assorted characteristics (e.g. reactive, transitional,
structural, behavioural) of the domain or platform.

The parts of a hybrid model might be linked through a Metamodel

(236).
Different models might be appropriate for different domains in a

Multi-domain Simulation (244), or at different scales in a Multi-scale Sim-

ulation (245).

Prototype

Intent

Build an experimental model to explore or test ideas.

Summary

• develop a prototype, or sketch, of the problem and proposed solu-
tion

• factor the information discovered into the relevant models
• throw the prototype away and start again from what has been

learnt; do not use it as the basis of a Multi-increment Simulation (242).

Context

During the Discovery Phase (95) and Development Phase (96).

Discussion

Modelling is a non-trivial activity, and there may well be false starts
and blind alleys. Sometimes there are several options, and the best
one can be found only by trying them out and comparing them. Some
experimentation can be done without using the same level of rigour
needed for the full development. But it must be recognised that these
experimental models are fit only for the purpose of exploration, not as
part of the final system.

So such experiments should be done as explicit prototypes, with the
intention of being thrown away once they have served their purpose.

A Prototype can be used for many purposes, such as deciding on a
modelling approach, scoping the domain model extent, understanding

216 9 Modelling and Documentation Patterns

resource requirements, testing platform architectures, and structuring
arguments.

Related patterns

Controlled prototyping contrasts with Tweaking Code (185).

Seamless Development

Intent

Use a consistent Modelling Approach (112) across Domain Model (131),
Platform Model (151), and Simulation Platform (163), to make validation
arguments simpler and clearer.

Summary

Choose notations that are as conceptually similar as possible to express
the various models.

Context

A component of the Domain Model (131), Platform Model (151) and Simu-

lation Platform (163).

Discussion

A system that had a Domain Model expressed as ODEs, a Platform Model

expressed in UML, and a Simulation Platform implemented in a func-
tional programming language would require considerable argumenta-
tion to ensure nothing had been lost or gained in transitioning between
these.

Having a single conceptual notation running through (for example,
UML for both Domain Model and Platform Model, and an object ori-
ented implementation language for the Simulation Platform), reduces
the risk of introducing errors in translation, and makes the argumenta-
tion easier.

However, model clarity should not be sacrificed for this purpose.
In our prostate running example (chapter 3), the Domain Model uses
Petri nets to model a reactive system with state machines to model

9.2 Modelling approaches 217

transitional aspects; how these models formally combine and relate is
defined in [60].

There is more to Seamless Development than using the same notation.
The structure of the models should also be as close as possible. For ex-
ample, even if expressed in the same notation, a Domain Model and the
Simulation Platform might potentially have very different concurrency
structures, requiring considerable argumentation to demonstrate cor-
respondence.

If the seamlessness has to be broken somewhere between the Domain

Model and the Simulation Platform implementation (because their nota-
tions are quite different), then it is preferable to have as much seamless-
ness as possible between the Platform Model and the Simulation Platform

(their repsective notatins as close as possible; for example, UML and
an OO programming language). The closer to the implementation, the
more low-level detail is in the models, and the harder it is to argue fit-
ness for purpose. Therefore the link should be kept as straightforward
as possible. Breaking seamlessness at the more abstract level, between
Domain Model and Platform Model, should be relatively easier to argue
valid.

Related patterns

Use a Domain Specific Language (230), to ‘compile’ from one notation to
another.

Contrast Hybrid Model (213).

Shortcuts

Intent

Hard-code non-central mechanisms.

Summary

• decide which properties should be emergent, and which mechan-
isms can be hard-coded.

• Document Assumptions (109) to justify these decisions

218 9 Modelling and Documentation Patterns

Context

Scoping decisions related to the Research Context (121), and design de-
cisions when moving from Domain Model (131) to Platform Model (151).

Discussion

Certain components need to be added to the Platform Model (151), par-
ticularly to simulate features of the domain taken as “given”, such as
the underlying “physics” of the Domain (125). Some of these might be
included in the Domain Model (131) as properties of the system, but in
the Platform Model, a decision needs to be made on how to simulate
them.

Computational resources are limited, and not everything can be sim-
ulated in detail. It is necessary to hard-code some properties and laws
at certain levels, rather than letting them all emerge from lower levels.

Some hard-coding is needed to implement features of the lower
levels not being investigated, but needed in the simulation. These lay-
ers are sometimes called the “physics” of the simulation. These may
include, for example, transport and movement mechanisms, where
agents are moved by the simulation, rather than that movement emer-
ging from lower level mechanisms.

Some hard-coding is needed even at the examined (emergent) levels,
in order to provide some of the behaviours at those levels. This may in-
clude, for example, reproduction: the simulation makes new agents,
rather than their creation being the result of some emergent mechan-
isms.

These hard-coded mechanisms are dubbed “shortcuts” [22]. Proxies
and surrogates are also a form of shortcut.

It is important to ensure that any hard-coded mechanisms do not
then “code in” any desired emergent properties. It is therefore import-
ant to Document Assumptions (109), paying particular care to examine
the consequences of what conclusions can be drawn from the simula-
tions results, and to justify why the chosen hard-coding will not inval-
idate the Simulation Purpose (123).

Related patterns

Environment Orientation (212) is a pattern for shortcutting a lower level
“physics” transport layer.

Ensure that any shortcut does not Program In the Answer (172).

9.3 Communication and documentation 219

9.3 Communication and documentation

Good communication and documentation practices are crucial to a success-
ful simulation project. Cross-disciplinary work involves much communica-
tion between the disciplines, and much unfamiliar material needs to be ab-
sorbed and understood. Domain (125) issues well-understood to the Domain

Scientist (102) need to be communicated to the Domain Modeller (103), suffi-
cient for building appropriate models. Software issues well-understood by
the Simulation Engineer (105) need to be communicated to the Domain Scient-

ist (102), sufficient for understanding and agreeing simulation comprimises.
The Argument Modeller (107) needs to communicate what evidence is needed
to build a convincing argument to the entire team.

Good documentation strategies for software engineering [193] can be ad-
apted for the full simulation project. Multiple aspects require some form of
documentation:

• meetings between project members
• models
• links between models
• software
• results and analysis
• design decisions: their justifications and consequences
• problems and issues to be resolved
• argumentation

In addition to these standard issues, some CoSMoS-specific patterns are
noted here.

Ask [Silly] Questions

Intent

Ask questions to improve understanding, even if you think the ques-
tions will seem trivial to the other person

Summary

• take asking questions, and answering them, seriously.
• use the opportunity when defining core terms, especially for the

Glossary (130)

• use the opportunity to challenge assumptions

220 9 Modelling and Documentation Patterns

Context

When people with different Roles (99) are interacting.

Discussion

The Simulation Engineer (105) and the Domain Scientist (102) have dif-
ferent background and expertises. What may seem obvious to one is
often not at all obvious to the other. Non-experts may have naive mis-
understandings of the subject. However, people are often reluctant to
ask what they think might be perceived as a naive question.

The team needs to work together to understand assumptions and
limitations. It is important to culture an environment in the project
where people feel able to ask such questions. Sometimes an apparently
naive question can lead the expert to re-evaluate their understanding:
the question is being asked from a different perspective, and might
highlight a tacit assumption.

As questioner, you should ask follow-up questions to test your un-
derstanding of the answers. As answerer, you should monitor the
follow-up questions; if questions continue when you think they have
been answered, or go off in an unexpected direction that might indicate
a misunderstanding, probe what the misunderstanding is, and become
the questioner yourself: “why did you ask that question?”

Related patterns

Trust between the Roles (99) should foster an atmosphere where ques-
tions can be asked and answered seriously.

Beware the blind trust of the Uncritical Domain Scientist (145) or Un-

critical Domain Modeller (145): you are not asking enough questions.

Take Notes

Intent

Provide a record of key events

Summary

• appoint a Scribe for each meeting
• make a note of all the relevant issues

9.3 Communication and documentation 221

• store notes for future reference

Context

When people with different Roles (99) are interacting.

Discussion

A CoSMoS Simulation Project (93) involves a lot of facts, definitions, data
and information sources, decisions, arguments, and more. It is crucial
to keep a record of these, both for future reference, and to help new
members joining the team, particularly when revisiting assumptions,
and for a Multi-increment Simulation (242).

Take notes in meetings between members with different Roles. These
can include paper notes, photographs of whiteboard diagrams, links
to information, and more. In some cases, it may be appropriate to re-
cord meetings, although the overhead of transcribing, or searching, a
recording can be high.

One of the useful sub-Roles is that of Scribe: this should be assigned,
or volunteered, for each meeting. This role’s responsibility is to ensure
all the key points are captured, stored in the Project Repository (221) for
future reference, and summarised to allow absent members to catch
up.

Project Repository

Intent

Use a project-wide repository to coordinate the simulation project in-
formation.

Summary

• set up a project-wide repository
• decide what aspects of the project to document
• store all relevant information in the repository
• make repository accessible to all project members
• decide what parts of the repository should have public access

222 9 Modelling and Documentation Patterns

Context

Organising the documentation (meeting notes, models, diagrams, ar-
guments) for a CoSMoS Simulation Project (93).

Discussion

The Project Repository should be planned and used to store all project
documentation in a form that is accessible to all project members. De-
pending on the size of the project, and background of the project mem-
bers, this repository may be, for example, a shared directory, a shared
wiki, or a generic repository.

A shared storage structure (such as a shared drive or a wiki) provides
a fluid and agile means of holding documents and records of meetings.
Some shared spaces can be customised to a particular structure defined
in your House Style (231). A good shared space supports collaborative
effort, and the detailed structure develops and emerges naturally [149].
There are also shared storage structures with associated project man-
agement functions (for example, Trello). A shared space with logging
to allow changes to be tracked, and rolled back if necessary, is useful.

Version controlled repositories sucha as GitHub, or bitBucket, ori-
ginally designed for code, can be used to store and version-control all
project documents along with code. Such repositories are usually suit-
able for a large project. However, repositories may be seen as hard to
access by less technical members of the team; it is important that all
project team members can easily enter and access all project document-
ation.

Large simulation projects need more than just an appropriate shared
storage: formal documentation processes are needed to ensure that all
material is appropriately stored and that the relevant project members
are notified of changes.

Design your repository with suitable access controls. If you are en-
gaging in a Open Science project (see p.40), the entire Project Reposit-

ory could be made publicly visible. A simulation associated with com-
mercial development may be allowed to make only certain documents
publicly available.

Related patterns

Combine with the use of a Version Control (114) system to ensure that
different versions of models, code, data, arguments, and other doc-

9.3 Communication and documentation 223

umentation are synchronised. Document the approach taken in your
House Style (231).

Take Notes (220), and store them in the Project Repository.

ODD Protocol

Intent

Publish the simulation details conforming to the ODD protocol.

Summary

Extract ODD protocol information from the CoSMoS documentation.

Context

Publishing your simulation description in a standard format.

Discussion

The ODD (Overview, Design concepts, Details) protocol [100, 101] has
been devised as a standard way of describing simulation models (par-
ticularly in the ecological domain), specifically to aid reproducibility of
implementation.

A CoSMoS Simulation Project (93) contains all the information needed
to give an ODD protocol description. The ODD protocol information
is only part of the entire CoSMoS model set: it is mostly contained in
the Domain Behaviours (137), Platform Model (151), Data Dictionary (134),
and the Research Context (121). It explicitly does not cover Results Model

(176) features of Simulation Experiment (179) and Sensitivity Analysis (177):
it considers these to be the “methods” part of a description; the ODD
protocol covers only the “materials” part of a standard scientific article
[100]. Also, it is more concerned with the implemented model, so does
not distinguish the concepts of Domain Model (131) and Platform Model

(151). “Although the protocol was designed for ABMs, it can help with
documenting any large, complex model” [101].

In addition to the explicit material noted in the table below, the ODD
protocol also recommends making the source code (that is, the Simula-

tion Platform (163)), available, and using code comments to highlight the
various parts of the protocol information [100].

224 9 Modelling and Documentation Patterns

In the table below, the thumbnail description of each ODD protocol
component is abstracted from [100–102, 181], which contain fuller de-
scriptions and explanations of the purpose and role of each component.
The headings follow the revised protocol in [101]. This table outlines
where the ODD protocol information appears in a CoSMoS model; for
more detail see [201].

ODD
heading

ODD component CoSMoS location

purpose why the model was developed;
what is to be used for

Simulation Purpose

(123)

entities,
state
variables
and scales

“what the model world is”

entities the different types of agent,
including the environment; any
hierarchical collective structure
of agents (cells, organs,
organisms; individuals,
communities; etc) that have
their own identity and
behaviour

Platform Model (151)

class diagram:
relationships between
agent classes

state
variables

the agents’ state variables or
attributes (characterising
individual properties,
parameter sets, strategy or
behavioural choices, etc),
including units

Platform Model (151)

class diagram: agent
instance variables

scales lengthscales (for a spatial
model; for example, grid size
and number of grid cells) and
timescales (what real time a
timestep represents; the number
of timesteps)

Data Dictionary (134),
Space Model (157),
Time Model (160)

9.3 Communication and documentation 225

process
overview
and
scheduling

“how the model world
changes”: what the agents do
(growth, movement,
reproduction, etc) and their in
what order (the order in which
state variables are updated,
synchronous or asynchronous,
concurrency); how time is
modelled (discrete v
continuous)

Platform Model (151)

components
expressed as activity
diagrams and state
diagrams, or as
pseudocode (as
recommended in
[101])

design
concepts

(see [181],[102, ch.5])

basic
principles

concepts, theories, hypotheses
and modelling approaches
underlying the design

Research Context (121)

and Domain (125)

(general concepts);
Domain Model

(131)(theories and
hypotheses); Modelling

Approach (112)

emergence system level phenomena that
emerge from the individual
behaviours, rather than being
imposed

Domain Behaviours

(137), not carried over
to Platform Model (151)

adaptation rules for making decisions and
changing behaviour

relevant Domain

Model (131) entity
behaviours

objectives measures of an agent’s success
(fitness, utility); criteria agents
use to achieve this

relevant Domain

Model (131) entity
behaviours

learning how agents change their
adaptive traits

relevant Domain

Model (131) entity
behaviours

prediction how an agent predicts future
consequences in order to make
decisions

relevant Domain

Model (131) entity
behaviours

226 9 Modelling and Documentation Patterns

sensing what state variable values (of
itself, and of the environment)
does an agent have access to, to
guide or influence its behaviour

Domain Model (131)

entity sensors;
Platform Model (151)

class diagram,
relationships;
Environment

Orientation (212) model
(if used)

interaction direct and indirect interactions
between agents; representation
of communications

Domain Model (131)

entity interactions;
Platform Model (151)

class diagram,
relationships;
Environment

Orientation (212) model
(if used)

stochasticity what real world variability is
modelled by randomness

Stochasticity Model

(156)

collectives collections of agents that
behave as entities in their own
right; which are emergent, and
which are explicitly modelled

emergent entities in
Domain Behaviours

(137); explicitly
modelled collections
in Platform Model (151),
often as Shortcuts (217)

observation what data is collected from a
simulation run for analysis

Simulation Experiment

(179) and Results Model

(176) entries in Data

Dictionary (134)

9.3 Communication and documentation 227

initialisation initial state of simulation at
t = 0 (number and state of
agents and environment)

Data Dictionary (134)

for Simulation

Experiment (179)

input data data that drives environmental
variables (such as rainfall or
harvesting regimes) [100],
imported from external files or
models

Data Dictionary (134)

for Simulation

Experiment (179)

submodels “how the model world changes,
in detail”: mathematical
equations, rules, parameters
that define the processes

Platform Model (151)

implementations of
Domain Model (131)

definitions

The documentation resulting from a CoSMoS Simulation Project (93)

contains places for all the information needed to document an ABM
using the ODD protocol. Hence CoSMoS can be used to develop ODD-
compliant simulations. However, the material is scattered through sev-
eral CoSMoS artefacts. If the ODD protocol is to be used to present
the results of a CoSMoS-developed Simulation Experiment (179), then it
would be sensible to devise some project standards and Project Repos-

itory (221) structure that specifically tag and make accessible the ODD-
relevant information in each of the CoSMoS artefacts.

Chapter 10

Real world Simulation Patterns

Abstract — In which we describe patterns for real world issues: large scale,
messy, incremental developments; composing simulations; using metamod-
els

10.1 Catalogue of patterns

Development process

Domain Specific Language

(230)

Use a special purpose small language to cap-
ture domain structures, to aid communica-
tion and ease development

House Style (231) Define a house style for specific use of CoS-
MoS

Partial Process (232) Use only part of the overall CoSMoS ap-
proach

Post Hoc (234) Reverse engineer the CoSMoS artefacts

Refactor (235) Modify a model, code, or argument to im-
prove its structure, without changing its
meaning

Metamodel (236) Build a model of a model

229

230 10 Real world Simulation Patterns

Engineered systems

Engineered Domain (240) Build a simulation of an engineered rather
than natural domain

Embodied Simulation (241) Embody a Simulation Platform in a robot, or in
a robot swarm

Large scale development

Multi-increment

Simulation (242)

Develop the project in small manageable in-
crements

Multi-domain Simulation

(244)

Develop a project that encompasses multiple
distinct domains

Multi-scale Simulation (245) Develop a project that encompasses multiple
distinct levels or scales.

10.2 Development process

Domain Specific Language

Intent

Use a special purpose small language to capture domain structures, to
aid communication and ease development.

Summary

Choose an appropriate existing DSL, or (for experts only) design and
use a new DSL specific to the project.

Context

When constructing the Domain Model (131).

Discussion

By Domain Specific Language (DSL) we here mean a modelling language
defined for use in a specific Domain. A DSL may be more appropriate
for building all or part of the Domain Model than a general purpose lan-

10.2 Development process 231

guage such as UML, if it is tailored to capturing the particular domain
properties in a more natural manner. Thus use can ease communication
of the model to the Domain Scientist (102).

Existing DSLs can be used or modified, such as the combination
of Petri nets and state diagrams used in the case study presented in
chapter 3. New DSLs can be developed [75], but this is a non-trivial
task, and should be undertaken with care.

DSLs are common in computer programming1, developed to aid
specific computational tasks; they include such languages as LATEX for
document preparation, TikZ for creating graphics, and awk for data
manipulation. Specific domains may have their own DSLs; for ex-
ample, SBML (Systems Biology Markup Language)2, can be used to
represent models in a machine-readable format.

Human-readable modelling languages are needed for communica-
tion at the domain model level, and so tend to be diagrammatic. There
needs to be a careful trade-off between being so informal that the DSL
is actually just a Cartoon (126) with no well-defined meaning, and being
so formal that the language becomes so swamped with detail that it
becomes hard to use, and makes the models hard to understand.

Related patterns

Use a Metamodel (236) to define the concepts in the DSL.
Argument Structuring Notation (192) is a DSL for presenting fitness-

for-purpose arguments.
Use of a DSL works against Seamless Development (216), unless the

DSL can be used throughout the development.

House Style

Intent

Define a house style for specific use of CoSMoS.

Summary

• instantiate certain patterns with specific cases
• document variant use of patterns
• add new patterns
• revisit the House Style after each CoSMoS Simulation Project (93)

232 10 Real world Simulation Patterns

Context

During and after completion of a CoSMoS Simulation Project (93)

Discussion

After having developed several simulations using CoSMoS, you dis-
cover you have made some repeating decisions, and variations to the
process. For example, you might use a particular Version Control (114)

system, have a common structure for the Project Repository (221), use a
particular Modelling Approach (112) and Implementation Approach (161),
omit certain steps, or include extra steps that are necessary in your re-
search domain.

Document these decisions and variations of the standard CoSMoS
approach as modified or new patterns, to form your House Style. This
will simplify future projects, and provide guidance for new project
members. Revisit and update your House Style after the completion of
each project, to keep it up-to-date, and to gain the most from your ex-
perience.

These modified and new patterns should include a step to check that
the documented decision is still valid for the new project, to avoid One

Size Fits All (144).

Partial Process

Intent

Use only part of the overall CoSMoS approach

Summary

Use the Research Context (121) to tailor which parts of the overall CoS-
MoS approach to exploit.

Context

An approach to the overall CoSMoS Simulation Project (93)

Discussion

Sometimes there is no need, or no time, to carry out an entire CoSMoS

Simulation Project (93). In such cases, use the Research Context (121), and

10.2 Development process 233

if appropriate the Simulation Purpose (123), to determine what parts of
the approach to exploit, and what parts can be safely dropped. Dif-
ferent circumstances will result in different tailorings. (See [147] for
a more detailed discussion of tailoring a development process.) Ex-
amples include:

• Part of the domain. Particularly when the domain is large and com-
plex, you might choose to focus effort on a subdomain, in order to
understand that in more depth, and mimic the remainder using
‘proxy’ inputs, such as from experimental data, or user input. In
socio-technical systems, simulating just the technical part, and re-
cruiting typical users to provide a ‘live’ model of the socio part, can
alleviate problems of simulating intelligent reflective actors.

• Model only. Sometimes all that is needed is a domain model. This
might provide sufficient insight so that a simulation is not ne-
cessary, or it might demonstrate that the domain is not yet well-
enough characterised for building a simulation.

• The above tailorings may be combined, where parts of the domain
are modelled only, and other parts are also simulated. In this case,
the model can help guide the simulation experiments, or coordin-
ate multiple subdomain simulations. See the example discussed in
Multi-scale Simulation (245).

• No Argumentation. Due to resource limitations, you may decide
not to Argue Instrument Fit For Purpose (189). If so, at least this de-
cision should be argued. And if so, do not neglect to Document As-

sumptions (109): these are a crucial part of the modelling process,
and invaluable when you come to build on the project later.

Other tailorings are possible, depending on the Research Context

(121).

Related patterns

A tailoring may be Post Hoc (234), starting from artefacts not developed
using the CoSMoS approach.

If you use the same tailoring on multiple CoSMoS Simulation Pro-

jects, add it to your House Style (231).

234 10 Real world Simulation Patterns

Post Hoc

Intent

Reverse engineer the CoSMoS artefacts

Summary

Tailor the CoSMoS approach to develop the required artefacts in an
appropriate order.

Context

An approach to the overall CoSMoS Simulation Project (93)

Discussion

A CoSMoS Simulation Project states which core artefacts (models, code,
arguments, etc) are needed, but these do not need to be produced in a
specific order. The standard approach is to proceed through Discovery

Phase (95) to Development Phase (96), to Exploration Phase (97), but other
orders are possible. The most obvious of these choices is whether to
Argue Instrument Fit For Purpose (189) during or after the rest of the
development.

Another case where artefacts may be developed in a different order
is when a Simulation Platform (163) exists that was not developed us-
ing the CoSMoS approach. If this is to be used as the basis of a further
development using the CoSMoS approach, reverse engineer a Platform

Model (151) and Domain Model (131) from the Simulation Platform code
and any design documentation available. This will almost certainly un-
cover undocumented assumptions, and may uncover hard-coding of
Domain Behaviours (137). When reverse engineering in this way, rather
than faithfully replicate exactly what is in the code, develop an appro-
priate Domain Model and Platform Model, with the agreement of the
Domain Scientist (102). Then amend the Simulation Platform to be con-
sistent with these agreed models, and, if appropriate, rerun each Sim-

ulation Experiment (179) to determine the effect of the code changes on
previous results. These models and the amended Simulation Platform

are then suitable artefacts to form the baseline for the next increment
of a Multi-increment Simulation (242).

10.2 Development process 235

Not all reverse engineering is done to develop a new increment. It
may be used to uncover and analyse the assumptions and models in
a given simulation, and to reimplement an existing system. This ap-
proach is used in [1] to analyse Schelling’s model of segregation.

Andrews and Stepney [12] report the reverse-engineering of a Plat-

form Model and Domain Model for Aevol, a sophisticated artificial evol-
ution simulator. The aim in that case was to extract a Metamodel (236),
in order to develop a different, but related, simulator.

Other reverse-engineering approaches can be tailored, depending
on the Research Context (121).

Related patterns

A tailoring may be a Partial Process (232), not developing all the core
artefacts.

Refactor

Intent

Modify a model, code, or argument to improve its structure, without
changing its meaning.

Summary

Change the structure of a CoSMoS artefact without changing its mean-
ing, to improve its structure, or to support a proposed subsequent
modification.

Context

Any time during the CoSMoS Simulation Project (93) when an artefact
(model, code, argument) needs to be modified.

Discussion

When engaged in CoSMoS Simulation Project (93), there will be times
when changes are needed: errors may be discovered; new concepts or
functionality may need to be added; features may need to be removed.
Make these changes in a controlled manner, across the various inter-
connected models and arguments.

236 10 Real world Simulation Patterns

Make changes incrementally, to help control complexity. Changes
can be classified as changes of meaning (fixing a bug, adding functional-
ity), and changes of structure (modifying the component without chan-
ging its meaning, so that a subsequent change of meaning can be made
more easily). To change structure without changing meaning, Refactor

(235) the artefact, be it glossary, models, experiments, code, or argu-
ments.

Propagate the refactoring change through the project, to ensure all
the artefacts are consistent. For example, a concept might be renamed:
propagate the new name through the Glossary (130), the models where
it is used, the code where it is implemented, and the arguments where
it is referenced. Make several small changes, propagating each one
fully before doing the next, rather than one large change, to reduce the
chance of introducing errors.

Code refactoring is discussed in [72], and refactoring code to pat-
terns in [134]. These code ideas can be adapted to refactoring models,
and especially refactoring them to patterns such as the ones that form
the CoSMoS Simulation Project.

Related patterns

This pattern is a key part of Multi-increment Simulation (242), but can be
used at any time a change is needed.

Metamodel

Intent

Build a model of a model.

Summary

• decide if an explicit metamodel is needed for the chosen Modelling

Approach (112)

• design the concepts needed in the modelling approach
• design a semantics and syntax for the modelling approach, as ap-

propriate

Context

• defining a Domain Specific Language (230)

10.2 Development process 237

• linking the Domain Model (131), Platform Model (151) and Results

Model (176)

• linking the components in a Hybrid Model (213)

• linking the components in a Multi-domain Simulation (244)

• linking the levels in a Multi-scale Simulation (245)

Discussion

The CoSMoS Simulation Project (93) is based on the use of models. A
model captures the relevant concepts in a particular language: the Do-

main Model captures the concepts in the domain of interest; the Platform

Model captures the concepts to be implemented in the Simulation Plat-

form (163) code. A Metamodel provides the analogous concepts for writ-
ing a model: it defines the kinds of things that can occur in the model
(it is the model of the model) [139, ch.8].

A Metamodel may be implicit, semi-formal, or fully formal. Compu-
tational models are more likely to have formal metamodels.

Each Modelling Approach (112) has its own Metamodel. For example,
in an Agent Based Modelling (210) of a system with emergent proper-
ties, the Metamodel could include concepts such as Agent, Rule, and
Emergent. For a different style of model, such as an ODE model, the
Metamodel could include different concepts, such as Concentration and
RateOfChange.

When designing a new modelling approach, it can be helpful to
make the metamodel explicit [22]. For example, when using or design-
ing a Domain Specific Language (230), a Metamodel can be used to define
the concepts of the DSL.

For example, consider the Metamodel for Petri nets used in prostate
example (chapter 3). A Petri net is a bipartite graph with two types of
(named) nodes, places and transitions, joined by arcs. Places can hold
tokens; tokens are produced and consumed in transitions. (Since the
graph is actually a direct graph, we could refine this Metamodel further,
for arcs entering and leaving the places and transitions; we choose not
to do so here.) Note that there are many constraints not explicitly rep-
resented in this model: a token in a place was produced by a transition
connected to that place by an arc; the graph is connected; names are
unique; and so on. For a full DSL, these constraints would also need to
be specified.

238 10 Real world Simulation Patterns

Fig. 10.1 Petri net
metamodel. Places and
Transitions have Names.
Each Arc joins one Place
and one Transition; Places
and Transitions may have
multiple Arcs. Each Token
is held in one Place; it was
the output produced by
one Transition, and can
be the input consumed by
one Transition. Transitions
can consume and produce
many Tokens.

Consider the Metamodel for state diagrams used in prostate ex-
ample. Again, there are many constraints not explicitly represented in
this model, for example, the need for unique names; that a transition
cannot join an entry node to an exit node.

Fig. 10.2 State diagram
metamodel. Entries, States,
and Exits all have Names.
States can have sub-states.
A Transition connects
Entry, State, and Exit
nodes. A Transition has
one source (Entry or State),
and one target (State or
Exit).

If we want to formally link the Petri net Metamodel and the State
diagram Metamodel for their use together as a Hybrid Model (213) in the
prostate example, we could note that the state diagram Entry and Exit
names are the same as Petri net Place Names, but we would have to
rename one of the Transitions, as they are different concepts.

The CoSMoS Domain Model and Results Model share a common
Metamodel. This does not mean that the two models are identical; it

10.2 Development process 239

means that they are cast in the same language. The Domain Model has
instances of Metamodel concepts that capture specific Domain concepts;
the Results Model has instances of simulation analogues of those Domain

concepts. So where an agent-based Domain Model may have a Bird, the
Results Model will have a Boid, the simulation analogue of Bird; both
are instances of the agent-based Metamodel concept Agent. The Results

Model has Data instances, which stand in the same relation to its Agent
instances as they do in the Domain Model (so if the Domain Model has
bird positions and velocities, the Results Model has the corresponding
boid positions and velocities). This allows a direct comparison of the
models in Domain terms.

The Metamodel of the Platform Model is different from Metamodel of
the Domain Model and Results Model. In particular, it has no Emergent
concept; it is important that there is no way to program the desired an-
swer into the simulation: it must emerge. (If the Research Context is not
concerned with emergent properties, but some other kind of property,
it is equally important to ensure that this other property does not get
programmed in to the simulation.)

platformdomain,

results

Agent

Env

Emergent

Rule

DataMeasure Instrument

Interface

Fig. 10.3 A CoSMoS metamodel for agent-based simulation. The dashed boxes in-
dicate the components of the metamodel that are used to describe the domain and
results models, and the platform model. From [14, fig.3]

Related patterns

The CoSMoS Metamodel demonstrates an approach to using a meta-
model to formally link disparate models, as may be used in a Hybrid

240 10 Real world Simulation Patterns

Model (213), in a Multi-domain Simulation (244), or in a Multi-scale Simula-

tion (245).
Seamless Development (216) is aided by using a Modelling Approach

(112) and Implementation Approach (161) with related metamodels.

10.3 Engineered systems

Although most of the examples in this book are about modelling natural
biological systems, CoSMoS can be applied to building a simulation of any
system: physical, biological, social, engineered. Here we present two pat-
terns appropriate for engineered systems.

Engineered Domain

Intent

Build a simulation of an engineered rather than natural domain

Summary

Use the standard CoSMoS approach, but interpret a disagreement be-
tween results and domain differently.

Context

An approach to the overall CoSMoS Simulation Project (93).

Discussion

The standard CoSMoS Simulation Project (93) assumes that the Domain

(125) is a natural system, and that the overarching Simulation Purpose

(123) is to investigate hypotheses about that system, to gain deeper un-
derstanding. If a Simulation Experiment (179)’s results disagree with do-
main experiments or observations, this suggests there may be some-
thing missing or wrong with the Domain Model (131), and that it does
not capture the Domain adequately.

But the Domain may be an engineered, or designed, system, and the
Simulation Purpose be to provide an in silico analogue of the designed
system. In such a case, the CoSMoS approach can still be used, but there

10.3 Engineered systems 241

is a different interpretation of the Results Model (176). The Domain Model

is the engineering specification of the Domain. The Domain is engineered to
respect the Domain Model. If a Simulation Experiment’s results disagree
with Domain behaviour, is suggests there may be something missing or
wrong with the engineered Domain, and that it does not implement the
domain model Domain Model.

Embodied Simulation

Intent

Embody a Simulation Platform (163) in a robot, or in a robot swarm.

Summary

Either (i) embody a simulation within a robot, providing that robot
with an internal model; or (ii) construct a simulation with parallel in-
teracting real-world elements, i.e. robots.

Context

Embodied Simulation is a type of Simulation Platform (163). It is also a
distinctive Modelling Approach (112).

Discussion

The field of robotics identifies two different kinds of embodied simula-
tion.

Firstly, in the field of intelligent robots, specifically addressing the
problem of machine consciousness [112], the notion of robots with in-
ternal models has emerged in recent years. Such a model is a simu-
lation of either the robot itself, or its external environment (including
other agents), or both – and the simulation is embedded within the
robot; the simulation is literally embodied. Such a simulation might
allow a robot to “try out” alternative sequences of motor actions, to
find the sequence that best achieves the goal (for instance, picking up
an object), before then executing that sequence for real. Feedback from
the real-world actions might then also be used to calibrate the robot’s
internal model. The robot’s embodied simulation thus improves over
time, i.e. the robot learns. If the purpose of the robot’s embodied sim-
ulation is to model the actions of other agents (i.e. robots or humans),

242 10 Real world Simulation Patterns

then the model could be said to represent an artificial Theory of Mind;
an approach which not surprisingly implements the simulation theory
of mind. For an example, see Holland’s Cronos robot [151].

Secondly, in the field of swarm robotics [195] experimental work
with the aim of developing or discovering algorithms and/or invest-
igating emergent properties of swarm intelligent systems is typically
carried out using a number of autonomous mobile robots in an instru-
mented arena. Each robot is programmed with a set of behaviours and
the robots interact with each other and with their physical environment
and, with appropriate design of the robots and their behaviours, we
can observe desirable or interesting emergent, or self-organising, prop-
erties. The complete system is a simulation of swarm intelligence [58]
with real robots; it is an embodied model of swarm intelligence, hence
an embodied simulation. There are several advantages of such a sys-
tem. It typically runs faster than the same system of robots modelled in
computer simulation and obviates the need for a visualisation model.
It is a truly parallel asynchronous system, so it preserves concurrency
and avoids quantisation artefacts. Physics and noise come “for free”,
thus providing a natural implementation of stochasticity.

Related patterns

Visualisation Model (183)

10.4 Large scale development

Multi-increment Simulation

Intent

Develop the project in multiple small manageable increments.

Summary

Start with a small project covering part of the Domain (125). Increment-
ally increase the scope, until the full system has been developed.

10.4 Large scale development 243

Context

An approach to the overall CoSMoS Simulation Project (93)

Discussion

Depending on the scope of the Research Context (121), a CoSMoS Sim-

ulation Project can be a large undertaking. It is easy to get lost in the
details. And for a research project, there may be many unknowns that
need to be discovered along the way, and potential changes of direc-
tion as these are exposed, so the full development cannot be planned
in detail from the start.

Use an Multi-increment Simulation approach to development. At each
increment, develop a full system, but of reduced scope. For each new
increment, decide what extra of the Domain (components, behaviours,
experiments) is to be added or changed. This may require you to Re-

factor (235) the system, to a greater or lesser extent, to allow for these
changes; take care to propagate changes throughout, to maintain a con-
sistent project.

At the end of each increment, you will have a complete, albeit re-
duced functionality, system. This has advantages if funding is disrup-
ted or patchy: there is always some system that can be used now, and
upgraded later.

If a Simulation Experiment (179) indicates there are errors or un-
knowns in the Domain Model (131), or if the whole project is using an
exploratory approach, this can lead to decisions to change the Research

Context (121) or Simulation Purpose (123). An incremental approach re-
duces the effort expended to reach such a decision point, and allows a
more responsive approach to new findings. It also helps keep the de-
velopment focussed on what is needed now, for this increment, not on
what is assumed to be needed in the future. These advantages typically
outweigh the effort needed to Refactor (235) between increments.

In software engineering, such an incremental approach is known as
“Agile development”, and comes in various flavours [27, 158].

During an increment you may generate interesting but out of cur-
rent scope ideas. Document these ideas, so that they are not forgotten,
tagged as !! Future. These form a “to don’t” list (as opposed to a “to
do” list): a list of ideas for future reference, in a manner that makes
it clear they are not to be included in the current increment. Some of
these ideas may also prompt the recognition of assumptions in the cur-
rent increment: that it does not support these future properties [95].

244 10 Real world Simulation Patterns

Related patterns

Consider using a Prototype (215) to understand specific issues.
Revisit the Research Context (121) and Simulation Purpose (123), and

associated models and arguments, between increments.
Use Version Control (114) to keep access to the models and results of

each increment.

Multi-domain Simulation

Intent

Develop a project that encompasses multiple distinct domains.

Summary

• build a Domain Model (131) of each individual Domain (125)

• build a framework model of how the Domains interact
• use a Metamodel (236) to find common concepts

Context

An approach to the overall CoSMoS Simulation Project (93)

Discussion

Complex systems can span multiple domains: socio-technical systems,
socio-ecological systems, eco-geo-climate systems, and more.

One approach is to model the individual Domains, and also explicitly
model how they interact. With engineered systems, these interactions
might be designed to flow through well-defined interfaces. With nat-
ural complex systems, interactions can be broad and messy. The mod-
elling process should expose these issues.

Forrester and Greaves [70, 98] use a framework model to define the in-
teractions between multiple Domain Models. They find that the frame-
work model is necessary to understand the multiple Domain Models,
but that in some cases joining the parts in a fully integrated Simulation

Platform is not always needed; once the framework model is under-
stood, how the individual component models fit into the big picture is
clear. In more complex cases understanding the interacting dynamics
will require an integrated simulation, however.

10.4 Large scale development 245

Use a Metamodel encompassing the various Domain Model (131)s, to
capture the commonalities and differences; for example, see figure 10.3.

Sometimes there may be two separate Domains, with one inspiring
the other, but not connected to it explicitly. For example, in bio-inspired
engineering, there is one biological Domain used to inspire the design of
an engineered Domain. In such a case, there is no need for a framework
model; the Metamodel can be used to help formalise the relationship
between the two Domains [14], see figure 10.4.

engineering

domain

biological

domain

model

engineering

platform

model

metamodel

observation

abstraction

instantiation

engineering

results

model

engineering

simulation

platform

implementation

engineering

domain

model

biological

domain

design

validation property

validation

implementation

observation

instantiation

observation

Fig. 10.4 A bio-inspired engineered domain. From [14, fig.7]

Related patterns

Consider using a Prototype (215) to understand specific issues.
If the different Domains are modelled with different Modelling Ap-

proach (112)es, this is a Hybrid Model (213).
Particularly if there are more than two Domains, consider modelling

the interactions of the domains through some medium, using Environ-

ment Orientation (212).

Multi-scale Simulation

Intent

Develop a project that encompasses multiple distinct levels or scales.

246 10 Real world Simulation Patterns

Summary

• build a Domain Model (131) of each individual scale/level
• build a framework model that links the separate Domain Models
• consider having both a detailed and a summary Domain Model (131)

at lower levels
• use a Metamodel (236) to find common concepts

Context

An approach to the overall CoSMoS Simulation Project (93)

Discussion

Multi-scale simulation is non-trivial, and an active area of research [29,
50, 111, 129]. Here we give a few pointers to how CoSMoS’s model-
based approach may help. In this view, a multi-scale simulation is a
special case of a Multi-domain Simulation (244), where the different Do-

mains represent different scales, which constrains how the framework
model links the individual models.

Multi-scale system have both multiple spatial scales, and multiple
timescales. Lower levels tend to have shorter spatial scales and corres-
pondingly faster timescales. Each level will need its own Space Model

(157) and Time Model (160). The framework model will need to define
how these spaces and times are related. Timebands [38] may help in
building the framework’s Time Model.

One major issue with multi-scale simulation is that the lower levels,
with their finer granularities of space and time, can overwhelm the
computational resources. Shortcuts (217) will be necessary. One ap-
proach is to use a detailed stand-alone lower level model, and use it
to inform the design of a more abstract lower level counterpart that
can be integrated into the overall system.

In our prostate running example (chapter 3) is simple multi-scale
model and Hybrid Model (213). It has a low level state diagram model
to describe the internal behaviour of individual cells, and a Petri net
model of the higher level cell population. How these models formally
combine and relate is defined in [60].

Related patterns

Consider using a Prototype (215) to understand specific issues.

10.4 Large scale development 247

If the different levels are conceptualised as different domains, this is
also a Multi-domain Simulation (244).

If the different levels are modelled with different approaches, this is
a Hybrid Model (213).

Part IV
CellBranch Case Study

This Part provides a fully worked CoSMoS Simulation Project. It is presen-
ted in a “warts and all” fashion, with only minor modifications to the ori-
ginal documentation, made to bring it in line with the current version of the
patterns, and to correct minor errors. This provides a view of a real CoSMoS
project, not of a ‘perfect’ one. You may wish to argue over the model, the de-
cisions, the assumptions. That is in some sense the point: all is made visible
to critique.

The presentation has two increments, but the project did not initially start
as an incremental development: this was decided part way through the de-
velopment. As a result, there is some contextual material presented in in-
crement 1 that more logically fits in increment 2. We could Refactor (235) the
documentation to separate out the material, but we leave it as originally de-
veloped, to illustrate a more realistic state of affairs. Some ‘!! Future’ tags
have been added to flag such material.

The full biological descriptions of the case study Domain have been
maintained in this presentation, to illustrate a representative level of de-
tail provided for publication of the documentation. However, many readers
may wish to skip this detail, and focus on the use of the CoSMoS patterns.

The original versions of the case study documented in this Part have ap-
peared in [95–97].

Acknowledgments

We gratefully acknowledge the funding of the CellBranch project by the
UK’s Biotechnology and Biological Sciences Research Council (BBSRC), pro-
ject reference BB/L018705/1.

Chapter 11

Introduction to the CellBranch simulation

The principal barrier to gaining understanding of embryonic stem (ES) cell
regulatory networks is their complexity. Reductionist approaches overlook
much of the complexity inherent in these networks and treat the ES cell reg-
ulatory system as more or less equivalent to the sum of its component parts,
studying them in relative isolation. However, as we learn more about reg-
ulatory components it becomes increasingly difficult to integrate complex
layers of knowledge and to develop more refined understanding.

Mathematical or computational frameworks and tools are indispensable
in the study of cell regulatory networks [33, 230] because functions, traits
and pathologies are rarely caused by single genes [33, 110, 222]. The prin-
cipal challenge that prevents comprehensive understanding (and simula-
tion) of regulatory networks is their complexity [157]. In the era of systems
biology, the icon for molecular biology is the ‘hairball’ graph, which illus-
trates how everything seems to interact with almost everything else [66,
143]. High-throughput technologies generate such large volumes of data
that there is concern about how to grasp the big picture [35, 59, 118] and
most data sets are not being used to their full potential.

We seek better insight into the complexity inherent in non-equilibrium
ES cell regulatory networks undergoing lineage specification by develop-
ing computer simulations of self-organisation using the CoSMoS approach.
Simulation, together with the hypothesis that lineage computation occurs at
the edge of chaos, should allow us to investigate the driving of gradual accu-
mulation of network complexity ‘from the bottom up’. Here, we present the
first steps in this design process: use of the CoSMoS approach to develop
a highly abstracted model and simulation of regulatory network activity
driven by just pluripotent transcription factors (TFs), at genome-wide scales.

We present two increments of this novel computational framework to
interrogate the complexity of stem cell regulatory networks. We employ a

251

252 11 Introduction to the CellBranch simulation

previously-described theoretical framework based on the notion that the
backbone of stem cell fate computation is provided by the critical-like self-
organisation of transcription factor (TF) regulatory networks [105–107].

The structure of this Part follows the CoSMoS patterns as defined in the
CoSMoS approach. Each chapter documents a model and simulator incre-
ment, in terms of the three phases of discovery, development, and explora-
tion.

In the first increment (chapters 12–15), we develop a simulation of a single
TF in isolation, and instantiate it with three separate TFs: Oct4, Nanog and
Sox2, central elements of the core pluripotent network of mouse embryonic
stem cells. The version presented here is a minimally updated version of
[95], changed to correct small errors, and to bring in line with the latest ver-
sion of CoSMoS patterns. In the second increment (chapters 16–19), we allow
instantiations of the three TFs to couple, so that activity of one TF can po-
tentially ignite activity in another. The version presented here is an updated
version of [96], changed to bring in line with the latest version of CoSMoS
patterns, and to update some of the figures and domain behaviours in line
with those presented in [97].

We conclude (chapter 20) with some reflections on the process, discussion
of further work, and information about obtaining and running the simula-
tion code.

Chapter 12

CellBranch: increment 1: single transcription
factor

The models and results presented here document the first increment of the
CellBranch project using the CoSMoS design cycle. Here, we design and
calibrate simulations of single TFs in isolation. This single TF version of the
full model is not biologically realistic; its purpose is to serve as a building
block of complexity as the basis of following increments.

CoSMoS Simulation Project (93)

Develop a basic fit-for-purpose simulation of the complex scientific do-
main of interest.

• carry out the Discovery Phase (95)

• carry out the Development Phase (96)

• carry out the Exploration Phase (97)

• Argue Instrument Fit For Purpose (189)

The CellBranch project development omits the CoSMoS argumentation
phase.

253

Chapter 13

CellBranch: increment 1: Discovery phase

Discovery Phase (95)

Decide what scientific instrument to build. Establish the scientific basis
of the project: identify the domain of interest, model the domain, and
shed light on scientific questions.

• identify the Research Context (121)

• define the Domain (125)

• construct the Domain Model (131)

13.1 Discovery > Research Context

Research Context (121)

Identify the overall scientific context and scope of the simulation-based
research being conducted.

• provide a brief overview of the research context
• document the research goals and project scope
• agree the Simulation Purpose (123), including criticality and impact
• identify the team members and their experience, and assign Roles

(99)

• Document Assumptions (109) relevant to the research context
• note the available resources, timescales, and other constraints
• determine success criteria
• decide whether to proceed, or walk away

255

256 13 CellBranch: increment 1: Discovery phase

13.1.1 Discovery > Research Context > overview

The context of this research is the investigation of a conceptual approach:
self-organisation at the edge of chaos. We have argued that if the activity of
single transcription factors can be described as critical-like branching pro-
cesses, their interplay should define a critical-like genome-wide interference
pattern that captures in some way the nature of the entire pluripotency tran-
scription factor regulatory network [106].

Here we build a simulation based on the representation of TFs as branch-
ing processes. The mathematical concept of a branching process (BP) is as
follows. Consider a population of individuals. At time t each individual i
produces a next generation of mi offspring individuals, with the value of mi
drawn from some probability distribution. Let the average number of off-
spring produced be µ. If µ > 1, then the process is supercritical and the
number of individuals grows without bound. If µ = 1 then the system is
critical and can either give rise to more individuals in the next step or lead
to dissipation of the process. If µ < 1 then the process goes to extinction.

Our model of TF BPs builds on this idea, and also allows the TFs to in-
teract in such a way as to cause the regulatory network to self-organise at
the edge of chaos. We capture the activity of single TFs as BPs in order to
predict the interplay of multiple TFs and the emergent nature of the entire
TF regulatory network, hypothesised to operate in a critical-like state [106].

For a TF to be stably expressed, its BP must be supercritical [106]. There-
fore, by modelling the activity of TFs known to be expressed in mouse em-
bryonic stem cells, we link the perturbation of a TF’s cistrome (portion of
the genome in which the TF displays some activity) with a dynamic and
distributed description of TF activity. This is a prerequisite to being able to
simulate the entire TF regulatory network of an ES cell, as argued in [106].
The TFs called Oct4, Sox2 and Nanog are central elements of the core pluri-
potent network of mouse embryonic stem cells. In this first increment, we
develop our simulation for these three TFs in isolation, and so character-
ise how their associated TF BPs propagate in the absence of interference or
communication.

Our incremental approach to the development of the full simulation com-
mences with the simplest possible system: the operation of one transcription
factor at genome-wide scales. We later add layers of further complexity, test-
ing and calibrating as we go.

!! Future: A model of a single pluripotent TF in isolation is far from com-
plete and is not biologically realistic. It is only when multiple communic-
ating TF BPs are simulated in parallel that we can expect to generate the
interference patterns predicted to underpin circuitry self-organisation. As

13.1 Research Context 257

greater numbers of pluripotency TFs are included in the model, we anti-
cipate that our simulations will become increasingly biologically realistic.
In future increments we will augment the complexity of the computational
model in a stepwise manner, adding detail and refining assumptions as we
progress, and increasingly be able to provide insights not accessible by other
means.

13.1.2 Discovery > Research Context > research goals

Computer simulation sidesteps the ethical, moral and political issues sur-
rounding use of human embryos. It therefore represents an alternative route
to gaining new insight in to this promising field of regenerative medicine.
Our overarching aim is to gain sufficient understanding so that any cell type
of therapeutic interest can be generated effectively at will.

The specific research goals of CellBranch are:
1. to create a simulation of Branching Process Theory (BPT) as applied to

embryonic stem cell differentiation
2. to use this simulation to validate the application of BPT in this context
3. to make the simulation available for more general use

The specific research goals of this first increment are:
1. to simulate and explore a single TF branching process.

13.1.3 Discovery > Research Context > Simulation Purpose

Simulation Purpose (123)

Agree the purpose for which the simulation is being built and used,
within the Research Context.

• define the role of the simulation
• determine the criticality of the simulation results

Role of the simulation

The role of the simulation is exploratory: to provide evidence of the useful-
ness of BPT as a model of decision making in stem cell differentiation. The

258 13 CellBranch: increment 1: Discovery phase

simulation will be used to investigate which values of the average branching
ratio are required to set up a sustainable TF branching process.

Criticality of the simulation results

The simulation work is being used to explore the suitability of a particular
conceptual modelling approach, BPT, in the domain. The simulation results
are not safety, security, or financially critical: they will not be used directly
in the development of any products.

13.1.4 Discovery > Research Context > Roles

Roles (99)

Assign team members to key roles in the simulation project.

• identify the Domain Scientist (102)

• identify the Domain Modeller (103)

• identify the Simulation Engineer (105)

• identify the Argument Modeller (107)

• identify other optional roles
• identify necessary collaborations between roles

The main CoSMoS roles are fulfilled by the team members in the follow-
ing way:
• Domain Scientist (102): Julianne Halley, an expert on BPT as applied to

stem cell differentiation, backed up by a domain expert in ES cell biology
(Austin Smith), and a data collection expert (Sabine Dietmann)

• Domain Modeller (103): Richard Greaves, with CoSMoS domain mod-
elling experience, backed up by a further CoSMoS modelling expert
(Susan Stepney)

• Simulation Engineer (105): Richard Greaves, with agent based simulation
engineering experience

• Argument Modeller (107): not used in this project: the lead responsibility
to Document Assumptions (109) and to collaborate with relevant Roles to
agree justifications and consequences was taken by Stepney

The lead domain scientist (Halley) and the domain modellers (Greaves,
Stepney) collaborated closely throughout the development of the domain

13.1 Research Context 259

model, translating and abstracting the conceptual TF BP model into a form
suitable for simulation.

The domain scientists (Halley, Smith, Dietmann) collaborated on refining
the research context.

The simulation engineer (Greaves) collaborated with the the data col-
lection expert (Dietmann) on the form and content of the biological data
provided.

13.1.5 Discovery > Research Context > Document
Assumptions

Document Assumptions (109)

Ensure assumptions are explicit and justified, and their consequences
are understood.

• identify that an assumption has been made, and record it in an ap-
propriate way
• for each assumption, determine its nature and criticality
• for each assumption, document the reason it has been made
• for each reason, document its justification, or flag it as “unjustified”

or “unjustifiable”
• for each assumption, document its connotations and consequences
• for each critical assumption, determine the connotations for the

scope and fitness-for-purpose of the simulation
• for each critical assumption, achieve consensus on the appropriate-

ness of the assumption, and reflect this in fitness for purpose argu-
ments
• revisit the Research Context (121) in light of the assumption, as ap-

propriate

A.1 Cistrome data can be provided by processed ChIP-Seq data

reason It is the data we have
justification This is one standard use for ChIP-Seq data
consequence ChIP-Seq data is variable across measurements, so we

will need to check the robustness of our results to this variation

A.2 It is sufficient to consider only the key pluripotency transcription factors:
Nanog, Oct4, Sox2

260 13 CellBranch: increment 1: Discovery phase

reason As a first step in providing insight, we consider the three TFs
widely acknowledged to be central components of the core pluripo-
tent network

justification See, for example, [34]
consequence We will not be able to determine the effect of further TFs.

However, it should be straightforward to incorporate further TF
data into the multi-cistrome model.

A.3 We can use mouse data as a suitable proxy for data from human ES cells

reason Suitable mouse data is more readily available; mouse ES cells
have an unambiguous ‘ground state’; so mouse data is a good basis
for evaluating the TF BP model

justification Although effective manipulation of human ES cells is a
long term goal, here we are only assessing the TF BP model

consequence We cannot extrapolate results to the human system

13.1.6 Discovery > Research Context > resources, timescales,
other constraints

1. The project has a one year duration. The Domain Scientist is employed
full time, and Simulation Engineer part time.

2. The work has access to a local computer cluster, for running simulations
and gathering performance metrics.

3. The team members are split between York (Halley, Greaves, Stepney)
and Cambridge (Smith, Dietmann).

13.1.7 Discovery > Research Context > success criteria

1. a single-cistrome simulator that exhibits the expected behaviours, and
can be used as the basis for multi-cistrome simulator development

2. a single-cistrome simulator that can justify the use of the TF BP model
to analyse stem cell fates

13.2 Domain 261

13.1.8 Discovery > Research Context > decide

At this point, the decision is made to proceed with the CoSMoS Simulation

Project.

13.2 Discovery > Domain

Domain (125)

Identify the subject of simulation: the real-world biological system, and
the relevant information known about it.

• draw an explanatory Cartoon (126) of the domain
• provide an overview description of the domain
• define the Expected Behaviours (129)

• provide a Glossary (130) of relevant domain-specific terminology
• Document Assumptions (109) relevant to the domain
• define the scope and boundary of the domain — what is inside and

what is outside — from the Research Context (121)

• identify relevant sources: people, literature, data, models, etc

13.2.1 Discovery > Domain > Cartoon

Cartoon : Sketch an informal overview picture of the Domain.

Figure 13.1 is a cartoon of the regulatory process. A single gene regulation
and its expression is conceptually relatively straightforward; the complex
interplay of multiple interacting regulatory processes is not.

13.2.2 Discovery > Domain > overview

Embryonic stem (ES) cell biology

Modern, high-throughput laboratory techniques routinely provide large-
scale datasets including complete genome sequences, dynamic measure-
ments of gene expression, extensive lists of regulatory proteins and RNAs,

262 13 CellBranch: increment 1: Discovery phase

Fig. 13.1 Domain > Cartoon: (top) The regulatory process: a TF protein binds to DNA
at the binding site, thereby regulating production of protein (which may be a TF) from
the corresponding gene (gene expression). (bottom) A ‘hairball graph’ of the human pro-
teome and its binding interactions; expressed proteins may include other TFs that can
regulate expression of other genes [66, fig.1].

and in vivo occupancy of DNA by TFs, cofactors and nucleosomes [17]. Such
datasets facilitate the investigation of ES cell regulatory networks. To cre-
ate a complete multi-layered model of a stem cell regulatory network one
should exploit these big data to bridge gaps between the phenotypic beha-
viour of whole cells and key regulatory molecules [229].

We need to capture the results of multiple high-throughput experiments
within a logical and transparent conceptual and computational framework
in order to facilitate the interrogation of multiple layers of complex reg-

13.2 Domain 263

ulatory information. Our initial model is based on the complete genome
sequence of mouse embryonic stem cells and on ChIP-Seq data that cap-
ture the density of TF binding sites throughout the genome. TFs operate in
parallel, influencing each other; according to our hypothesis, they produce
genome-wide interference patterns that capture in some way the hypothes-
ised nature of the entire pluripotent circuitry.

Embryonic stem (ES) cells have the potential to produce all of the differ-
ent cell types within the body, but this behaviour cannot yet be efficiently
exploited in vitro. We have considerable knowledge of the component parts
of the regulation of ES cells maintained under precise external conditions
[152], but during normal development many different types of regulatory
factors interact, enabling cells to respond flexibly to changing environments.
The regulatory network of single ES cells is therefore some function of both
cell intrinsic and cell extrinsic variables.

Here we assume that pluripotency is a state of individual ES cells. ES cells
exit pluripotency via a transient ‘primed’ state that facilitates cell fate com-
putation [164]. Our knowledge of this exit process and the transient primed
state is incomplete, partly because it is difficult to obtain data from transient
cell states [212]. The process of pluripotency exit itself is intrinsically dis-
organised and/or chaotic in order for it to integrate intrinsic and extrinsic
information and compute cell fate. According to our conceptual framework,
regulatory circuitries compute cell fate trajectories via ‘critical-like dynam-
ics’ at the edge of chaos [106].

Nanog, Oct4 and Sox2 form part of the core pluripotency circuitry of ES
cells [34]. Oct4 in particular seems central to understanding pluripotency.
Oct4 expression level is closely regulated, with deviations either above or
below a certain expression range resulting in differentiation [167]. It has
been suggested that protein complexes, in which Oct4 is involved, help to
establish a dynamic competition between individual elements, serving to
buffer the differentiation-promoting activity of Oct4 [161].

Fluctuations are inevitable in any system that has many degrees of free-
dom. At static equilibrium, such fluctuations ultimately disappear but un-
der non-equilibrium conditions, fluctuations are often great enough to drive
reorganisation toward new dynamic states [45, 166]. If continual driving
is experienced, complex spatiotemporal patterning usually results and sys-
tems are said to have ‘self-organised’ [21, 91, 166].

In biology, the growth and development of organisms occurs far from
equilibrium. The stem cell regulatory networks that facilitate these processes
are replete with positive and negative feedback loops and nonlinear inter-
actions. When faced with overwhelming complexity, the natural tendency
of humans is to either reduce, simplify or ignore it. Reductionist thinking

264 13 CellBranch: increment 1: Discovery phase

makes systems (a) easier to think about, (b) easier to consider manipulating,
and (c) easier to predict, provided non-equilibrium driving is minimal.

Over the last few decades, there has been increasing awareness of the
limitations of the reductionist approach [18, 54, 65, 131, 170] and it has be-
come clear that some laws of nature cannot be deduced by resolving more
detail [219]. This so called ‘new era of physics’ focuses on developing com-
plex behaviour out of simplicity, instead of the traditional reductionist ap-
proach that reduced complexity to its simplest possible form [9, 127, 170].
Non-equilibrium driving can have profound consequences on system be-
haviour, a realisation that contrasts with our natural tendency to assume
systems are near equilibrium or at least show some steady state behaviour.
Equilibrium and reductionist thinking pervades most scientific disciplines
[19–21, 61], including molecular and stem cell biology.

The differentiation of pluripotent cells in the early embryo is a fascinating
non-equilibrium process that results in the production of numerous special-
ised cell types. More than 600 different proteins have been implicated in exit
from a naı̈ve pluripotent state and control of early state transitions in the
mouse [128]. As our focus shifts from individual components to complex
communication networks, experimental studies have become more difficult.
Not only do central features of complex networks, such as robustness, pre-
vent straight forward analysis and interpretation of network behaviours,
but many experiments cannot be performed because of ethical reasons sur-
rounding the use of human embryos. Computer simulation sidesteps these
ethical, moral and political issues.

13.2.3 Discovery > Domain > Expected Behaviours

Expected Behaviours (129) : Describe the hypothesised behaviours and
mechanisms.

In the single cistrome case, we expect low values of TF expression to be
insufficient to sustain activity, and higher values to be sufficient to sustain
activity.

13.2 Domain 265

13.2.4 Discovery > Domain > Glossary

Glossary (130) : Provide a common terminology across the simulation
project.

The main biological terms used in the various models are:

binding site : section of DNA that binds a given TF and influences tran-
scription of associated genes

branching process (BP) : the mathematical model underlying inspiration of
the TF BP framework being investigated here

ChIP-Seq : a technique to identify the binding sites of transcription factors
on DNA

cistrome : the portion of the genome associated with a specific TF; a pattern
of genome-wide binding sites to which the TF displays some activity

pluripotent stem cell : a cell capable of generating all the cell types present
in the adult body

segment : the genome data is segmented, into say 10k or 50k base-pair se-
quences, in order to apply the TFBP framework

transcription factor (TF) : a protein that binds to DNA to influence tran-
scription of the associated gene

13.2.5 Discovery > Domain > Document Assumptions

See §13.1.5 for the Document Assumptions (109) pattern requirements.

A.4 The genome can be modelled as a set of overlapping TF cistromes
without needing epigenetic factors

reason We are looking only at TF segments, and the pluripotent state
can be induced by TFs alone

justification See, for example, [135]
consequence Behaviours facilitated by other factors, such as epigenet-

ics, will be unseen in the model

A.5 a TF binding site is either bound or unbound, there is no partial TF bind-
ing

reason not enough data to say otherwise

A.6 a segment can be either active or inactive; there are no differing amounts
of activation

266 13 CellBranch: increment 1: Discovery phase

reason Simplification: the data does say whether a segment has one or
more binding sites

justification This is the first increment; we may revisit the necessity and
impact of this assumption in later increments

consequence We will not be able to separate out behaviours of groups
of genes in a segment. In order to do so, we could use smaller seg-
ments. But segments cannot be made too small, else we would lose
correlations between related TFs.

A.7 we can investigate cell decision making by modelling an individual cell,
not a population

reason cells have internal decision making, although they can also be
influenced by their environment

justification See, for example, [145]
consequence We will not be able to investigate population-level de-

cision making

13.2.6 Discovery > Domain > scope

• single cell model
• single transcription factor model
• !! Future: later increments will add more, coupled TFs, and more inter-

acting cells

13.2.7 Discovery > Domain > sources

• Domain Scientists
• Biological literature, as referenced in the various overviews
• ChIP-Seq data for various cistromes (source: Dietmann)

13.3 Discovery > Domain Model

Domain Model (131)

Produce an explicit description of the relevant domain concepts.

13.3 Domain Model 267

• draw an explanatory Cartoon (126)

• discuss and choose the domain Modelling Approach (112) and level
of abstraction
• define the Domain Behaviours (137)

• build the Basic Domain Model (133) using the chosen modelling ap-
proach
• build the Domain Experiment Model (137)

• build the Data Dictionary (134)

• build the domain Stochasticity Model (156)

• Document Assumptions (109) relevant to the domain model

13.3.1 Discovery > Domain Model > Cartoon

See §13.2.1 for the Cartoon (126) pattern.
Due to the structure of our Basic Domain Model description, the Domain

Model Cartoon is presented in the section on the TF BP model (figure 13.4),
and should be read in that context.

13.3.2 Discovery > Domain Model > Modelling Approach

Modelling Approach (112) : Choose an appropriate modelling approach
and notation.

A central part of this design process is to develop the simplest possible
working model at each stage of the modelling process. This ‘agile’ approach
ensures that simulation code is not unnecessarily complicated. It also helps
to ensure that if a coding problem is found, it is simple matter to backtrack
to the last working model.

The domain model is captured using UML, in anticipation of an agent-
based, object-oriented design and implementation of the simulator.

13.3.3 Discovery > Domain Model > Basic Domain Model

268 13 CellBranch: increment 1: Discovery phase

Basic Domain Model (133) : Build a detailed model of the basic low
level domain concepts, components and processes.

Our domain modelling gives rise to several models at different levels
of abstraction: a specifically biological stem cell model of regulatory net-
works, a model simplifying detailed transcription regulatory networks us-
ing branching process theory, and a generic abstract model, which we refer
to as the ‘sparking posts’ model.

Note that the sparking posts model could also be used as a domain model
for other biological phenomena as captured by branching process theory,
such as patterns of information flow in the human brain.

Regulatory network

We have mouse genome data including the suite of binding sites within it.
For convenience and simplicity, we divide this sequence in to 50 kilobase
(kb) segments, any of which may or may not contain binding sites for a
particular TF of interest. If a 50kb segment contains a binding site for our
transcription factor, X, then the segment is said to be part of the X cistrome.

Data about the locations of the transcription factor binding sites, in re-
lation to the gene segments in the model, is provided experimentally by
ChIP-Seq data. Figure 13.2 is a representation of ChIP-Seq data.

The regulatory network components can be captured in a model such as
that shown in figure 13.3. However, we abstract away from many of these
‘hairball’ inducing details, and consider the system instead in terms of the
TF BP model.

Transcription Factor Branching Process (TF BP) model

A common approach to understanding cell regulatory processes is the ap-
plication of concepts, tools and techniques developed in mathematics, phys-
ics or computer science [146]. Network representations, for example, can ac-
commodate multiple types of data within a single visual illustration that
provides an overview of regulatory pathways and components [79, 146].
Empirically-derived interaction networks can be difficult to interpret, often
appearing as a ‘hairball’ graph as regulatory mechanisms are increasingly
dissected.

We use here a novel way to visualise and simulate genome-wide regulat-
ory network interactions. Our coarse-grained approach does not require de-

13.3 Domain Model 269

Fig. 13.2 A representation of a set of ChIP-Seq data for a cistrome (part of the genome
relevant to a specific TF). Each square represents a 50kb segment of DNA. A white square
is a segment that contains at least one binding site for a product that is not a TF. A red
square is a segment that contains at least one binding site for a product that is a TF. A
black square is a segment that does not belong to this cistrome.

Fig. 13.3 Stem cell pluripotency regulatory network model: class diagram. The stem cell
has a genome comprised of genes, which can alternatively be described as a cistrome
(or set of cistromes), each being comprised of segments of gene which may or may not
contain transcription factor binding sites.

270 13 CellBranch: increment 1: Discovery phase

tails of binding constants prerequisite for most ODE models of stem cell reg-
ulation. In many previous computational or mathematical models of stem
cell regulatory networks, TFs are represented as single nodes with binary
(on/off) behaviour. Here, we use a different approach that captures TF activ-
ity as a dissipative branching process that propagates within the bounds
imposed by the TF’s unique cistrome.

Unlike reductionist models that capture TF activity using single variables
in an equation, in our model we explicitly represent a background delocal-
isation of TF activity throughout the genome. We can visualise the activity
of each TF’s BP as a kind of gateway through which regulatory information
pertaining to the TF passes over time.

The TF BP model allows a decoupling between details of binding site
constants and the emergent effect of TF activity throughout the genome. In-
stead of struggling with countless (often unknown) binding constants, we
consider the overall flow of regulatory information at genome-wide scales.
It is thus more suitable for attempts to discover how the ES cell regulatory
network behaves as a whole during computation of lineage choice. Through
this more coarse-grained methodology, we hope to discover complex inter-
actions that can easily be overlooked by studies that focus on only a handful
of key regulatory components at a time.

The potential binding of a TF to target regions throughout the genome is
determined by ChIP-Sequencing. The data set or ‘footprint’ for a given TF
comprises a unique pattern of TF-DNA interactions that is somewhat de-
pendent upon the precise methods used to infer interactions. The precise
footprint for a specific TF may vary between different experimental data-
sets. Such ‘fuzziness’, rather than being a nuisance, is intrinsic to the TF BP
model.

If we understand the activity of any given TF as a branching process of
regulatory information propagating through time, it makes sense for there
to be some correlation between observed TF expression and the saturation
of target sites influenced by TF activity. The significance of this point should
become clearer in later increments, when we simulate multiple cistrome data
sets. In this increment, we focus on simulating a single TF’s BP to introduce
the groundwork for our approach.

Figure 13.4 presents a Cartoon of the TF BP model. Each square in the
figure corresponds to a 50kb segment of the mouse genome. Black squares
represent segments that contain no binding sites for the TF of interest, while
red and white squares represent segments with at least one binding site for
the TF of interest. The difference between a red and white segment lies in
their products. A red segment has products that include TFs, whereas none
of the products of a white segment is a TF. Henceforth, when we refer to a

13.3 Domain Model 271

Fig. 13.4 Domain Model > Cartoon: A branching process representation of the overall
flow of regulatory information, which serves as the basis of our simulation. At t, assume
the circled red segment is active. At time t + 1 this activates m further randomly chosen
segments (arrows), and itself deactivates. At time t+ 2, all of these newly active segments
that are themselves red each activate a further m randomly chosen segments, and deac-
tivate.

‘red segment’ we mean a gene segment that can bind TF and thus become
stimulated into transcribing further TFs.

We capture the countless (ill-defined or unknown) cascades of gene ac-
tivation via TF production and feedback as a branching process in which
TFs produce other TFs while also regulating the remainder of the genome.

272 13 CellBranch: increment 1: Discovery phase

There are potentially three qualitatively different types of behaviour for any
TFX branching process. Firstly, the cistrome X is saturated and the TFX gene
is continually and stably expressed. Alternatively, there is the opposite type
of emergent behaviour, with TFX expression occurring at a very low noisy
level that is not sustainable unless TFX is supported by continual activation
of the TFX gene via some external signal. Finally there is a dynamic inter-
mediate between these extremes where a branching process only just per-
colates through the TFX cistrome. In all cases, the targets of TFX are divided
in to two types: (1) dissipative targets that do not propagate information
back in to the TFX cistrome, and (2) amplifying targets that are either TFs
themselves and capable of propagating information or code for signalling
molecules that are involved in signal transduction.

We define an average branching ratio, called m, for our gene regulation
branching process. That is to say that once transcribed, a gene (or gene seg-
ment in our case) will produce m product molecules (in this single cistrome
model these will all be the TF that binds to binding sites within the cistrome
of interest). If the active site is associated with TF products then new TFs are
produced and these can bind to other TF binding sites in the system. In this
way, up to m segments are activated in the next time step of the algorithm.
In the time step after this each of the active segments can go on to activate
m further segments and so on as illustrated in Figure 13.4.

This TF BP model is built on the classical BP theory outlined in section
‘Domain > overview’, and is adapted in the following ways:

• m is related to the BP branching factor µ, but is not the same, because
here the m ‘offspring’ include both white and red segments, yet only red
segments go on to produce further ‘offspring’.

• In the supercritical case, the number of offspring cannot increase without
bound, but only up to the number of relevant segments in the cistrome.

• The individuals are segments, and do not ‘die’ at the end of a generation;
rather they can be reused (reselected) in subsequent generations.

Basic Domain Model: Sparking Posts

In order to model a branching process, we produce our domain model in
terms of a metaphor. To capture the nature of critical-like self-organisation
hypothesised to underpin lineage computation, we have reduced the system
to a ‘sparking posts model’. This computational model is used to define the
backbone of critical-like self-organisation upon which other layers of com-
plexity are elaborated.

13.3 Domain Model 273

The TF BP representation of our system is modelled as a ‘sparking posts’
representation of the cistrome in which each segment is modelled as a metal
‘post’ which emits ‘sparks’ once it has been activated by an incoming spark
emitted by another post in the previous timestep. The sparks represent the
TF products of the genes contained within a given segment and are therefore
the principal mode of communication between cistromes, the genome being
effectively the sum of all cistromes in the system.

So the Basic Domain Model is as follows.

• An arena contains metal posts, some red, some white. The arena is an ab-
straction of a particular cistrome; the posts are abstractions of the seg-
ments containing binding sites (red and white squares in figure 13.2);
red posts are abstractions of segments that express TFs (red squares in
figure 13.2).
• Posts may be active (on) or inactive (off). In a timestep, an active red post

emits m sparks. A post being active is an abstraction of a gene in a seg-
ment being active; a red post sparking is an abstraction of an active gene
expressing a TF.

• Posts become inactive after they have sparked. A spark lands on a ran-
dom post in the arena (that is, the model is aspatial), and activates it.

• Continued propagation of sparks relies on the activation of sufficient red
posts at each timestep.

Figures 13.5 and 13.6 capture aspects of this Domain Model.

13.3.4 Discovery > Domain Model > Data Dictionary

Data Dictionary (134) : Define the modelling data used to build the
simulation, and the experimental data that is produced by domain ex-
periments and the corresponding simulation experiments.

The sparking post model’s parameters and variables are given in Fig-
ure 13.7. Figure 13.8 gives the values of some of these parameters for the
cistromes of interest here.

13.3.5 Discovery > Domain Model > Domain Experiment
Model

274 13 CellBranch: increment 1: Discovery phase

branching : N

1

RedPost

Spark

1

1..*

contains

1

1

activates

1

*

emits

Arena

active : on|off
WhitePost

1

1

lands

{xor}

1

1..*

contains

Fig. 13.5 Sparking posts model for a single arena: class diagram. There is one arena,
which has a branching factor. The arena contains multiple red posts, which can be on
or off, and multiple white posts. A red post can emit several sparks; each spark is emitted
by a particular post. A particular spark either activates a red post or lands on white post,
but not both.

Fig. 13.6 RedPost state diagram. RedPosts are initially inactive (off); become active (on)
if a spark lands; then become inactive in the next timestep.

13.3 Domain Model 275

p total number of posts in the arena
r number of red posts
m sparks emitted per active red post
s0 number of red posts active initially

t timestep
st number of red posts active at timestep t

Fig. 13.7 Data Dictionary: (top) parameters, constant during a simulation run; (bottom)
variables, changing during a simulation run

Nanog Sox2 Oct4

p 4310 3330 2540
r 631 542 466
r/p 0.146 0.163 0.183
p/r = mc 6.8 6.1 5.5

Fig. 13.8 Data Dictionary: parameter values for p (number of posts, or segments in the
cistrome); r (the number of red posts, or red segments in the cistrome); derived value r/p,
the proportion of posts that are red; derived value mc, the critical branching factor in the
infinite arena limit.

Domain Experiment Model (137) : Define relevant experiments in the
Domain, as the basis for analogous Simulation Experiments and results
analyses.

The Domain Model is sufficiently abstracted from the Domain that the Sim-

ulation Experiments in this increment do not mirror any domain experiments.
Hence it is unnecessary to build a Domain Experiment Model in this incre-
ment.

13.3.6 Discovery > Domain Model > Domain Behaviours

Domain Behaviours (137) : Describe the observed emergent behaviours
of the underlying system.

The ‘sparking posts’ domain model forms the basis for subsequent simu-
lation development.

We can form a much simpler version of the model, which will help to
understand the effect of noise. Since there are a finite number of posts,
stochastic fluctuations will occur, and sparks might occasionally miss many

276 13 CellBranch: increment 1: Discovery phase

or all of the red posts. Here we instead assume that posts are always hit
the average number of times. This is the case when p → ∞ whilst keeping
r/p constant. We are interested in the proportion of red posts active in the
‘steady state’, in limit of large time.

At time t there are st red posts active. Each of these active post emits m
sparks, so a total of st × m sparks are emitted. Let each of these sparks be
absorbed by a separate post, of which a fraction r/p are red. So at the next
timestep, there are st+1 = stmr/p red posts active.

The number of active red posts reduces with time if m < p/r, and so the
arena is extinguished, with s∞ = 0.

The number of active red posts steadily grows with time if p/r < m, until
there are more sparks emitted than there are posts in total (moving outside
our assumption of each spark being absorbed by a separate post), and so the
arena saturates with s∞ = r.

The critical value, mc, where this change of behaviour happens is mc =

p/r. Values for mc for the TFs of interest are shown in figure 13.8.
Hence the expected behaviour of the single cistrome simulation is to

quench for low values of m, saturate for high values of m, and have a tipping
point around mc.

13.3.7 Discovery > Domain Model > Document Assumptions

See §13.1.5 for the Document Assumptions (109) pattern requirements.
First, we have some assumptions related to the TF BP model, which we

note as they have an impact on the sparking posts model.

A.8 the product of a TF producing segment is the TF whose cistrome we are
modelling

reason An assumption underlying use of the TF BP model
justification The TF may not be directly produced; there may be a cas-

cade of production, but the TF BP model collapses this cascade. We
are investigating this model.

consequence This is an abstraction from the biology, made to allow us
to model the highly complex processes. If it works, this abstraction
could also provide an approach to include other features such as
epigenetics and mRNAs in a tractable model.

A.9 the identity of the TFs produced during transcription is irrelevant in the
single cistrome model

13.3 Domain Model 277

reason An assumption underlying use of the TF BP model
justification The TF BP model assumes that the relevant scale of com-

putation is the cistrome level, abstracted from specific details of the
individual TFs

Assumptions directly related to the sparking posts model are:

A.10 a spark from a post can hit any post with equal probability: there is no
notion of a ‘distance’ between posts

reason an aspatial model
justification the TF BP model collapses a potential cascade of TFs into

a single ‘proxy’ TF. This cascade would lose any spatial dependence
in the DNA.

A.11 a post cannot be hit by more than one spark per timestep: there is no
notion of different ‘capacity’ posts

reason follows from assumption A.6

Chapter 14

CellBranch: increment 1: Development phase

Development Phase (96)

Build the scientific instrument: produce a simulation platform to per-
form repeated simulation, based on the output of the Discovery Phase

(95).

• revisit the Research Context (121)

• develop a Platform Model (151)

• develop a Simulation Platform (163)

14.1 Development > revisit Research Context

The research context is unchanged in the light of Discovery phase activit-
ies. The TF concepts need to be reinterpreted in terms of the sparking posts
model.

14.2 Development > Platform Model

Platform Model (151)

From the Domain Model, develop a platform model suitable to form the
requirements specification for the Simulation Platform.

• choose a Modelling Approach (112) and application architecture for
the platform modelling

279

280 14 CellBranch: increment 1: Development phase

• develop the platform model from the Domain Model (131). In partic-
ular:

– remove the Domain Behaviours (137)

– develop the Basic Platform Model (152) from the Basic Domain

Model (133)

– develop the Simulation Experiment Model (154) from the Domain

Experiment Model (137)

• Document Assumptions (109) relevant to the platform model
• if necessary, Propagate Changes (170)

14.2.1 Development > Platform Model > Modelling
Approach

Modelling Approach (112) : Choose an appropriate modelling approach
and notation.

We use the same approach as for Domain Model (see §13.3.2), assisting
Seamless Development.

14.2.2 Development > Platform Modelling > Basic Platform
Model

Basic Platform Model (152)

Build a detailed model of the basic platform concepts, components and
processes.

• develop the Basic Platform Model (152) from the Basic Domain Model

(133)

• as needed, develop the Stochasticity Model (156)

• as needed, develop the Space Model (157)

• as needed, develop the Time Model (160)

The ‘sparking posts’ model carries over from the Basic Domain Model un-
changed. The emergent tipping point behaviour is not an explicit compon-
ent of the Basic Platform Model.

14.2 Platform Modelling 281

Stochasticity Model (156) : Each spark can land on any post with equal (uni-
form) probability (see assumption A.10).

Space Model (157) : The model is aspatial: although the post metaphor
might sound spatial, the equal probability of spark landing implies an
aspatial arena.

Time Model (160) : The model of time is that of synchronised timesteps of
activity: posts emit sparks, posts are activated by sparks landing on
them, in each timestep (a consequence of the Basic Domain Model (133)).

14.2.3 Development > Platform Model > Simulation
Experiment Model

Simulation Experiment Model (154) : Define relevant experiments in
the simulation, analogous to domain experiments.

In this case we do not have a relevant Domain Experiment Model to use as
the basis for design. The kinds of Simulation Experiments we will do require
the following input/output and instrumentation:
• derive parameters p, r from ChIP-Seq data
• input and set parameters p, r, m, s0
• run the simulation for T timesteps
• output sT , the number of active posts at time T
• perform multiple runs with different random seeds

14.2.4 Development > Platform Model > Document
Assumptions

See §13.1.5 for the Document Assumptions (109) pattern requirements.

A.12 the sparks emited by an active post last for one simulation time step

reason simplicity
justification first increment
consequence half lives and decay rates are not modelled; they may be

added in later increments

282 14 CellBranch: increment 1: Development phase

14.3 Development > Simulation Platform

Simulation Platform (163)

Develop the executable simulation platform that can be used to run the
Simulation Experiment.

• choose an Implementation Approach (161) for the platform modelling,
following the principle of Seamless Development (216) as much as
possible
• coding
• testing
• perform Calibration (165)

• Document Assumptions (109) relevant to the simulation platform
• if necessary, Propagate Changes (170)

14.3.1 Development > Simulation Platform >
Implementation Approach

Implementation Approach (161) : Choose an appropriate implementa-
tion approach and language.

The simulation is implemented as an object-oriented Java application us-
ing the MASON simulation environment to handle such things as time-
stepping the simulation and on screen graphics (when running in graphical
mode).

14.3.2 Development > Simulation Platform > coding, testing

The details are omitted here. The code is available on GitHub for inspection
(see §20.2).

14.3.3 Development > Simulation Platform > Calibration

14.3 Simulation Platform 283

Calibration (165) : Tune the Simulation Platform so that simulation res-
ults match the calibration data provided in the Data Dictionary.

The Domain Model is sufficiently abstracted from the Domain that the Sim-

ulation Experiments in this increment do not mirror any domain experiments.
Hence there is no calibration data in the Data Dictionary, and no Calibration

activity.

14.3.4 Development > Simulation Platform > Document
Assumptions

There are no further relevant assumptions made in the simulation platform
development.

Chapter 15

CellBranch: increment 1: Exploration phase

Exploration Phase (97)

Use the Simulation Platform resulting from the Development Phase to ex-
plore the scientific questions established during the Discovery Phase.

• initially, revisit the Research Context (121)

• develop an experimental Results Model (176)

• finally, revisit the Simulation Purpose (123)

15.1 Exploration > revisit Research Context

The Research Context (121) is unchanged in the light of the Discovery Phase

and Development Phase activities.

15.2 Exploration > Results Model

Results Model (176)

Develop a results model suitable for interpreting Simulation Experiment

data in Domain Model terms.

• perform Sensitivity Analysis (177)

• perform relevant Simulation Experiment (179)s
• build a Simulation Behaviours (181) model

285

286 15 CellBranch: increment 1: Exploration phase

15.2.1 Exploration > Results Model > Sensitivity Analysis

Sensitivity Analysis (177) : Determine how sensitively the simulation
output values depend on the input and modelling parameter values.

No explicit sensitivity analysis is performed at this stage. Some of the
specific Simulation Experiments below investigate the sensitivity to various
parameters.

15.2.2 Exploration > Results Model > Simulation
Experiment

Simulation Experiment (179)

Design, run, and analyse simulation experiments.

• design the experiment
• perform simulation runs and gather data
• analyse results, for input to the Simulation Behaviours (181) model
• Document Assumptions (109) relevant to the simulation experiment

15.2.3 Exploration > Results Model > Simulation
Experiment > design

The parameters p (number of posts) and r (number of red posts) are effect-
ively fixed for any given set of experimentally derived cistrome data (fig-
ure 13.8). We can also generate synthetic data to create systems with a range
of p and r values to explore general behaviours.

Number of simulation runs

We are not performing any statistical analyses at this stage of the pro-
ject, merely inspecting behaviour. However, the simulation is essentially
stochastic, and when we do come to perform statistics, we will need to
choose the number of runs based on the significance, power, and effect size

15.2 Results Model 287

of interest. For consistency, we make that choice now, and use the relevant
number of runs.

We require a statistical significance of 99% (a 1% false positive rate), a
statistical power of 99% (a 1% false negative rate), and a ‘medium’ effect
size (Cohen’s d = 0.5, the ability to distinguish a difference in means of
0.5 of a standard deviation). Calculating the required sample size for these
experimental parametersi gives 192.

We round this up, and take the number of runs to be N = 200.

15.2.4 Exploration > Results Model > Simulation
Experiment > perform

Protocol

One simulation run comprises the p and r values of a particular arena
(chosen for example to match Nanog, Sox2, Oct4 data), an m value (0–50),
and a starting activity s0, as detailed in the experiment design tables.

For each simulation run, we record the proportion of active red posts at
the final timestep, T = 1000.

For each parameter set (p, r, m, s0), we run the simulation N = 200 times.
We identify 4 experiments to perform on the single-arena simulation:

Experiment E.0:

Effect of m. For each cistrome, create an arena with the relevant p and r
values, and s0 = r. Explore the effect of m by locating those values of m for
which the system remains fully saturated: all red posts are active at all time
steps. Compare this with the expected mc value (figure 13.8) for a noiseless
system.

E.0 Nanog Sox2 Oct4

p 4310 3330 2540
r 631 542 466

m 0–50 0–50 0–50
s0 r r r

i using, for example, the calculator at http://powerandsamplesize.com/Calculators/

Compare-2-Means/2-Sample-Equality

288 15 CellBranch: increment 1: Exploration phase

Experiment E.1:

Effect of s0, sensitivity to initial conditions. Repeat E.0 with a smaller value
of s0.

E.1 Nanog Sox2 Oct4

p 4310 3330 2540
r 631 542 466

m 0–50 0–50 0–50
s0 r/2 r/2 r/2

Experiment E.2:

Effect of r. Create an arena with the Nanog p value, and a range of r values.
At each value of r, determine the values of m for which the system remains
saturated throughout the simulation.

E.2 Nanog

p 4310
r 200, 400, 600, 800

m 0–50
s0 r

Experiment E.3:

Effect of noise. Keeping the value of p/r fixed at the Nanog value of
4310/631, investigate the effect of reducing p. This gives some insight into
whether we can use smaller arenas in experiments to improve simulation
performance, without affecting the results.

E.3 Nanog Nanog

p 2000 1000
r 293 146

m 0–50 0–50
s0 r r

15.2 Results Model 289

15.2.5 Exploration > Simulation Experiment > analyse
results

Experiments E.0 and E.1 results

See figure 15.1 for the results of the simulation runs.
Starting with only half the posts active makes little difference to the res-

ults.

Experiment E.2 results

For experiment E.2, we take p = 4310 (as in Nanog), vary r, and examine
how the value of mc changes. We use s0 = r throughout.

See figures 15.2–15.3 for the results of the simulation runs.
Recall that the theoretical tipping point value is mc = p/r. So as r in-

creases, mc should decrease. This is observed (figure 15.3).
The smaller the value of r, the noisier the behaviour (visible as more ex-

tended boxplots in figure 15.2). This demonstrates how stochastic effects are
more prominent when there are fewer red posts available.

Experiment E.3 results

For experiment E.3, we take p/r = 4310/631 (as in Nanog), and vary p
keeping p/r constant (mimicking a different sized arena but with the same
density of red posts). We use s0 = r throughout.

See figure 15.4 for the results of the simulation runs; compare with fig-
ure §15.1(top) for the ‘full’ arena.

The systems tip at the same point, but the behaviour gets noisier as p (and
hence r) decreases, and stochastic effects become more pronounced.

15.2.6 Exploration > Results Model > Simulation
Behaviours

Simulation Behaviours (181) : Develop a model of the emergent prop-
erties of a Simulation Experiment, for comparison with the related emer-
gent Domain Behaviours of the Domain Model.

290 15 CellBranch: increment 1: Exploration phase

●

●

●

●

●●

●

●●

●

●

●●●

●

●
●

●

●

●●●

●●

●●

●●
●

●
●

●
●

●●●●
●●●

●

●●●●●

●

●

●

● ● ●●

●

●

●

●●● ● ●●

●
●●● ● ●● ● ●●● ● ●●● ●●● ● ●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●● ●●●●●● ●●

0
20

40
60

80
10

0

System saturation vs branching parameter value

branching parameter, m

P
er

ce
nt

ag
e

of
 a

ct
iv

at
ed

 r
ed

 p
os

ts
 in

 fi
na

l s
te

p

0 3 6 9 12 16 20 24 28 32 36 40 44 48

●

●

●

●
●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●
●

●●
●

●
●●

●

●

●●

●

●
●● ●● ● ●

●●●
●
●
●●●
●
●●●●●●●●
●
●● ●●●● ● ●● ● ●●● ●●●● ● ●●● ●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●● ●●●●● ●●●●● ●●● ●●●

0
20

40
60

80
10

0

System saturation vs branching parameter value

branching parameter, m

P
er

ce
nt

ag
e

of
 a

ct
iv

at
ed

 r
ed

 p
os

ts
 in

 fi
na

l s
te

p

0 3 6 9 12 16 20 24 28 32 36 40 44 48

●
●

●●●

●

●●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

● ●●●●●●● ● ● ●● ● ●●
●● ●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●● ●●●● ●● ●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●

0
20

40
60

80
10

0

System saturation vs branching parameter value

branching parameter, m

P
er

ce
nt

ag
e

of
 a

ct
iv

at
ed

 r
ed

 p
os

ts
 in

 fi
na

l s
te

p

0 3 6 9 12 16 20 24 28 32 36 40 44 48

●
●

●●

●●●●●

●

●

●●

●

●
●
●

●

●

●

●

●

●
●

●

●●

● ●

●

●

● ●●● ● ●● ● ●●● ●● ●●
●●●● ●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●● ●● ● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●

0
20

40
60

80
10

0

System saturation vs branching parameter value

branching parameter, m

P
er

ce
nt

ag
e

of
 a

ct
iv

at
ed

 r
ed

 p
os

ts
 in

 fi
na

l s
te

p

0 3 6 9 12 16 20 24 28 32 36 40 44 48

●
●
●

●

●

●

●

●

●

●

● ●

●

●
●
●

●●

●●

●●

●

●●●
●●

●●●● ●●●
●

●●●● ● ●●
●●● ●●● ●●

●●●●●●●●●●●●●● ●●●●●●● ●●●● ●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●●●● ●●●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●

0
20

40
60

80
10

0

System saturation vs branching parameter value

branching parameter, m

P
er

ce
nt

ag
e

of
 a

ct
iv

at
ed

 r
ed

 p
os

ts
 in

 fi
na

l s
te

p

0 3 6 9 12 16 20 24 28 32 36 40 44 48

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●●
●●

●
● ●

● ●● ● ●●●●●●●●●●●●●● ● ●●●●●●●●●●●●● ●●●●●●● ●●●●●●● ●●●●●●●● ●●●●● ●● ●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●

0
20

40
60

80
10

0

System saturation vs branching parameter value

branching parameter, m

P
er

ce
nt

ag
e

of
 a

ct
iv

at
ed

 r
ed

 p
os

ts
 in

 fi
na

l s
te

p

0 3 6 9 12 16 20 24 28 32 36 40 44 48

Fig. 15.1 p and r corresponding to (top row) Nanog data, calculated mc = 6.8; (middle
row) Sox2 data, calculated mc = 6.1; (bottom row) Oct4 data, calculated mc = 5.5. (left)
E.0: s0 = r; (right) E.1: s0 = r/2.

15.2 Results Model 291

●●●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●●
● ●

●
●

●

●●

●

●

●

●

0
20

40
60

80

System saturation vs branching parameter value

branching parameter, m

P
er

ce
nt

ag
e

of
 a

ct
iv

at
ed

 r
ed

 p
os

ts
 in

 fi
na

l s
te

p

0 3 6 9 12 16 20 24 28 32 36 40 44 48

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●●

● ●

●

●
●

●

●

●

●●
●

●●● ●●●●
●●● ● ● ● ●● ●●●●● ●●●● ●●● ●● ●●●●● ● ● ●●●●●●

0
20

40
60

80
10

0

System saturation vs branching parameter value

branching parameter, m

P
er

ce
nt

ag
e

of
 a

ct
iv

at
ed

 r
ed

 p
os

ts
 in

 fi
na

l s
te

p

0 3 6 9 12 16 20 24 28 32 36 40 44 48

●

●

●

●

●●●

●●●

●●●

●

●

●●
●●

●

●

●●

●

●

●

●

●

●
● ●●●

●●●●

●

● ● ● ●● ●● ● ●●●●● ●●●●● ●●●● ●● ●●●●●●●●●●●●●●● ●● ●●●●●● ●●●

0
20

40
60

80
10

0

System saturation vs branching parameter value

branching parameter, m

P
er

ce
nt

ag
e

of
 a

ct
iv

at
ed

 r
ed

 p
os

ts
 in

 fi
na

l s
te

p

0 3 6 9 12 16 20 24 28 32 36 40 44 48

●●
●

●●

●

●

●●

●●

●

●

●
●●

●

●

●
●

●

●

●

● ●●●● ● ●●●●● ●● ● ● ●●●● ● ●●●●●● ●●●●●●●●●●● ●●● ●● ●●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●

0
20

40
60

80
10

0

System saturation vs branching parameter value

branching parameter, m

P
er

ce
nt

ag
e

of
 a

ct
iv

at
ed

 r
ed

 p
os

ts
 in

 fi
na

l s
te

p

0 3 6 9 12 16 20 24 28 32 36 40 44 48

Fig. 15.2 E.2: varying r; here p = 4310 (Nanog). (top left) r = 200; (top right) r = 400;
(bottom left) r = 600; (bottom right) r = 800

r m obs mc calc

200 23–24 21.6
400 11–12 10.8
600 7–8 7.2
800 5–6 5.4

Fig. 15.3 E.2: observed value of m at tipping point for different r (with p = 4310, Nanog),
versus calculated value mc

292 15 CellBranch: increment 1: Exploration phase

●

●

●

●

●●●

●

●

●

●
●
●

●
●

●

●●●

●●
●

●●

●

●●

●

●

●●●

●● ●
●●●●

●

●●

●●●● ● ●●●●

●

●●●●●●●●●●● ●●● ● ●● ●●●
●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●● ● ●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●● ●●●●●● ●● ●●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0
20

40
60

80
10

0

System saturation vs branching parameter value

branching parameter, m

P
er

ce
nt

ag
e

of
 a

ct
iv

at
ed

 r
ed

 p
os

ts
 in

 fi
na

l s
te

p

0 3 6 9 12 16 20 24 28 32 36 40 44 48

●●●●●●●●●●

●

●●●●●●●●●●●●●●

●
●

●

●

●

●

●●●

●●

●

●

●
●

●●

●

●●
●●●●
● ●

●

●

●●● ● ● ●●
●●●●●●
●●●●●●●● ●●●●●●●●●●●●●

●

●
●●●●●●●
● ●●●●● ●●●●● ●

●
●●

●
●
●● ●●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●

0
20

40
60

80
10

0

System saturation vs branching parameter value

branching parameter, m

P
er

ce
nt

ag
e

of
 a

ct
iv

at
ed

 r
ed

 p
os

ts
 in

 fi
na

l s
te

p

0 3 6 9 12 16 20 24 28 32 36 40 44 48

Fig. 15.4 E.3: varying p with constant p/r: (left) p = 2000, r = 293; (right) p = 1000, r =
146

Nanog Sox2 Oct4

p/r = mc calc 6.8 6.1 5.5
mc observed 8 7 6

Fig. 15.5 Simulation Behaviours: Theoretical value mc, the critical branching factor in the
infinite arena limit, compared to the observed value in the finite-sized arena simulation.

The observed values of m where the system ‘switches on’, and can main-
tain saturation, are close to the calculated mc values, see figure 15.5. How-
ever, m has to be somewhat higher than this to saturate the finite-sized arena.

15.3 Revisit Simulation Purpose 293

15.2.7 Exploration > Results Model > Simulation
Behaviours > Visualisation Model

Visualisation Model : Visualise the Simulation Experiment results of the
Data Dictionary in a manner relevant to the users.

• The visualisation mimics the cistrome data in figure 13.2 [Plots not
shown]

• The output data is presented as plots of activation at T = 1000 against
m

15.3 Exploration > revisit Simulation Purpose

The purpose of the CellBranch simulation project is to provide evidence of
the usefulness of BPT as a model of decision making in stem cell differenti-
ation.

Having exercised the single cistrome simulation, increment 1, we are sat-
isfied that the simulation returns results qualitatively in line with what we
expect: simulations run with a higher branching parameter, m, exhibit more
sustained activity in that cistrome, and the proportion of the cistrome that
contains TF binding site also affects simulation behaviour. Thus we have
been able to show that Nanog, Oct4 and Sox2 cistrome branching processes
all behave differently, and that each has its own value of m, mc, at which the
simulation runs started to show sustained activity. This observed mc is mar-
ginally higher than the theoretical value, due to noise and finite size effects.

Chapter 16

CellBranch: increment 2: multiple
transcription factors

The models and results presented here document the second increment of
the CellBranch project using the CoSMoS approach. Here, we increment the
model and simulation, by adding multiple interacting TF branching pro-
cesses, and perform new simulation experiments.

CoSMoS Simulation Project (93)

Develop a basic fit-for-purpose simulation of the complex scientific do-
main of interest.

• carry out the Discovery Phase (95)

• carry out the Development Phase (96)

• carry out the Exploration Phase (97)

• Argue Instrument Fit For Purpose (189)

As stated at the start of increment 1, the CellBranch project development
omits the CoSMoS argumentation phase.

295

Chapter 17

CellBranch: increment 2: Discovery phase

Discovery Phase (95)

Decide what scientific instrument to build. Establish the scientific basis
of the project: identify the domain of interest, model the domain, and
shed light on scientific questions.

• identify the Research Context (121)

• define the Domain (125)

• construct the Domain Model (131)

17.1 Discovery > Research Context

Research Context (121)

Identify the overall scientific context and scope of the simulation-based
research being conducted.

• provide a brief overview of the research context
• document the research goals and project scope
• agree the Simulation Purpose (123), including criticality and impact
• identify the team members and their experience, and assign Roles

(99)

• Document Assumptions (109) relevant to the research context
• note the available resources, timescales, and other constraints
• determine success criteria
• decide whether to proceed, or walk away

297

298 17 CellBranch: increment 2: Discovery phase

The following components of the Research Context are unchanged from
increment 1:
• Simulation Purpose (123)

• team Roles (99)

• resources
• proceed

Components of the Research Context that are changed and expanded for
increment 2 are discussed below.

17.1.1 Discovery > Research Context > overview

The overall research context remains much as it was in increment 1: the
investigation of the conceptual branching process approach. We have ar-
gued that if the activity of single transcription factors can be described as
critical-like branching processes, their interplay should define a critical-like
genome-wide interference pattern that captures in some way the nature of
the entire pluripotency transcription factor regulatory network [106].

We now develop the models and simulation resulting from the first in-
crement, and increase their biological relevance by permitting the system to
consist of two or more interacting transcription factor branching processes
(TF BPs) , thus permitting us to gain understanding of the behaviour of con-
structively interfering branching processes. We defer inclusion of destruct-
ive interference between TF BPs until a later increment, to permit us to more
fully understand this simpler representation of the system prior to the addi-
tion of another layer of complexity.

This second increment of model development will permit us to charac-
terise the behaviour of the central elements of the core pluripotent network
of mouse embryonic stem cells, that is, to characterise the associated TF BPs
and how they propagate in the presence of cross-cistrome communication.

Our incremental approach to the development of the full simulation
continues with the simplest possible augmentation of the system: the co-
operation of two or more transcription factors at genome-wide scales.

This model of multiple interacting pluripotent TF BPs is still far from
complete, and not biologically realistic. It is only when multiple TF BPs are
simulated in parallel, generating branching process interference patterns via
both constructive and destructive interference, that we can expect to generate
the interference patterns predicted to underpin circuitry self-organisation.
This increment allows the simulation of multiple cistromes interacting con-
structively. As greater numbers of pluripotency TFs are included in the

17.1 Research Context 299

model, we expect that our simulations will become increasingly biologically
realistic.

17.1.2 Discovery > Research Context > research goals

Our overall research goals remain unchanged from those stated in increment
1. The specific research goals of this second increment are:

1. to simulate and explore a multi-TF branching process.

17.1.3 Discovery > Research Context > Document
Assumptions

Document Assumptions (109) : Ensure assumptions are explicit and
justified, and their consequences are understood.

The key assumptions made in the first increment of the simulation de-
velopment remain relevant, as do their justifications and consequences. In
addition:

A2.1 It is sufficient to consider only constructive interference between cis-
tromes

reason As part of an incremental development of providing insight.
justification This is a sensible increment that will provide further in-

sight.
consequence The branching processes can interfere both constructively

and destructively [106], so the results of this increment will lack full
biological relevance.

17.1.4 Discovery > Research Context > success criteria

1. a multi-cistrome simulator development
2. a multi-cistrome simulator that can justify the use of the TF BP model to

analyse stem cell fates

300 17 CellBranch: increment 2: Discovery phase

17.2 Discovery > Domain

Domain (125)

Identify the subject of simulation: the real-world biological system, and
the relevant information known about it.

• draw an explanatory Cartoon (126) of the domain
• provide an overview description of the domain
• define the Expected Behaviours (129)

• provide a Glossary (130) of relevant domain-specific terminology
• Document Assumptions (109) relevant to the domain
• define the scope and boundary of the domain — what is inside and

what is outside — from the Research Context (121)

• identify relevant sources: people, literature, data, models, etc

The following components of the Domain are unchanged from incre-
ment 1:
• Cartoon

• Glossary

• Document Assumptions

• sources
Components of the Domain that are changed and expanded for increment

2 are discussed below.

17.2.1 Discovery > Domain > overview

Embryonic stem (ES) cell biology

See the presentation of an overview of the relevant biology in increment
1. We continue to seek to exploit the big data available to understand the
phenotypic behaviour of entire cells in terms of the behaviour of key regu-
latory molecules [229] via creation of a multi-layered model of a stem cell
regulatory network.

17.3 Domain Model 301

17.2.2 Discovery > Domain > Expected Behaviours

Expected Behaviours (129) : Describe the hypothesised behaviours and
mechanisms.

In the multi-cistrome case, we expect some values of TF expression in
one cistrome to be sufficient to sustain activity in another cistrome that has
a low level of self-activity. Also, we expect one cistrome to be able to ‘ignite’
another.

17.2.3 Discovery > Domain > scope

• a single cell model
• multiple TFs interfering constructively
• !! Future: later increments may add destructive interference
• !! Future: later increments may add more biological detail and build to-

wards a model of interacting cells

17.3 Discovery > Domain Model

Domain Model (131)

Produce an explicit description of the relevant domain concepts.

• draw an explanatory Cartoon (126)

• discuss and choose the domain Modelling Approach (112) and level
of abstraction
• define the Domain Behaviours (137)

• build the Basic Domain Model (133) using the chosen modelling ap-
proach
• build the Domain Experiment Model (137)

• build the Data Dictionary (134)

• build the domain Stochasticity Model (156)

• Document Assumptions (109) relevant to the domain model

The following components of the Domain Model are unchanged from in-
crement 1:
• Cartoon

302 17 CellBranch: increment 2: Discovery phase

• Modelling Approach

• Document Assumptions

• (lack of) Domain Experiment Model

Components of the Domain Model that are changed and expanded for
increment 2 are discussed below.

17.3.1 Discovery > Domain Model > Basic Domain Model

Basic Domain Model (133) : Build a detailed model of the basic low
level domain concepts, components and processes.

As discussed in increment 1, our domain modelling gives rise to several
models at different levels of abstraction: a specifically biological stem cell
model of regulatory networks, a model simplifying detailed transcription
regulatory networks using branching process theory, and a generic abstract
model, which we refer to as the ‘sparking posts’ model. Here we describe
the changes to the increment 1 model that arise from allowing multiple con-
structively interfering cistromes.

Regulatory network

We have mouse genome data including the suite of binding sites within it.
For convenience and simplicity, we divide this sequence in to 50 kilobase
(kb) segments, any of which may or may not contain binding sites for a
particular TF of interest. If a 50kb segment contains a binding site for our
transcription factor, X, then the segment is said to be part of the X cistrome.

Data about the locations of the transcription factor binding sites, in re-
lation to the gene segments in the model, is provided experimentally by
ChIP-Seq data as in the work described in increment 1. Figure 13.2 is a rep-
resentation of ChIP-Seq data.

Transcription Factor Branching Process model

We continue to use the Transcription Factor Branching Process model de-
scribed in increment 1. This novel, coarse-grained approach does not require
details of binding constants prerequisite for most ODE models of stem cell
regulation. As in the original implementation of the simulation, the refined

17.3 Domain Model 303

simulation will also explicitly represent a background delocalisation of TF
activity throughout the genome.

Basic Domain Model: Sparking Posts

In increment 1, in order to model a branching process, we produced our
domain model in terms of a metaphor.

To capture the nature of critical-like self-organisation hypothesised to un-
derpin lineage computation, we reduced the system to a ‘sparking posts’
model. This computational model was used to define the backbone of critical-
like self-organisation upon which this and other layers of complexity are
elaborated.

So, to re-iterate the Domain Model used as the basis for our simulation
implementation: The TF BP representation of our system is modelled as a
‘sparking posts’ representation of the cistrome in which each segment is
modelled as a metal ‘post’ which emits ‘sparks’ once it has been activated
by an incoming spark emitted by another post in the previous timestep. The
sparks represent the TF products of the genes contained within a given seg-
ment and are therefore the principal mode of communication between cis-
tromes, the genome being effectively the sum of all cistromes in the system.

So the Basic Domain Model with multiple TFs is as follows (see also fig-
ure 17.1).

• An arena contains metal posts, some red, some white. There are several
arenas; there are some red posts that appear in the same position in dif-
ferent arenas: these are called shared posts. An arena is an abstraction of
one particular cistrome; the posts are abstractions of the segments con-
taining binding sites (red and white squares in figure 13.2); red posts are
abstractions of segments that express TFs (red squares in figure 13.2);
shared red posts are abstractions of the same segment expressing mul-
tiple TFs related to different cistromes.
• Posts may be active (on) or inactive (off). In a timestep, each active red

post emits m sparks. A post being active is an abstraction of a gene in a
segment being active; a red post sparking is an abstraction of an active
gene expressing a TF.

• Posts become inactive after they have sparked.
• The emitted sparks lands on random posts in the arena (that is, the

model is aspatial). If a spark lands on an unshared red post, it activates
it. If a spark lands on a shared red post, then the spark is transferred to
any inactive corresponding post in another arena; if all the shared posts
in other arenas are active, the spark activates the post in the original

304 17 CellBranch: increment 2: Discovery phase

Fig. 17.1 Domain Model: illustration of communication between arenas. (1) a shared red
post: an abstraction of a TF binding site common to two or more cistromes; (2) a shared
post is struck by one spark, in arena X; it will activate the post in arena Y or Z; (3) a shared
post is struck by two sparks, in arenas X and Y; they will activate the post in arena Z
(by transferring the spark from X or Y) and in arena X or Y (the other spark cannot be
transferred); (4) a shared post is struck by a spark in each arena, and the post is activated
in each arena.

17.3 Domain Model 305

branching : N

RedPost

Spark

1

1..*

contains

1

1

activates

1

*

emits

Arena

active : on|off
WhitePost

1

1

lands

{xor}

1

1..*

contains

PostSet
2..n 1

shares

Fig. 17.2 Sparking posts model components for multiple arenas with shared posts: class
diagram. Each arena has a branching factor. Each arena contains multiple red posts, which
can be on or off, and multiple white posts. A red post can emit several sparks; each spark
is emitted by a particular post. A particular spark either activates a red post (figure 17.1
illustrates which arena this red post is in) or lands on white post, but not both. A shared
set of posts comprises two to n red posts, where n is the number of arenas (every red
post in a shared set is in a distinct arena; not shown in the diagram); a shared post is in a
particular shared set.

arena. That is, the spark is transferred to another arena where possible.
No post can accept more than one spark, whether it shares it or not.

• Continued propagation of sparks in an arena relies on the activation
of sufficient red posts at each timestep. Sharing sparks between arenas
allows an arena to become or stay active even if it does not produce
enough sparks itself.

Figure 17.1 illustrates spark sharing; figure 17.2 shows the updated class
diagram (compare figure 13.5).

306 17 CellBranch: increment 2: Discovery phase

σ number of red posts shared by the arenas

Fig. 17.3 Data Dictionary: additional increment 2 parameter, constant during a simula-
tion run

arena σ

Nanog–Oct4 194
Nanog–Sox2 287
Oct4–Sox2 237

Fig. 17.4 Data Dictionary: Parameter values for σ (the number of red posts shared by the
arenas)

17.3.2 Discovery > Domain Model > Data Dictionary

Data Dictionary (134) : Define the modelling data used to build the
simulation, and the experimental data that is produced by domain ex-
periments and the corresponding simulation experiments.

The sparking post model’s parameters and variables are as in increment
1, plus the shared posts data (given in figure 17.3). Figure 17.4 gives the
experimentally measured values of σ for the cistromes of interest here.

17.3.3 Discovery > Domain Model > Domain Behaviours

Domain Behaviours (137) : Describe the observed emergent behaviours
of the underlying system.

With multiple interconnected arenas, we expect sparking behaviour in
any arena to be affected by the behaviour in other arenas with shared posts.

In increment 1 we use an infinite limit model to calculate an estimate of
mc in a single arena. We here use a similar approach to calculate an estimate
in the reduction of mc in coupled arenas. This infinite limit case is essentially
noiseless, with each post being activated the average number of times.

Consider the case of two arenas, X and Y. At time t let there be sX
t posts

active in arena X. In the model, each of these active posts emits mX sparks,
so a total of stX × mX sparks are emitted. Let each of these sparks be ab-
sorbed by a separate post with uniform probability. There are three cases
(three kinds of posts):

17.3 Domain Model 307

1. Activate a Y arena (red, shared) post. A fraction σ/pX of the (red) posts
are shared, and the model assumes that a spark absorbed by one of these
passes to the Y arena. So stXmXσ/pX sparks in total are passed to the Y
arena, activating that number of posts in the Y arena in the next timestep.

2. Activate an X arena (red, unshared) post. A fraction (rX − σ)/pX of the
(red) posts can be activated in the X arena, and a spark absorbed by such
a post activates it in the next timestep. So stXmX(rX− σ)/pX posts in the
X arena are activated by these sparks.

3. Absorbed by a white post. The remaining fraction of posts absorb a
spark and do not produce a spark in the next timestep.

Similar arguments, mutatis mutandis, hold for sparks emitted by arena Y. So
at timestep t + 1, the number of active posts in arena X is those activated
from arena Y plus those activated from arena X:

sX
t+1 =

sX
t mX(rX − σ)

pX +
stYmYσ

pY

A similar equation holds for sY
t+1. At the critical tipping point, st+1 = st.

We take these two equations, eliminate sX/sY, then solve for mX , to get

mX =
pX (

pY −mYrY + mYσ
)

(pY −mYrY) (rX − σ) + mYrXσ

This gives the infinite limit predicted value of mX in the case of a given
mY. If we substitute mY = pY/rY, the infinite limit single arena critical value
for Y, we get mX = pX/rX . That is, in the infinite limit, the critical values
are unchanged. Alternatively, if we substitute σ = 0 (isolated arenas), we
also recover the original predicted value of mX . However, if we substitute
the observed critical value in the finite sized noisy case for mY, and the ex-
perimentally measured value of σ (shown in figure 17.4) we get a different
prediction for mX , as shown in figure 17.5.

17.3.4 Discovery > Domain Model > Document Assumptions

Document Assumptions (109) : Ensure assumptions are explicit and
justified, and their consequences are understood.

The assumptions in increment 1 are still relevant to the increment 2
model. We add a further assumption to allow for communication between
cistromes in the model:

308 17 CellBranch: increment 2: Discovery phase

arena X Nanog Sox2 Oct4
p/r 6.8 6.1 5.5

arena Y p/r mc 8 7 6

Nanog 6.8 8 – 4.9 4.0
Sox2 6.1 7 6.0 – 4.6
Oct4 5.5 6 6.3 5.6 –

Fig. 17.5 Domain Behaviours: The predicted change in critical branching factor in
coupled arenas. Arena Y is held at its observed critical value mc; the predicted value of
cistrome X’s mc when the arenas are coupled is lower than its value when arena X evolves
in isolation.

A2.4 in any given timestep, a post in a cistrome can gain at most one spark
from being hit and from sharing sparks from shared posts.

reason follows from assumption A.6 (‘no differing amounts of activa-
tion’) and assumption A.11 (‘a post cannot be hit by more than one
spark per timestep’)

Chapter 18

CellBranch: increment 2: Development phase

Development Phase (96)

Build the scientific instrument: produce a simulation platform to per-
form repeated simulation, based on the output of the Discovery Phase

(95).

• revisit the Research Context (121)

• develop a Platform Model (151)

• develop a Simulation Platform (163)

18.1 Development > revisit Research Context

The research context is unchanged in the light of Discovery Phase activities.

18.2 Development > Platform Model

Platform Model (151)

From the Domain Model, develop a platform model suitable to form the
requirements specification for the Simulation Platform.

• choose a Modelling Approach (112) and application architecture for
the platform modelling
• develop the platform model from the Domain Model (131). In partic-

ular:

309

310 18 CellBranch: increment 2: Development phase

– remove the Domain Behaviours (137)

– develop the Basic Platform Model (152) from the Basic Domain

Model (133)

– develop the Simulation Experiment Model (154) from the Domain

Experiment Model (137)

• Document Assumptions (109) relevant to the platform model
• if necessary, Propagate Changes (170)

The components are realised as follows:
• Modelling Approach: unchanged from increment 1
• Basic Platform Model: The increment 2 ‘sparking posts’ Basic Domain

Model, with multiple arenas and shared posts, carries over unchanged
• Simulation Experiment Model: the increment 1 model is unchanged, ex-

cept for the addition of
– derive shared r values from ChIP-Seq data, for each arena
– input and set shared r values for each arena
– output st, the number of active posts at each timestep up to time T

• Document Assumptions: unchanged from increment 1

18.3 Development > Simulation Platform

Simulation Platform (163)

Develop the executable simulation platform that can be used to run the
Simulation Experiment.

• choose an Implementation Approach (161) for the platform modelling,
following the principle of Seamless Development (216) as much as
possible
• coding
• testing
• perform Calibration (165)

• Document Assumptions (109) relevant to the simulation platform
• if necessary, Propagate Changes (170)

The following components of the Simulation Platform are unchanged from
increment 1:
• Implementation Approach

• Calibration

• Document Assumptions

18.3 Simulation Platform 311

Components of the Simulation Platform that are changed and expanded
for increment 2 are discussed below.

18.3.1 Development > Simulation Platform > coding, testing

The coding details are omitted here. The code is available on GitHub for
inspection (see §20.2).

The behaviour of the increment 2 simulation experiments should reduce
to that of increment 1 in the case of a single arena. As part of the testing
process, we have re-run some of the increment 1 experiments, requiring the
same results.

Testing experiment E.1

We repeat experiment E.1 from increment 1 with each of the three core pluri-
potency cistromes to verify that the modified simulation returns results con-
sistent with those of the previous increment. As before, these simulations
commence with s0 = 0.5r and m is varied between 0 and 50 in an attempt to
locate the critical value of m, mc, at which we first start to observe sustain-
able branching in the cistrome of interest.

The results obtained are shown in figure 18.1, and are unchanged from
figure 15.4

Testing experiment E.3

We partially repeat experiment E.3 from increment 1 to show that the effects
of altering the values of p and r in the input cistrome can be reproduced by
increment 2. This experiment uses a synthetic, generated cistrome with p =
1000 (i.e. 1000 posts) and r = 146 (i.e. 146 red posts). The synthetic cistrome
created is in effect a scaled down Nanog cistrome – for Nanog p=4310 and
r=631.

The experiment starts with s0 = r, that is, with all red posts active. The
results are shown in figure 18.2, and are unchanged from figure 15.4 (right
hand panel).

[Further details of testing omitted here.]

312 18 CellBranch: increment 2: Development phase

●●

●
●

●

●

●●

●

●

●●

●●●

●●

● ●
●
● ●

●

●
●

●

●●

●●

●● ●●●●●
● ●●●● ● ●●● ●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●● ●●●● ●● ●●● ●

0
10

0
20

0
30

0
40

0

System saturation vs branching parameter value

branching parameter, m

P
er

ce
nt

ag
e

of
 a

ct
iv

at
ed

 r
ed

 p
os

ts
 in

 fi
na

l s
te

p

0 3 6 9 12 16 20 24 28 32 36 40 44 48

●●●

●

●

● ●●

●

●

●

●●

●
●

●

●
●

●
●

●

● ● ●● ● ●

●●

● ● ●●●●● ●●●●●●● ●● ●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●● ●●●●● ●●● ● ●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●

0
50

10
0

15
0

20
0

25
0

30
0

System saturation vs branching parameter value

branching parameter, m

P
er

ce
nt

ag
e

of
 a

ct
iv

at
ed

 r
ed

 p
os

ts
 in

 fi
na

l s
te

p

0 3 6 9 12 16 20 24 28 32 36 40 44 48

●●

● ●●●
●●

●
●

●
●

●

●

●●
● ●

●●

●●
●●●●

●●●

●

●
● ●●

●
●
●
●●

●●

●

●
●● ●●● ●

●●●●● ●● ●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ● ●●●●●● ●●●●●● ●●●●●●●●● ●●● ●●●● ● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●

0
10

0
20

0
30

0

System saturation vs branching parameter value

branching parameter, m

P
er

ce
nt

ag
e

of
 a

ct
iv

at
ed

 r
ed

 p
os

ts
 in

 fi
na

l s
te

p

0 3 6 9 12 16 20 24 28 32 36 40 44 48

Fig. 18.1 Replication of E.1. Determination of the critical value of the branching para-
meter, m, for arenas constructed from the cistromes for the three core pluripotency tran-
scription factors. The upper left hand panel shows the result for the Nanog arena, the
upper right for the Oct4 arena and the lower panel that for the Sox2 arena.

18.3 Simulation Platform 313

●●●●●●●●●●●●●●

●●●

●

●●

●

●●●

●●

●

●

●

●

●
●●
●

●●
●●●
●
●

●●●

●●●●

●

●● ●
●
●
●●●●●
●●●
●●●●● ●

●●● ●● ●●●
●●●●
●●●●●●●●●● ●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●

●
●●●●●●●●● ●●●●●● ●●●●● ●●●● ● ●●● ●

●● ●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●● ●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●

0
20

40
60

80
10

0

System saturation vs branching parameter value

branching parameter, m

P
er

ce
nt

ag
e

of
 a

ct
iv

at
ed

 r
ed

 p
os

ts
 in

 fi
na

l s
te

p

0 3 6 9 12 16 20 24 28 32 36 40 44 48

Fig. 18.2 Replication of E.3. p = 1000 and r = 146. s0 = r and m is varied from 0 to 50.

Chapter 19

CellBranch: increment 2: Exploration phase

Exploration Phase (97)

Use the Simulation Platform resulting from the Development Phase to ex-
plore the scientific questions established during the Discovery Phase.

• initially, revisit the Research Context (121)

• develop an experimental Results Model (176)

• finally, revisit the Simulation Purpose (123)

19.1 Exploration > revisit Research Context

The Research Context is unchanged.

19.2 Exploration > Results Model

Results Model (176)

Develop a results model suitable for interpreting Simulation Experiment

data in Domain Model terms.

• perform Sensitivity Analysis (177)

• perform relevant Simulation Experiment (179)s
• build a Simulation Behaviours (181) model

315

316 19 CellBranch: increment 2: Exploration phase

19.2.1 Exploration > Results Model > Sensitivity Analysis

No further Sensitivity Analysis (177) was performed

19.2.2 Exploration > Results Model > Simulation
Experiment

Simulation Experiment (179) : Design, run, and analyse simulation ex-
periments.

19.2.3 Exploration > Results Model > Simulation
Experiment > design

The design is unchanged from increment 1.

19.2.4 Exploration > Results Model > Simulation
Experiment > perform

Protocol

Each simulation run comprises the p and r values of a particular arena
(chosen to match Nanog, Sox2, Oct4 data), with an m value and a starting
activity as stated in each individual experiment.

For each simulation run, we record the proportion of active red posts at
each timestep, producing a timeseries of the extent of cistrome activation.

For each parameter set (p, r, m, s0), we run the simulation N = 200 times.
We identify several experiments to perform on the multiple-arena simu-

lation:

19.2 Results Model 317

Experiment E2.0 :

Preliminary investigation of system behaviour with the modified simula-
tion. In each case the arenas have their critical value of the branching para-
meter as determined in increment 1.
• Simulate pairs of coupled arenas (Nanog/Oct4, Nanog/Sox2, Oct4/Sox2).
• Simulate a three coupled arena (Nanog/Sox2/Oct4).

E2.0 Nanog Sox2 Oct4

r 631 542 466
mc 8 7 6

m mc mc mc

s0 r r r

Experiment E2.1 :

Test if an individually sustainable Oct4 arena can drive an initially totally
dissipated Nanog arena.

E2.1 Nanog Oct4

r 631 466
mc 8 6

m mc mc

s0 0 r

Experiment E2.1rev :

Test if an individually sustainable Nanog arena can drive an initially totally
dissipated Oct4 arena.

E2.1rev Nanog Oct4

r 631 466
mc 8 6

m mc mc

s0 r 0

318 19 CellBranch: increment 2: Exploration phase

Experiment E2.2 :

Test system behaviour when the Nanog arena has m = 2 < mc, and the Oct4
arena has m = 12� mc. Both arenas have all red posts initially active.

E2.2 Nanog Oct4

r 631 466
mc 8 6

m 2 12
s0 r r

Experiment E2.3 :

Test different combinations of Nanog branching parameter, m, for the Nanog
and Oct4 arenas, to see when critical Oct4 can ignite and maintain subcritical
Nanog.

E2.3 Nanog Oct4

r 631 466
mc 8 6

m 5, 6, 7, 8 mc

s0 0 r

Experiment E2.3rev :

As for experiment E2.3, but with reversed initial conditions, to see when
critical Nanog can ignite and maintain subcritical Oct4.

E2.3rev Nanog Oct4

r 631 466
mc 8 6

m mc 3, 4, 5, 6
s0 r 0

19.2 Results Model 319

Experiment E2.4 :

Test system behaviour when the Nanog arena has no branching, and the
Oct4 arena has high branching, to see if Oct4 can sustain a non-branching
Nanog. Both arenas have all red posts initially active.

E2.4 Nanog Oct4

r 631 466
mc 8 6

m 0 12
s0 r r

Experiment E2.5 :

Determine the minimum value of m for which sustainable Nanog arena can
be ignited via combined activity in the Sox2 and Oct4 arenas.

E2.6 Nanog Sox2 Oct4

r 631 542 466
mc 8 7 6

m 4, 5, 6, 7 mc mc

s0 0 r r

Experiment E2.6 :

Determine the minimum value of m for which sustainable Oct4 arena can be
ignited via combined activity in the Nanog and Sox2 arenas.

E2.7 Nanog Sox2 Oct4

r 631 542 466
mc 8 7 6

m mc mc 0–mc

s0 r r 0

320 19 CellBranch: increment 2: Exploration phase

Fig. 19.1 E2.1: Oct4 igniting Nanog. A critically branching Oct4 cistrome (blue trace) with
initial activation s0 = r and m = mc at time t = 0 drives the branching in an initially fully
dissipated Nanog cistrome (red trace) with initial activation s0 = 0 and m = mc.

19.2.5 Exploration > Simulation Experiment > analyse
results

Experiment E2.0 results

All the possible arena pairings, and the three coupled areas, show similar
behaviour with average activation around 25% for each arena throughout
the duration of the simulation.

[Plot omitted]

Experiment E2.1 results

The Oct4 cistrome critical branching process can drive an initially dissipated
Nanog cistrome branching process, through activation of red posts that the
two arenas share, Figure 19.1. The plot shows the first 250 of 1000 timesteps
performed, and shows the first run from a set of 200 runs performed; the
others runs are similar. The inset shows the first 25 timesteps.

19.2 Results Model 321

Fig. 19.2 E2.1rev: Nanog igniting Oct4. A critically branching Nanog cistrome (red trace)
with initial activation s0 = r and m = mc at time t = 0 drives the branching in an initially
fully dissipated Oct4 cistrome (blue trace) with initial activation s0 = 0 and m = mc.

Experiment E2.1rev results

The Nanog cistrome critical branching process can drive an initially dis-
sipated Oct4 cistrome branching process, through activation of red posts
that the two arenas share, Figure 19.2. The plots shows the first 250 of 1000
timesteps performed, and shows the first run from a set of 200 runs per-
formed; the others runs are similar. The inset shows the first 25 timesteps.

Experiment E2.2 results

A subcritically branching Nanog arena interacting with a supercritically
branching Oct4 arena: if the branching parameter is high enough in the Oct4
arena it can still drive activity in the Nanog arena even with very low values
of the branching parameter in this arena.

[Plot omitted]

322 19 CellBranch: increment 2: Exploration phase

Fig. 19.3 E2.3: Oct4 igniting Nanog, varying m. The effect of coupling a subcritically or
critically branching Nanog cistrome (red trace) to a critically branching Oct4 cistrome
(blue trace). The mc value in the Nanog cistrome is lowered from 8 to 7.

Experiment E2.3 results

The branching process in coupled Oct4 and Nanog arenas is sustainable
even if the mc value in the Nanog cistrome is lowered from 8 to 7, Figure
19.3. The plots shows the first 250 of 1000 timesteps performed, and shows
the first run from a set of 200 runs performed; the others runs are similar.

Experiment E2.3rev results

The branching process in coupled Oct4 and Nanog arenas is sustainable
even if the mc value in the Oct4 cistrome is lowered from 6 to 5, Figure 19.4.

19.2 Results Model 323

Fig. 19.4 E2.3rev: Nanog igniting Oct4, varying m. The effect of coupling a subcritically
or critically branching Oct4 cistrome (blue trace) to a critically branching Nanog cistrome
(red trace). The mc value in the Oct4 cistrome is lowered from 6 to 5.

The plots shows the first 250 of 1000 timesteps performed, and shows the
first run from a set of 200 runs performed; the others runs are similar.

Experiment E2.4 results

The system behaviour when an initially fully activated, but non-branching
Nanog arena (s0 = r and m = 0) interacts with a fully activated and super-
critically branching Oct4 arena (s0 = r and m = 12, twice the value of mc
determined for the Oct4 arena) is comparable to that in Experiment E2.2.
The Oct4 arena is still capable of driving short-lived activity in the Nanog
cistrome, but this is all derived from the activation of shared red posts.

[Plot omitted]

324 19 CellBranch: increment 2: Exploration phase

Fig. 19.5 E2.0: Coupling the Nanog arena to both the Oct4 and Sox2 arena. The effect
of coupling a subcritically or critically branching Nanog arena (red trace) to a critically
branching Oct4 arena (blue trace) and a critically branching Sox2 arena (green trace). The
mc value in the Nanog arena is lowered from 8 to 6.

Experiment E2.5 results

Varying the value of the branching parameter, m, for the Nanog arena while
it is coupled to critically branching Oct4 and Sox2 arenas reveals that the
coupled Nanog arena can now sustain branching when m = 6, which rep-
resents an effective reduction of mc from 8 to 6, Figure 19.5. The plots shows
the first 250 of 1000 timesteps performed, and shows the first run from a set
of 200 runs performed; the others runs are similar.

19.2 Results Model 325

arena X Nanog Sox2 Oct4
arena Y mc 8 7 6

Nanog 8 – 4.9 4.0 / 5
Sox2 7 6.0 / 7 – 4.6
Oct4 6 6.3 / 7 5.6 –

Sox2+Oct4 7+6 6

Fig. 19.6 Simulation Behaviours: Italic text shows the infinite limit Domain Behaviours

predictions (reproduced from Figure 17.5 for comparison); bold text shows the (slightly
higher) measured values for mc for various couplings. The second cistrome Y is run at
its original value of mc. Sox2 and Oct4 can each decrease Nanog’s mc by 1, and working
together by 2. Nanog can reduce Oct4’s mc by 1,

Experiment E2.6 results

Varying the value of the branching parameter, m, for the Nanog arena while
it is coupled to a critically branching Oct4 arena reveals that the coupled
Nanog arena can now sustain branching when m = 7, which represents an
effective reduction of mc from 8 to 7.

[Plot omitted]

19.2.6 Exploration > Results Model > Simulation
Behaviours

We observe that coupling cistromes permits an effective lowering of the crit-
ical value of the branching parameter, mc. Coupling the Nanog arena to
either the Oct4 or the Sox2 arena lowers its effective mc by 1 if the other
arena is branching at its critical rate mc. Coupling the Nanog arena to both
the Oct4 and Sox2 arenas, with both critically branching, lowers its effective
mc by 2, from 8 to 6. See figure 19.6.

326 19 CellBranch: increment 2: Exploration phase

19.2.7 Exploration > Results Model > Simulation
Behaviours > Visualisation Model

• The visualisation employed in increment 1 mimics the single cistrome
data in figure 13.2. It is removed from increment 2, as it did not prove
useful in increment 1.

• Some output data is presented as plots of activation at T = 1000 against
m, for multiple arenas [these plots not shown]

• Some output data is presented as plots of activation against time, for
multiple arenas

19.3 Exploration > revisit Simulation Purpose

The purpose of the CellBranch simulation project to provide evidence of the
usefulness of BPT as a model of decision making in stem cell differentiation.

The increment 2 Simulation Experiments demonstrate the effect of coupled
arenas, and in particular that one arena can ignite and maintain another.
This provides evidence in favour of BPT as a suitable model.

It is now time to decide how to progress this avenue of research.

Chapter 20

CellBranch: Lessons and code

20.1 CoSMoS lessons

This case study documents and illustrates the use of CoSMoS patterns to
perform a CoSMoS simulation project, from initial discovery, through de-
velopment, to exploration, over two increments. There were several lessons
learned about the use of CoSMoS, which are summarised here.

It is not always clear whether information should be included in the Do-

main, or Domain Model, sections, particularly relating to assumptions. Sim-
ilarly, some of the preliminary experiments to determine mc might be con-
sidered to be Calibration, or Sensitivity Analysis. What is important, however,
is to document the information, rather than to agonise over precisely which
section to document it in.

Not all pattern material need be presented in the pattern order. For ex-
ample, here the Cartoon for the Domain Model was best presented within the
Basic Domain Model section (figure 13.4), rather than as a prior illustration.
Not all core patterns are applicable. For example, here the TF BP model is
so abstracted from the Domain (125), that aspects such as the Domain Experi-

ment Model are not relevant. It is more important to follow the spirit of the
CoSMoS approach rather than the letter of every pattern.

Not every aspect of the CoSMoS approach needs to be performed with
complete rigour. The CellBranch simulation is not safety critical, so some
aspects have been omitted (such as justification of every assumption, and
argumentation of fitness-for-purpose). The extra effort needed to complete
all aspects should be expended only if it gives benefit.

Although the presentation is sequential and hierarchical, the historical
process was not. We spent many short iterations, and considerable back-
tracking (for example, see figure 13.3), before finally fixing on the ‘sparking
posts’ model in increment 1. The CoSMoS patterns define what information

327

328 20 CellBranch: Lessons and code

should be recorded by the end of the project, but not the order it needs to
be produced. Some uses of CoSMoS can apply the patterns in significantly
different orders, for example [12].

We might not have arrived at the conceptual sparking posts model without
taking an incremental approach. The need to have just a single-cistrome
model for this first increment revealed a fundamental misunderstanding
that the modellers were having about the background TF BP model.

We were taking an agile approach, producing minimal simulation mod-
els and code, and collaboration meetings would often generate interesting
but out of current scope ideas. We invented the concept of the !! Future tag
(which we dubbed the “to don’t” list): a way to record the ideas for future
reference, in a manner that made it clear they were not to be included in
the current increment. Some of these ideas also prompted the recognition of
assumptions in the current increment.

The Domain Scientist (Halley) was new to the CoSMoS approach at the
start of the project, but had previous experience working with modellers us-
ing different approaches on other projects. Halley reports that CoSMoS is a
flexible tool to produce objective scientific simulations, and allows progress
without being funnelled into preconceptions imposed by a specific toolset
or implementation approach.

20.2 The Simulation Platform Code

The code for the simulation, batch scripts for running the simulation on an
SGE enabled compute cluster, Python scripts for generating real or syn-
thetic cistromes, and example R scripts for processing simulation results
into graphical form, are all available on GitHUB at: https://github.com/

CellBranch/CellBranch

Part V
Appendices

Endnotes

Preface

1 [p.vi] Recommended software engineering approaches include agile devel-
opment [27], test-driven development [28], and use of a Domain Specific Lan-

guage (230) [75].

2 [p.vi] Examples of possible modelling approaches and notations are Ordin-
ary Differential Equations (ODEs), Agent Based Modelling (210), Petri nets,
and Unified Modeling Language (UML) [74].

3 [p.vii] Publications produced by the CoSMoS project team, and by associ-
ated projects, include:

• simulation, modelling and process descriptions [10, 15, 175, 176, 204]
• validation and argumentation [11, 85, 86, 173]
• environment orientation [114, 115, 117]
• metamodels [14, 116]
• other aspects of the CoSMoS approach [12, 13, 201]
• various case studies and uses of CoSMoS [1, 56, 60, 68, 82, 83, 95, 177,

184]
• CoSMoS workshop proceedings [202, 203, 205–210]

Many of these publications are available from the CoSMoS project website
www.cosmos-research.org

The York Computational Immunology Lab (YCIL) is using CoSMoS for
many of its projects. It has made extensive material available, including sim-

331

332 Endnotes

ulations, simulation analysis tools, and fitness-for-purpose argumentation
tools, available at www.york.ac.uk/computational-immunology/software/

Chapter 1. Introduction

1 [p.7] There are many incremental variants of the Sargeant paper in a series
of workshops. The 2005 version [198] is the relevant reference here.

2 [p.14] The advantages of practice over theory are recognised by Aristotle
[16, book I, chapter 2]:

those who dwell in intimate association with nature and its phenomena grow more
and more able to formulate, as the foundations of their theories, principles such as
to admit of a wide and coherent development: while those whom devotion to ab-
stract discussions has rendered unobservant of the facts are too ready to dogmatize
on the basis of a few observations.

3 [p.17] By “assumption” we mean any kind of abstraction, simplification, ax-
iom, idealisation or approximation.

4 [p.18] The difference between a descriptive (scientific) model and a pre-
scriptive (engineering) model lies in the consequence of a mismatch between
the model and what is modelled. In the descriptive case, the model needs to
be changed to bring it closer to the real system. In the prescriptive case, the
system needs to be changed (re-engineered) to bring it closer to the model
(specification).

If the Domain is an engineered domain, rather than a natural domain, the
Domain Model is then a prescriptive (engineering) model. However, it is still
a distinct model from the prescriptive Platform Model.

5 [p.23] Macmillan online dictionary, www.macmillandictionary.com/dictionary/

british/fit-for-purpose

Endnotes 333

Chapter 2. What’s in it for me?

1 [p.37] When the robot needs to physically interact with (or avoid) another
robot, the simulator does not need to predict trajectories with high accur-
acy since, as real-world trajectories converge, the simulation accuracy on
repeated simulation cycles increases simply because the robots are closer.
Thus limited fidelity is good enough.

Chapter 3. The process in miniature

1 [p.43] The running example of cell division and differentiation in the pro-
state is based on work done on the AlKan project at York. A fuller descrip-
tion of the models can be found in [60], and of the fitness for purpose ar-
gument in [177]. The example presented herein differs in some details from
that published work, for expository purposes. Furthermore, subsequent de-
velopment work has moved the project focus in a somewhat different direc-
tion.

The AlKan work was supported by Program Grant support (to Prof. N.
J. Maitland) from Yorkshire Cancer Research, by TRANSIT (EPSRC grant
EP/F032749/1) through the York Centre for Complex Systems Analysis, and
by CoSMoS (EPSRC grant EP/E053505/1). We thank the members of the Can-
cer Research Unit in York for their invaluable input to the project.

2 [p.63] A Petri net is “a formal, graphical, executable technique for the spe-
cification and analysis of concurrent, discrete-event dynamic systems” [123,
124]. A Petri net is a bipartite directed graph, with place nodes and transition
nodes. Place nodes have a marking: a set of tokens occupying the place. A
transition can fire when all its input places hold a token: one token per input
arc is consumed from its input place, and one token per output arc is produced
in the respective output. Petri nets naturally model concurrency, as multiple
tokens can be traversing a net simultaneously.

334 Endnotes

Chapter 5. Discovery Phase Patterns

1 [p.126] We use the term Cartoon (126), or sketch, for a picture that has no
defined syntax or semantics, no explicit Metamodel (236). The notation and
meaning is partly ad hoc, domain-specific convention (which may be un-
known to some of the development team), and partly tacit knowledge of the
cartoonist and of the reader (this tacit knowledge may be different between
the parties). We reserve the term diagram, on the other hand, for a picture
that at least has a well-defined syntax (which may be produced and checked
by some tool), and may have a well-defined semantics (so it may be trans-
formed into other forms, such as code fragments). Because of this extra pre-
cision and detail, diagrams can be harder for non-specialists to understand.

2 [p.131] The word ‘domain’ has a subtly different meaning in software en-
gineering, where there is not such as strong separation between the sci-
entific domain and the simulation of it. See, for example, Domain-Driven
Design in [64], domain models in [73]. Crucially, the CoSMoS Domain Model

includes the model of the hypothesis (for example, emergent properties),
which should not appear in the implementation. Additionally, the Domain

Model should be platform neutral.

3 [p.135] This calibration and validation data is analogous to the training and
test data sets used in machine learning [89]. It is needed to ensure that the
simulation is not so tuned that it “overfits” the calibration (training) data,
but is instead generic enough to also fit the (unseen during calibration) val-
idation data.

4 [p.138] Aevol is an in silico experimental artificial evolution platform [24] in
which populations of digital bacteria are subject to Darwinian-style evolu-
tion. Its Domain (125) falls within the areas of evolutionary theory and di-
gital genetics focussing on the evolutionary dynamics of the size and organ-
isation of bacterial genomes. The Aevol simulator encapsulates an in silico
laboratory to test evolutionary scenarios, enabling simulation experiments
in which populations of artificial organisms evolve within a controlled en-
vironment. These experiments mimic those used in real bacterial evolution-
ary studies, the most famous of which is the Lenski long-term evolution-
ary experiment [228]. Aevol provides many of the same experimental setup
tools as this experimental system. Aevol was not developed using the CoS-
MoS approach, but a Domain Model, including a Domain Experiment Model,
has been reversed engineered from the Aevol simulator [12].

Endnotes 335

5 [p.138] A specific example of this problem occured with experiments per-
formed in the mouse autoimmunity model Experimental Autoimmune En-
cephalomyelitis (EAE), a proxy for multiple sclerosis. These report results
on a six point scale: 0, no symptoms; 1, flaccid tail; 2, hind limb weakness;
3, hind limb paralysis; 4, whole body paralysis; 5, death [142]. Read et al
[186] employed simulation as a tool to investigate the role of the immune
system in the development of autoimmunity and subsequent recovery in
these mice. However, no such observations could be made of a simulation,
complicating comparison between simulation and domain experiments, and
calibration. Making the assumption that EAE disease severity scores were
well-correlated with harm to neurons, abstracted in their simulation as neur-
onal death, Read et al devised a metric to grade simulation autoimmunity
in terms of this six point scale based on rates of neuronal death. This metric
required calibration, and herein two domain experiments were employed,
each independently reproduced in simulation: physiological recovery from
disease induction in these mice, and an intervention that prolonged and
worsened disease symptoms. Rates of simulated neuronal death, measured
per hour, fluctuated with far higher frequency than changes in EAE sever-
ity score, which occurred on the order of days. The neuronal death time-
series required smoothing. Thereafter a threshold value of neuronal death
rate could be defined for each disease severity score. Smoothing paramet-
ers and thresholds were calibrated whilst taking consideration of multiple
aspects of in vivo EAE progression. In silico disease scores needed to re-
produce both the distribution of maximum disease severity scores attained
by mice in each experiment, and the frequencies at which disease scores
changed (attained through Fourier transformations). Completed, this “EAE-
O-Meter” simulation metric facilitated direct comparison between simula-
tion and domain results, and provided a language through which simula-
tion behaviours could be interpreted in domain terms. Their methodology
is fully reported in [182].

Chapter 6. Development Phase Patterns

1 [p.162] For examples of some such libraries or frameworks, see chapter 9’s
endnote 2

2 [p.164] Eclipse is a commonly used and powerful IDE and suite of develop-
ment tools, available from www.eclipse.org

336 Endnotes

3 [p.168] Read et al’s EAE-O-Meter (introduced in endnote 5 in the Domain

Experiment Model (137) pattern in chapter 5) was constructed only after the
baseline simulation was calibrated. Simulation calibration was performed
on the basis of cell population (relative) levels in several organs [182]. Com-
piling this data in vivo is difficult. The immune response is inherently dy-
namic, and disease progression, observed at the system level (the six point
scale above) and also at the macro level (cell population numbers), vary
considerably between individuals. Longitudinal observations in single in-
dividuals would be ideal. However, collecting this data requires the sacri-
fice of an animal such that a single animal can provide only a single snap-
shot of the overall time-series process. (Ethical and) practical considerations
limit the number of animals employed in these studies, and given the inter-
individual variation, this presents a challenge to collecting high quality data
for simulation calibration. Read et al performed their simulation calibration
against a Domain Scientist’s intuition of how the system operates, itself build
upon years of absorbing piecemeal data such as this from the literature and
their own experiments.

4 [p.177] Sensitivity analysis is closely related to uncertainty analysis. The
former establishes the influence a system’s inputs has on its responses,
whereas the latter explicitly focuses on what range of response values res-
ult from a range of input values. In this book, the term Sensitivity Analysis is
used to describe both techniques.

5 [p.179] We give here a specific example of Sensitivity Analysis conducted in a
CoSMoS Simulation Project.

Sensitivity analyses were conducted to understand an agent-based model
of the development of organs that trigger an adaptive immune response to
infection [4, 5]. Using a combination of local and global sensitivity analyses
techniques, specifically latin-hypercube sampling and applying the exten-
ded fourier amplitude test (eFAST) for the latter, it was suggested that the
key pathway in organ development identified in the literature was not in-
fluencing cell behaviour at simulated hour 12, yet was highly influential by
the end of organ development at hour 72. Although an unexpected result
that was contrary to that predicted when referencing the literature and in
discussions with the domain scientist, the application of the CoSMoS pro-
cess provided confidence that the model was fit for the purpose for which it
was designed, and thus this unexpected result may not have been produced
due to an error in implementation. As such the Domain Scientist conducted
an experiment in the laboratory to test this hypothesis, specifically that ad-
hesion factors were more influential than the expected chemokine factors at

Endnotes 337

hour 12, which produced cell behaviours that were in agreement with those
produced in simulation [171]. The interesting fact that the chemokine path-
way was identified as influential in sensitivity analyses at the end of the
simulation, as expected in the literature, gave rise to the important question
of when the change in influential biological pathways occurs during organ
development. As such temporal sensitivity analyses were conducted at 12
hour intervals to examine the influence of adhesion and chemokine path-
ways over time, with the analyses suggesting that a change in influential
biological pathway occurs between hours 24 and 36 of organ development
[6]. Through the construction of the simulator, using principled design ap-
proaches described in the CoSMoS patterns, and detailed sensitivity ana-
lyses, it could be suggested that organ development was in fact bi-phasic,
and more complex than that suggested in the academic literature.

Chapter 9. Modelling and Documentation Patterns

1 [p.211] “Individual-based modelling” and “agent-based modelling” are syn-
onymous. The former term is sometimes preferred if the components do not
have “agency”; that is, if they merely react. It is also used in the ecological
domain. However, there is no sharp distinction in meaning in the literat-
ure. We use the term “agent” throughout this book, with no implication of
“agency” or “intelligence”.

2 [p.212] NetLogo is a multi-agent programmable modelling environment for
prototyping multi-agent simulations. It provides a programming language
and user-interface widgets to support rapid prototyping of relatively simple
agent-based simulations. It has a large user-base and a large library of ex-
ample simulations. See ccl.northwestern.edu/netlogo/.

MASON, from George Mason University, is a discrete-event multiagent sim-
ulation library, which can be used as the foundation for Java simulations. See
cs.gmu.edu/∼eclab/projects/mason/.

FLAME (Flexible Large-scale Agent Modelling Environment), from the Uni-
versity of Sheffield, is an agent-based modelling system. A model is defined
as an extended finite state machine. From this FLAME generates a complete
agent-based application, which can be targetted to computing systems ran-
ging from laptops to super computers. See www.flame.ac.uk/. FLAME GPU

338 Endnotes

(www.flamegpu.com/) is an extension to the FLAME framework optimised
for GPUs.

Chapter 10. Real world simulation

1 [p.231] DSLs were originally dubbed “little-languages” [30], although they
are not always that little.

2 [p.231] For more information on SBML, see [119] and the portal at sbml.org

References

1. Ali Afshar Dodson, Susan Stepney, Emma Uprichard and Leo Caves (2014). “Us-
ing the CoSMoS approach to study Schelling’s Bounded Neighbourhood Model”.
Proceedings of the 2014 Workshop on Complex Systems Modelling and Simulation, New
York, NY, USA, July 2014. Ed. by Susan Stepney and Paul S. Andrews. Luniver
Press, pp. 1–12 (see pp. 87, 235, 331).

2. Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts and
Peter Walter (2008). Molecular Biology of the Cell. 5th edition. Garland Science (see
p. 128).

3. Kieran Alden, Paul S. Andrews, Fiona A. C. Polack, Henrique Veiga-Fernandes,
Mark C. Coles and Jon Timmis (2015). “Using argument notation to engineer bio-
logical simulations with increased confidence”. Journal of the Royal Society, Interface
12(104):20141059 (see pp. 193, 194).

4. Kieran Alden, Mark Read, Jon Timmis, Paul S. Andrews, Henrique Veiga-Fernandes
and Mark C. Coles (2013). “Spartan: A Comprehensive Tool for Understanding Un-
certainty in Simulations of Biological Systems”. PLoS Comput Biol 9(2):e1002916
(see pp. 179, 336).

5. Kieran Alden, Jon Timmis, Paul S. Andrews, Henrique Veiga-Fernandes and Mark
C. Coles (2012). “Pairing experimentation and computational modeling to under-
stand the role of tissue inducer cells in the development of lymphoid organs”.
Frontiers in Immunology 3:172 (see p. 336).

6. Kieran Alden, Jon Timmis, Paul S. Andrews, Henrique Veiga-Fernandes and Mark
C. Coles (2017). “Extending and Applying Spartan to Perform Temporal Sensitiv-
ity Analyses for Predicting Changes in Influential Biological Pathways in Compu-
tational Models”. IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics 14(2):431–442 (see pp. 179, 337).

7. Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobson, Ingrid
Fiksdahl-King and Shlomo Angel (1977). A Pattern Language: towns, buildings, con-
struction. Oxford University Press (see p. 13).

8. Akram Alyass, Michelle Turcotte and David Meyre (2015). “From big data analysis
to personalized medicine for all: challenges and opportunities”. BMC Medical Ge-
nomics 8(1):33 (see p. 38).

339

340 References

9. P. W. Anderson (1991). “Is Complexity Physics? Is It Science? What is It?” Physics
Today 44(7):9 (see p. 264).

10. Paul S. Andrews, Fiona A. C. Polack, Adam T. Sampson, Susan Stepney and Jon
Timmis (2010). The CoSMoS Process, Version 0.1: A Process for the Modelling and Sim-
ulation of Complex Systems. Tech. rep. YCS-2010-453. Department of Computer Sci-
ence, University of York (see p. 331).

11. Paul S. Andrews, Fiona Polack, Adam T. Sampson, Jon Timmis, Lisa Scott and
Mark Coles (2008). “Simulating biology: towards understanding what the simu-
lation shows”. Proceedings of the 2008 Workshop on Complex Systems Modelling and
Simulation, York, UK. Ed. by Susan Stepney, Fiona Polack and Peter Welch. Luniver
Press, pp. 93–123 (see pp. 111, 331).

12. Paul S. Andrews and Susan Stepney (2014). “Using CoSMoS to Reverse Engineer
a Domain Model for Aevol”. Proceedings of the 2014 Workshop on Complex Systems
Modelling and Simulation, New York, NY, USA, July 2014. Ed. by Susan Stepney and
Paul S. Andrews. Luniver Press, pp. 61–79 (see pp. 235, 328, 331, 334).

13. Paul S. Andrews and Susan Stepney (2015). “The CoSMoS Domain Experiment
Model”. Proceedings of the 2015 Workshop on Complex Systems Modelling and Simula-
tion, York, UK, July 2015. Ed. by Susan Stepney and Paul S. Andrews. Luniver Press
(see p. 331).

14. Paul S. Andrews, Susan Stepney, Tim Hoverd, Fiona A. C. Polack, Adam T.
Sampson and Jon Timmis (2011). “CoSMoS process, models, and metamodels”.
Proceedings of the 2011 Workshop on Complex Systems Modelling and Simulation, Paris,
France. Ed. by Susan Stepney, Peter Welch, Paul S. Andrews and Carl G. Ritson.
Luniver Press, pp. 1–13 (see pp. 239, 245, 331).

15. Paul S. Andrews, Susan Stepney and Jon Timmis (2012). “Simulation as a Scientific
Instrument”. Proceedings of the 2012 Workshop on Complex Systems Modelling and
Simulation, Orleans, France. Ed. by Susan Stepney, Paul S. Andrews and Mark N.
Read. Luniver Press, pp. 1–10 (see p. 331).

16. Aristotle (1922). On Generation and Corruption. translation by H. H. Joachim, avail-
able from http://classics.mit.edu/Aristotle/gener corr.html (see p. 332).

17. A. Ay and D. N. Arnosti (2011). “Mathematical modeling of gene expression: a
guide for the perplexed biologist”. Critical Reviews in Biochemistry and Molecular
Biology 46(2):137–151 (see p. 262).

18. P. Bak and M. Paczuski (1993). “Why Nature is complex”. Physics World 6(12):39–
43 (see p. 264).

19. P. Bak and M. Paczuski (1995). “Complexity, contingency, and criticality”. Proceed-
ings of the National Academy of Science USA 92:6689–6696 (see p. 264).

20. P. Ball (1999). “Transitions still to be made”. Nature 402:C73–C76 (see p. 264).

21. P. Ball (2001). The Self-Made Tapestry. Oxford University Press (see pp. 263, 264).

22. Wolfgang Banzhaf, Bert Baumgaertner, Guillaume Beslon, René Doursat, James
A. Foster, Barry McMullin, Vinicius Veloso de Melo, Thomas Miconi, Lee Spector,
Susan Stepney and Roger White (2016). “Defining and Simulating Open-Ended
Novelty: Requirements, Guidelines, and Challenges”. Theory in Biosciences 135(3)
:131–161. DOI: 10.1007/s12064-016-0229-7 (see pp. 218, 237).

References 341

23. Michael Batty (2005). Cities and Complexity: understanding cities with cellular auto-
mata, agent-based models, and fractals. MIT Press (see p. 211).

24. Bérénice Batut, David P. Parsons, Stephan Fischer, Guillaume Beslon and Carole
Knibbe (2013). “In silico experimental evolution: a tool to test evolutionary scen-
arios”. BMC Bioinformatics 14(Suppl 15):S11 (see pp. 138, 334).

25. Bernhard Bauer and James Odell (2005). “UML 2.0 and Agents: How to Build
Agent-based Systems with the new UML”. Journal of Engineering Applications of
Artificial Intelligence 18:141–157 (see p. 113).

26. Kent Beck (1997). Smalltalk Best Practice Patterns. Prentice Hall (see p. 13).

27. Kent Beck (2000). Extreme Programming Explained. Addison Wesley (see pp. 162,
243, 331).

28. Kent Beck (2003). Test-Driven Development. Addison Wesley (see p. 331).

29. Mohamed Ben Belgacem, Bastien Chopard, Joris Borgdorff, Mariusz Mamoński,
Katarzyna Rycerz and Daniel Harezlak (2013). “Distributed Multiscale Compu-
tations Using the MAPPER Framework”. Procedia Computer Science 18:1106–1115
(see p. 246).

30. Jon Bentley (1986). “Little languages”. Comms ACM 29(8):711–721 (see p. 338).

31. Christian Blum, Alan F. T. Winfield and Verena V. Hafner (2018). “Simulation-
Based Internal Models for Safer Robots”. Frontiers in Robotics and AI 4:74 (see p. 37).

32. Eric Bonabeau (2002). “Agent-based modeling: Methods and techniques for simu-
lating human systems”. PNAS 99(Suppl 3):7280–7287 (see p. 211).

33. S. Bornholdt (2005). “Less is more in modeling large genetic networks”. Science
310:449–451 (see p. 251).

34. Laurie A. Boyer, Tong Ihn Lee, Megan F. Cole, Sarah E. Johnstone, Stuart S. Lev-
ine, Jacob P. Zucker, Matthew G. Guenther, Roshan M. Kumar, Heather L. Mur-
ray, Richard G. Jenner, David K. Gifford, Douglas A. Melton, Rudolf Jaenisch and
Richard A. Young (2005). “Core transcriptional regulatory circuitry in human em-
bryonic stem cells”. Cell 122:947–956 (see pp. 260, 263).

35. D. Bray (2003). “Molecular networks: the top-down view”. Science 301:1864–1865
(see p. 251).

36. Florence Broders-Bondon, Thanh Huong Nguyen Ho-Bouldoires, Maria Elena
Fernandez-Sanchez and Emmanuel Farge (2018). “Mechanotransduction in tumor
progression: The dark side of the force”. Journal of Cell Biology :DOI: 10.1083/jcb.

201701039 (see p. 32).

37. William J. Brown, Raphael C. Malveau, Hays W. “Skip” McCormick III and
Thomas J. Mowbray (1998). AntiPatterns: refactoring software, architectures, and pro-
jects in crisis. Wiley (see pp. 13, 15).

38. Alan Burns and Ian J. Hayes (2010). “A Timeband Framework for Modelling Real-
Time Systems”. Real-Time Systems Journal 45(1-2):106–142 (see p. 246).

39. “Novel Approaches to the Visualization and Quantification of Biological Simu-
lations by Emulating Experimental Techniques” (2014). ALife 14, New York, NY,
USA, July 2014. Ed. by James A. Butler, Kieran Alden, Henrique Veiga Fernandes,
Jon Timmis and Mark Coles. MIT Press (see p. 184).

342 References

40. Bill Buxton (2007). Sketching User Experiences: getting the design right and the right
design. Morgan Kaufmann (see p. 128).

41. Michael D Byrne (2013). “How many times should a stochastic model be run?
An approach based on confidence intervals”. The 12th International Conference on
Cognitive Modelling (see p. 180).

42. Cancer Research UK (2015). Prostate cancer statistics – Prostate cancer incidence.
www.cancerresearchuk.org/health- professional/cancer- statistics/statistics- by-

cancer-type/prostate-cancer. accessed 15/5/2018 (see p. 46).

43. L. C. Cantley, K. R. Auger, C. Carpenter, B. Duckworth, A. Graziani, R. Kapeller
and S. Soltoff (1991). “Oncogenes and signal transduction”. Cell 64(2):281–302 (see
p. 46).

44. Pedro Casado, Edmund H. Wilkes, Farideh Miraki-Moud, Marym Mohammad
Hadi, Ana Rio-Machin, Vinothini Rajeeve, Rebecca Pike, Sameena Iqbal, Santiago
Marfa, Nicholas Lea, Steven Best, John Gribben, Jude Fitzgibbon and Pedro R.
Cutillas (2018). “Proteomic and genomic integration identifies kinase and differ-
entiation determinants of kinase inhibitor sensitivity in leukemia cells”. Leukemia
:DOI: 10.1038/s41375-018-0032-1 (see p. 38).

45. E. Chaisson (2004). “Complexity: An energetics agenda”. Complexity 9(3):14–21
(see p. 263).

46. Claudine Chaouiya (2007). “Petri net modelling of biological networks”. Briefings
in Bioinformatics 8(4):210–219 (see p. 63).

47. Peter Checkland (1981). Systems Thinking, Systems Practice: a 30-year retrospective.
Wiley (see p. 126).

48. Peter Checkland and Jim Scholes (1990). Soft Systems Methodology in Action: a 30-
year retrospective. Wiley (see p. 126).

49. Curtis R. Chong and Pasi A. Jänne (2013). “The quest to overcome resistance to
EGFR-targeted therapies in cancer”. Nature Medicine 19:1389–1400 (see p. 35).

50. Bastien Chopard, Joris Borgdorff and Alfons G. Hoekstra (2014). “A framework for
multi-scale modelling”. Philosophical transactions. Series A, Mathematical, physical,
and engineering sciences 372:20130378 (see p. 246).

51. Irun R. Cohen (2007). “Modeling immune behavior for experimentalists”. Immun-
ological Reviews 216(1):232–236 (see p. 26).

52. Anne T. Collins and Norman J. Maitland (2006). “Prostate cancer stem cells”.
European Journal of Cancer 42(9):1213–1218 (see p. 55).

53. James O. Coplien and Douglas C. Schmidt, eds. (1995). Pattern Languages of Pro-
gram Design. Addison Wesley (see p. 13).

54. J. P. Crutchfield, J. D. Farmer, Norman H. Packard and Robert S. Shaw (1986).
“Chaos”. Scientific American 255(6):38–49 (see p. 264).

55. Marija Cvijovic, Joachim Almquist, Jonas Hagmar, Stefan Hohmann, Hans-Michael
Kaltenbach, Edda Klipp, Marcus Krantz, Pedro Mendes, Sven Nelander, Jens
Nielsen, Andrea Pagnani, Natasa Przulj, Andreas Raue, Jörg Stelling, Szymon
Stoma, Frank Tobin, Judith A. H. Wodke, Riccardo Zecchina and Mats Jirstrand

References 343

(2014). “Bridging the gaps in systems biology”. Molecular Genetics and Genomics
289(5):727–734 (see p. 39).

56. Keith De’Bell (2015). “Towards a Network Model of Community Empowerment
for Public Health Outcomes: Application of the CoSMoS Approach to Social Sys-
tem Modelling”. Proceedings of the 2015 Workshop on Complex Systems Modelling
and Simulation, York, UK, July 2015. Ed. by Susan Stepney and Paul S. Andrews.
Luniver Press, pp. 9–29 (see p. 331).

57. Ezequiel A. Di Paolo, Jason Noble and Seth Bullock (2000). “Simulation Models
as Opaque Thought Experiments”. Artificial Life VII. MIT Press, pp. 497–506 (see
pp. 4, 6).

58. Marco Dorigo and Mauro Birattari (2007). “Swarm intelligence”. Scholarpedia 2(9)
:1462 (see p. 242).

59. M. E Driscoll (2009). Is Big Data at a tipping point? http://www.analyticbridge.com/

profiles/blogs/is-big-data-at-a-tipping-point. [Accessed: 2015-05-01] (see p. 251).

60. Alastair Droop, Philip Garnett, Fiona A. C. Polack and Susan Stepney (2011).
“Multiple model simulation: modelling cell division and differentiation in the pro-
state”. Proceedings of the 2011 Workshop on Complex Systems Modelling and Simula-
tion, Paris, France. Ed. by Susan Stepney, Peter Welch, Paul S. Andrews and Carl G.
Ritson. Luniver Press, pp. 79–111 (see pp. 64, 66, 72, 73, 87, 214, 217, 246, 331, 333).

61. I. Ekeland (2002). “In the balance”. Nature 417:385 (see p. 264).

62. Joshua M. Epstein (2008). “Why Model?” Journal of Artificial Societies and Social
Simulation 11(4):12. ISSN: 1460-7425. URL: http://jasss.soc.surrey.ac.uk/11/4/12.

html (see pp. 6, 123).

63. Joshua M. Epstein and Robert Axtell (1996). Growing Artificial Societies: social science
from the bottom up. MIT Press (see p. 211).

64. Eric Evans (2004). Domain-Driven Design: tackling complexity in the heart of software.
Addison Wesley (see p. 334).

65. J. D. Farmer and N. H. Packard (1986). “Evolution, Games, and Learning: Models
for Adaptation in Machines and Nature. An introduction to the Proceedings of the
CNLS Conference, Los Alamos, May 1985”. Physica D 22:vii–xii (see p. 264).

66. J. Ferrell (2009). “Q&A: Systems biology”. Journal of Biology 28:(see pp. 251, 262).

67. S. Flowers (1996). Software Failure: Management Failure: Amazing Stories and Cau-
tionary Tales. Wiley (see p. 27).

68. Anton Jakob Flügge, Jon Timmis, Paul Andrews, John Moore and Paul Kaye
(2009). “Modelling and Simulation of Granuloma Formation in Visceral Leish-
maniasis”. CEC 2009. IEEE Press, pp. 3052–3059 (see p. 331).

69. Andrew Ford (2010). Modeling the Environment. 2nd edition. Island Press (see
p. 128).

70. John Forrester, Richard Greaves, Howard Noble and Richard Taylor (2014). “Mod-
eling social-ecological problems in coastal ecosystems: A case study”. Complexity
19(6):73–82 (see p. 244).

71. Martin Fowler (1997). Analysis Patterns: reusable object models. Addison Wesley (see
p. 13).

344 References

72. Martin Fowler (1999). Refactoring: improving the design of existing code. Addison
Wesley (see p. 236).

73. Martin Fowler (2003). Patterns of Enterprise Application Architecture. Addison-Wesley
(see p. 334).

74. Martin Fowler (2004). UML Distilled: brief guide to the standard object modeling lan-
guage. 3rd edition. Addison-Wesley (see p. 331).

75. Martin Fowler (2011). Domain-Specific Languages. Addison-Wesley (see pp. 231,
331).

76. Roman Frigg and Stephan Hartmann (2009). “Models in Science”. The Stanford
Encyclopedia of Philosophy. Ed. by Edward N. Zalta. Summer 2009 edition. http :

//plato.stanford.edu/archives/sum2009/entries/models-science (see p. 5).

77. A. Füzéry, J. Levin, M. M. Chan and D. W. Chan (2013). “Translation of proteomic
biomarkers into FDA approved cancer diagnostics: issues and challenges”. Clinical
Proteomics 10:13–26 (see p. 32).

78. Richard P. Gabriel (1996). Patterns of Software: tales from the software community. Ox-
ford University Press (see p. 14).

79. R. Gallagher and T. Appenzeller (1999). “Beyond Reductionism”. Science 284(5411)
:79 (see p. 268).

80. Antony Galton (2015). “Outline of a Formal Theory of Processes and Events, and
Why GIScience Needs One”. International Workshop on Spatial Information Theory.
Vol. 9368. LNCS. Springer, pp. 3–22 (see pp. 6, 123).

81. Erich Gamma, Richard Helm, Ralph E. Johnson and John Vlissides (1995). Design
Patterns: elements of reusable object-oriented software. Addison Wesley (see pp. 13, 14).

82. Philip Garnett, Susan Stepney, Francesca Day and Ottoline Leyser (2010). “Using
the CoSMoS Process to Enhance an Executable Model of Auxin Transport Canal-
isation”. Proceedings of the 2010 Workshop on Complex Systems Modelling and Simula-
tion, Odense, Denmark. Ed. by Susan Stepney, Peter H. Welch, Paul S. Andrews and
Adam T. Sampson. Luniver Press, pp. 9–32 (see p. 331).

83. Philip Garnett, Susan Stepney and Ottoline Leyser (2008). “Towards an Execut-
able Model of Auxin Transport Canalisation”. Proceedings of the 2008 Workshop on
Complex Systems Modelling and Simulation, York, UK. Ed. by Susan Stepney, Fiona
Polack and Peter Welch. Luniver Press, pp. 63–91 (see p. 331).

84. Brian Gerkey, Richard T. Vaughan and Andrew Howard (2003). “The Player/Stage
Project: Tools for Multi-Robot and Distributed Sensor Systems”. Proceedings of the
11th International Conference on Advanced Robotics (ICAR 2003), pp. 317–323 (see
pp. 9, 30, 37).

85. Teodor Ghetiu, Robert D. Alexander, Paul S. Andrews, Fiona A. C. Polack and
James Bown (2009). “Equivalence Arguments for Complex Systems Simulations –
A Case-Study”. Proceedings of the 2009 Workshop on Complex Systems Modelling and
Simulation, York, UK. Ed. by Susan Stepney, Peter H. Welch, Paul S. Andrews and
Jon Timmis. Luniver Press, pp. 101–140 (see p. 331).

86. Teodor Ghetiu, Fiona A. C. Polack and James L. Bown (2010). “Argument-Driven
Validation of Computer Simulations – A Necessity Rather Than an Option”.
VALID 2010: IEEE Press, pp. 1–4 (see p. 331).

References 345

87. Nigel Gilbert (2008). Agent-Based Models. Sage Publications (see p. 211).

88. H. Randy Gimblett, ed. (2002). Integrating Geographic Information Systems and Agent-
based Modeling Techniques for Simulating Social and Ecological Processes. Oxford Uni-
versity Press (see p. 214).

89. Paolo Giudici (2003). Applied Data Mining: Statistical Methods for Business and In-
dustry. Wiley (see p. 334).

90. P. P. Glory, N. G. David and J. D. Emerald (2010). “Petri net models and non linear
genetic diseases”. Bio-Inspired Computing: Theories and Applications (BIC-TA), 2010.
IEEE, pp. 1466–1470 (see p. 63).

91. J. P. Gollub and J. S. Langer (1999). “Pattern formation in nonequilibrium physics”.
Reviews of Modern Physics 71(2):S396–S403 (see p. 263).

92. Government Office for Science (2018). Computational Modelling: Technological Fu-
tures. www.gov.uk/government/publications/computational-modelling-blackett-

review (see p. v).

93. Ann Grand, Clare Wilkinson, Karen Bultitude and Alan F. T. Winfield (2012).
“Open Science: A new ‘trust technology’?” Science Communication 34(5):679–689
(see p. 40).

94. Gran-Turisimo (n.d.). GT Academy Winer Makes it to the Podium of Le Mans. www.

gran-turismo.com/hk/news/d13235.html. accessed 30/01/2012 (see p. 9).

95. Richard B. Greaves, Sabine Dietmann, Austin Smith, Susan Stepney and Julianne
D. Halley (2015). “Genome-wide mouse embryonic stem cell regulatory network
self-organisation: a big data CoSMoS computational modelling approach”. Pro-
ceedings of the 2015 Workshop on Complex Systems Modelling and Simulation, York,
UK, July 2015. Ed. by Susan Stepney and Paul S. Andrews. Luniver Press, pp. 31–
66 (see pp. 243, 250, 252, 331).

96. Richard B. Greaves, Sabine Dietmann, Austin Smith, Susan Stepney and Julianne
D. Halley (2016). CellBranch CoSMoS model : increments 1, 2 and 3. Tech. rep. YCS-
2016-501. Department of Computer Science, University of York (see pp. 250, 252).

97. Richard B. Greaves, Sabine Dietmann, Austin Smith, Susan Stepney and Julianne
D. Halley (2017). “A conceptual and computational framework for modelling and
understanding the nonequilibrium gene regulatory networks of mouse embryonic
stem cells”. PLOS Computational Biology 13(9):e1005713. DOI: 10.1371/journal.pcbi.

1005713 (see pp. 250, 252).

98. Richard B. Greaves, Fiona A. C. Polack and John Forrester (2012). “CoSMoS in the
Context of Social-Ecological Systems Research”. Proceedings of the 2012 Workshop on
Complex Systems Modelling and Simulation, Orleans, France. Ed. by Susan Stepney,
Paul S. Andrews and Mark N. Read. Luniver Press, pp. 47–76 (see p. 244).

99. Volker Grimm (2002). “Visual Debugging: A Way Of Analyzing, Understanding
and Communicating Bottom-Up Simulation Models in Ecology”. Natural Resource
Modeling 15(1):23–38. DOI: 10.1111/j.1939-7445.2002.tb00078.x (see p. 169).

100. Volker Grimm, Uta Berger, Finn Bastiansen, Sigrunn Eliassen, Vincent Ginot, Jarl
Giske, John Goss-Custard, Tamara Grand, Simone K. Heinz, Geir Huse, Andreas
Huth, Jane U. Jepsen, Christian Jørgensen, Wolf M. Mooij, Birgit Müller, Guy Pe’er,
Cyril Piou, Steven F. Railsback, Andrew M. Robbins, Martha M. Robbins, Eva

346 References

Rossmanith, Nadja Rüger, Espen Strand, Sami Souissi, Richard A. Stillman, Rune
Vabø, Ute Visser and Donald L. DeAngelis (2006). “A standard protocol for de-
scribing individual-based and agent-based models”. Ecological Modelling 198(1-2)
:115–126. DOI: 10.1016/j.ecolmodel.2006.04.023 (see pp. 8, 223, 224, 227).

101. Volker Grimm, Uta Berger, Donald L. DeAngelis, J. Gary Polhill, Jarl Giske and
Steven F. Railsback (2010). “The ODD protocol: A review and first update”. Eco-
logical Modelling 221(23):2760–2768. DOI: 10.1016/j.ecolmodel.2010.08.019 (see
pp. 8, 223–225).

102. Volker Grimm and Steven F. Railsback (2005). Individual-based Modeling and Eco-
logy. Princeton University Press (see pp. 211, 224, 225).

103. Volker Grimm, Eloy Revilla, Uta Berger, Florian Jeltsch, Wolf M Mooij, Steven F
Railsback, Hans-Hermann Thulke, Jacob Weiner, Thorsten Wiegand and Donald
L DeAngelis (2005). “Pattern-oriented modeling of agent-based complex systems:
lessons from ecology”. Science 310(5750):987–991 (see p. 141).

104. GSN Community Standard, v1 (2011). http://www.goalstructuringnotation.info/.
Origin Consulting (York) Limited, on behalf of the Contributors (see pp. 193, 194,
200, 202).

105. J. D. Halley, F. R. Burden and D. A. Winkler (2009). “Stem cell decision making and
critical-like exploratory networks”. Stem Cell Research 2(3):165–177 (see p. 252).

106. J. D. Halley, K. Smith-Miles et al. (2012). “Self-organizing circuitry and emergent
computation in mouse embryonic stem cells”. Stem Cell Research 8(2):324–333 (see
pp. 252, 256, 263, 298, 299).

107. J. D. Halley and D. A. Winkler (2008). “Critical-like self-organization and natural
selection: Two facets of a single evolutionary process?” BioSystems 92(2):148–158
(see p. 252).

108. Roger Harrabin (2010). “Climate science must be more open, say MPs” :news.bbc.

co.uk/1/hi/sci/tech/8595483.stm (see p. 7).

109. Neil B. Harrison, Brian Foote and Hans Rohnert, eds. (2000). Pattern Languages of
Program Design 4. Addison Wesley (see p. 13).

110. Leland H. Hartwell, John J. Hopfield, Stanislas Leibler and Andrew W. Murray
(1999). “From molecular to modular cell biology”. Nature 402:C47–C52 (see p. 251).

111. Alfons Hoekstra, Bastien Chopard and Peter Coveney (2014). “Multiscale model-
ling and simulation: a position paper”. Philosophical transactions. Series A, Mathem-
atical, physical, and engineering sciences 372:20130377 (see p. 246).

112. Owen E. Holland (2003). Machine Consciousness. Imprint Academic (see p. 241).

113. Leroy Hood (2014). “Systems Biology and P4 Medicine: Past, Present, and Future”.
Rambam Maimonides Medical Journal 4(2):(see p. 36).

114. Tim Hoverd and Adam T. Sampson (2010). “A Transactional Architecture for Sim-
ulation”. ICECCS 2010: Fifteenth IEEE International Conference on Engineering of
Complex Computer Systems. IEEE Press, pp. 286–290 (see p. 331).

115. Tim Hoverd and Susan Stepney (2009). “Environment orientation: an architecture
for simulating complex systems”. Proceedings of the 2009 Workshop on Complex Sys-

References 347

tems Modelling and Simulation, York, UK. Ed. by Susan Stepney, Peter H. Welch,
Paul S. Andrews and Jon Timmis. Luniver Press, pp. 67–82 (see p. 331).

116. Tim Hoverd and Susan Stepney (2011). “Energy as a driver of diversity in open-
ended evolution”. ECAL 2011, Paris, France, August 2011. MIT Press (see p. 331).

117. Tim Hoverd and Susan Stepney (2015). “Environment Orientation: a structured
simulation approach for agent-based complex system”. Natural Computing 14(1)
:83–97. DOI: 10.1007/s11047-014-9449-2 (see pp. 213, 331).

118. Doug Howe, Maria Costanzo, Petra Fey, Takashi Gojobori, Linda Hannick, Win-
ston Hide, David P Hill, Renate Kania, Mary Schaeffer, Susan St Pierre, Simon
Twigger, Owen White and Seung Yon Rhee (2008). “Big data: The future of biocur-
ation”. Nature 455(7209):47–50 (see p. 251).

119. M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P. Arkin,
B. J. Bornstein, D. Bray, A. Cornish-Bowden, A. A. Cuellar, S. Dronov, E. D. Gilles,
M. Ginkel, V. Gor, I. I. Goryanin, W. J. Hedley, T. C. Hodgman, J.-H. Hofmeyr,
P. J. Hunter, N. S. Juty, J. L. Kasberger, A. Kremling, U. Kummer, N. Le Novère,
L. M. Loew, D. Lucio, P. Mendes, E. Minch, E. D. Mjolsness, Y. Nakayama, M. R.
Nelson, P. F. Nielsen, T. Sakurada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D.
Spence, J. Stelling, K. Takahashi, M. Tomita, J. Wagner, J. Wang and the rest of the
SBML Forum (2003). “The systems biology markup language (SBML): a medium
for representation and exchange of biochemical network models”. Bioinformatics
19(4):524–531 (see p. 338).

120. Paul Humphreys (2004). Extending Ourselves: Computational Science, Empiricism,
and Scientific Method. Oxford University Press (see pp. 5, 7).

121. Yoshinori Imamura, Toru Mukohara, Yohei Shimono, Yohei Funakoshi, Naoko
Chayahara, Masanori Toyoda, Naomi Kiyota, Shintaro Takao, Seishi Kono, Tet-
suya Nakatsura and Hironobu Minami (2015). “Comparison of 2D- and 3D-
culture models as drug-testing platforms in breast cancer”. Oncology Reports 33
:1837–1843 (see p. 32).

122. Darrel C. Ince, Leslie Hatton and John Graham-Cumming (2012). “The case for
open computer programs”. Nature 482(7386):485–488 (see p. 7).

123. High-level Petri Nets - Concepts, Definitions and Graphical Notation (2000). Interna-
tional Standard ISO/IEC 15909. Final Committee Draft: www.petrinets.info/docs/

pnstd-4.7.4.pdf (see p. 333).

124. Software and Systems Engineering – High-level Petri Nets Part 2: Transfer Format
(2005). International Standard ISO/IEC 15909. WD 15909-2:2005(E): www.petrinets.

info/docs/ISO-IEC15909-2.WD.V0.9.0.pdf (see p. 333).

125. N. Jacobi, P. Husbands and I. Harvey (1995). “Noise and the reality gap: The use
of simulation in evolutionary robotics”. Proceedings of the third European conference
on Advances in Artificial Life. Springer, pp. 704–720 (see p. 30).

126. A. Jain, J. Balaram, J. Cameron, J. Guineau, C. Lim, M. Pomerantz and G. Sohl
(2004). “Recent developments in the ROAMS planetary rover simulation environ-
ment”. Proceedings IEEE Aerospace Conference 2004. Vol. 2. IEEE, pp. 861–876 (see
p. 10).

348 References

127. L. P. Kadanoff (1987). “Chaos: A View of Complexity in the Physical Sciences”.
From Order to Chaos II Essays: Critical Chaotic and Otherwise. World Scientific (see
p. 264).

128. T. Kalkan and A. Smith (2014). “Mapping the route from naive pluripotency to
lineage specification”. Phil. Trans. R. Soc. B 369:20130540 (see p. 264).

129. Sergey Karabasov, Dmitry Nerukh, Alfons Hoekstra, Bastien Chopard and Peter V.
Coveney (2014). “Multiscale modelling: approaches and challenges”. Philosophical
transactions. Series A, Mathematical, physical, and engineering sciences 372:20130390
(see p. 246).

130. Aleksandra Karolak, Dmitry A. Markov, Lisa J. McCawley and Katarzyna A. Re-
jniak (2018). “Towards personalized computational oncology: from spatial models
of tumour spheroids, to organoids, to tissues”. Journal of The Royal Society Interface
15(138):DOI: 10.1098/rsif.2017.0703 (see pp. 33, 36).

131. S. Kauffman (1995). At Home in the Universe. Oxford University Press (see p. 264).

132. Daniel A Keim, Florian Mansmann, Jörn Schneidewind, Jim Thomas and Hart-
mut Ziegler (2008). “Visual Analytics: Scope and Challenges”. Visual Data Mining.
Ed. by Simeon J Simoff, Michael H Böhlen and Arturas Mazeika. LNCS. Springer,
pp. 76–90 (see p. 183).

133. Tim P. Kelly (1999). “Arguing safety – a systematic approach to managing safety
cases”. PhD thesis. Department of Computer Science, University of York (see
p. 193).

134. Joshua Kerievsky (2005). Refactoring to Patterns. Addison Wesley (see p. 236).

135. Jonghwan Kim, Jianlin Chu, Xiaohua Shen, Jianlong Wang and Stuart H. Orkin
(2008). “An Extended Transcriptional Network for Pluripotency of Embryonic
Stem Cells”. Cell 132(6):1049–1061 (see p. 265).

136. Lauren Kimlin, Jareer Kassis and Victoria Virador (2013). “3D In Vitro Tissue Mod-
els and Their Potential for Drug Screening”. Expert Opinion on Drug Discovery 8(12)
:1455–1466 (see p. 32).

137. Hiroaki Kitano (2002a). “Computational systems biology”. Nature 420(6912):206–
210 (see pp. 4, 39).

138. Hiroaki Kitano (2002b). “Systems biology: a brief overview”. Science 295(5560)
:1662–1664 (see p. 4).

139. Anneke Kleppe, Jos Warmer and Wim Bast (2003). MDA Explained: the Model
Driven Architecture: practice and promise. Addison-Wesley (see p. 237).

140. Andrew Koenig (1995). “Patterns and Antipatterns”. Journal of Object-Oriented Pro-
gramming 8(1):46–48 (see pp. 13, 15).

141. Pamela K. Kreeger and Douglas A. Lauffenburger (2010). “Cancer systems bio-
logy: a network modeling perspective”. Carciogenesis 31(1):2–8 (see p. 39).

142. V. Kumar and E. E. Sercarz (1993). “The involvement of T cell receptor peptide-
specific regulatory CD4+ T cells in recovery from antigen-induced autoimmune
disease.” Journal of Experimental Medicine 178(3):909–916 (see p. 335).

143. A. D. Lander (2010). “The edges of understanding”. BMC Biology 8(1):40 (see
p. 251).

References 349

144. Timothy R. Levine, René Weber, Craig Hullett, Hee Sun Park and Lisa L. Massi
Lindsey (2008). “A Critical Assessment of Null Hypothesis Significance Testing in
Quantitative Communication Research”. Human communication research 34(2):171–
187 (see p. 182).

145. Yuin-Han Loh, Qiang Wu, Joon-Lin Chew, Vinsensius B Vega, Weiwei Zhang,
Xi Chen, Guillaume Bourque, Joshy George, Bernard Leong, Jun Liu, Kee-Yew
Wong, Ken W Sung, Charlie W H Lee, Xiao-Dong Zhao, Kuo-Ping Chiu, Leonard
Lipovich, Vladimir A Kuznetsov, Paul Robson, Lawrence W Stanton, Chia-Lin
Wei, Yijun Ruan, Bing Lim and Huck-Hui Ng (2006). “The Oct4 and Nanog tran-
scription network regulates pluripotency in mouse embryonic stem cells”. Nature
Genetics 38(4):431–440 (see p. 266).

146. B. D. MacArthur, A. Ma’ayan and I. R. Lemischka (2008). “Toward Stem Cell Sys-
tems Biology: From Molecules to Networks and Landscapes”. Cold Spring Harbor
Symposia on Quantitative Biology 73:211–215 (see p. 268).

147. Roy MacLean, Susan Stepney, Simon Smith, Nick Tordoff, David Gradwell, Tim
Hoverd and Simon Katz (1994). Analysing Systems: determining requirements for
object-oriented development. Prentice Hall (see pp. 126, 233).

148. Miles MacLeod and Nancy J. Nersessian (2013). “Building Simulations from the
Ground Up: Modeling and Theory in Systems Biology”. Philosophy of Science 80(4)
:533–556 (see p. 3).

149. Stewart Mader (2008). Wikipatterns. Wiley (see p. 222).

150. Norman J. Maitland and Anne T. Collins (2005). “A tumour stem cell hypothesis
for the origins of prostate cancer”. BJU International 96(9):1219–1223 (see pp. 43,
56).

151. Hugo Gravato Marques and Owen E. Holland (2009). “Architectures for functional
imagination”. Neurocomputing 72(4–6):743–759 (see p. 242).

152. G. Martello and A. Smith (2014). “The Nature of Embryonic Stem Cells”. Annual
Review of Cell and Developmental Biology 30:647–675 (see p. 263).

153. Robert C. Martin, Dirk Riehle and Frank Buschmann, eds. (1998). Pattern Languages
of Program Design 3. Addison Wesley (see p. 13).

154. Wayne Materi and David S. Wishart (2007). “Computational Systems Biology in
Cancer: Modeling Methods and Applications”. Gene Regulation and Systems Biology
1:91–110 (see p. 63).

155. José L. Medina-Franco, Marc A. Giulianotti, Gregory S. Welmaker and Richard A.
Houghten (2013). “Shifting from the single to the multitarget paradigm in drug
discovery”. Drug Discovery Today 18(9):495–501 (see p. 35).

156. Michelle C. Mendoza, E. Emrah Er and John Blenis (2011). “The Ras-ERK and
PI3K-mTOR pathways: cross-talk and compensation”. Trends in Biochemical Sci-
ences 36(6):320–328 (see p. 35).

157. M. D. Mesarovic, S. N. Sreenath and J. D. Keene (2004). “Search for organising
principles: understanding in systems biology”. Systems Biology 1(1):19–27 (see
p. 251).

158. Bertrand Meyer (2014). Agile!: the good, the hype and the ugly. Springer (see p. 243).

350 References

159. Olivier Michel (2004). “Webots: Professional Mobile Robot Simulation”. Interna-
tional Journal of Advanced Robotic Systems 1(1):39–42 (see pp. 9, 30).

160. Alan Millard, Jon Timmis and Alan F. T. Winfield (2014). “Run-time Detection of
Faults in Autonomous Mobile Robots Based on the Comparison of Simulated and
Real Robot Behaviour”. IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2014). IEEE, pp. 3720–3725 (see p. 37).

161. S. Muñoz Descalzo, P. Rué et al. (2013). “A competitive protein interaction network
buffers Oct4-mediated differentiation to promote pluripotency in embryonic stem
cells”. Molecular Systems Biology 9:694 (see p. 263).

162. Michael Neilsen (2009). “Doing science in the open”. Physics World 22(5):30–35 (see
p. 40).

163. Egbert H. Van Nes and Marten Scheffer (2005). “A strategy to improve the con-
tribution of complex simulation models to ecological theory”. Ecological Modelling
185(2-4):153–164. DOI: 10.1016/j.ecolmodel.2004.12.001 (see p. 141).

164. J. Nichols and A. Smith (2009). “Naive and Primed Pluripotent States”. Cell Stem
Cell 4(6):487–492 (see p. 263).

165. Basarab Nicolescu (2010). “Methodology of Transdisciplinarity – Levels of Reality,
Logic of the Included Middle and Complexity”. Transdisciplinary Journal of Engin-
eering & Science 1(1):19–38 (see p. 193).

166. G. Nicolis and I. Prigogine (1977). Self-Organization in Nonequilibrium Systems. John
Wiley & Sons (see p. 263).

167. H. Niwa, Jun-ichi Miyazaki and A. G. Smith (2000). “Quantitative expression
of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells”.
Nature Genetics 24(4):372–6 (see p. 263).

168. Paul J. O’Dowd, Matthew Studley and Alan F. T. Winfield (2014). “The distrib-
uted co-evolution of an on-board simulator and controller for swarm robot beha-
viours”. Evolutionary Intelligence 7(2):95–106 (see p. 37).

169. Howard T. Odum (1994). Ecological and General Systems: an introduction to systems
ecology. revised edition. University Press of Colorado (see p. 128).

170. G Parisi (1993). “Statistical physics and biology”. Physics World 6:42–47 (see p. 264).

171. Amisha Patel, Nicola Harker, Lara Moreira-Santos, Manuela Ferreira, Kieran Alden,
Jon Timmis, Katie Foster, Anna Garefalaki, Panayotis Pachnis, Paul Andrews,
Hideki Enomoto, Jeffrey Milbrandt, Vassilis Pachnis, Mark C. Coles, Dimitris
Kioussis and Henrique Veiga-Fernandes (2012). “Differential RET Signaling Path-
ways Drive Development of the Enteric Lymphoid and Nervous Systems”. Science
Signaling 5(235):ra55–ra55 (see p. 337).

172. Nikunjkumar Patel, Barbara Wiśniowska, Masoud Jamei and Sebastian Polak
(2017). “Real Patient and its Virtual Twin: Application of Quantitative Systems
Toxicology Modelling in the Cardiac Safety Assessment of Citalopram”. The AAPS
Journal 20(1):6 (see p. 36).

173. Fiona A. C. Polack (2010). “Arguing Validation of Simulations in Science”. Pro-
ceedings of the 2010 Workshop on Complex Systems Modelling and Simulation, Odense,
Denmark. Ed. by Susan Stepney, Peter H. Welch, Paul S. Andrews and Adam T.
Sampson. Luniver Press, pp. 51–74 (see pp. 84, 192, 193, 331).

References 351

174. Fiona A. C. Polack (2012). “Choosing and adapting design notations in the prin-
cipled development of complex systems simulations for research”. Proceedings of
the Modelling of the Physical World Workshop. ACM, p. 6 (see p. 72).

175. Fiona A. C. Polack, Paul S. Andrews, Teodor Ghetiu, Mark Read, Susan Stepney,
Jon Timmis and Adam T. Sampson (2010). “Reflections on the Simulation of Com-
plex Systems for Science”. ICECCS 2010. IEEE Press, pp. 276–285 (see p. 331).

176. Fiona A. C. Polack, Paul S. Andrews and Adam T. Sampson (2009). “The engineer-
ing of concurrent simulations of complex systems”. CEC 2009. IEEE Press, pp. 217–
224 (see p. 331).

177. Fiona A. C. Polack, Alastair Droop, Philip Garnett, Teodor Ghetiu and Susan
Stepney (2011). “Simulation validation: exploring the suitability of a simulation of
cell division and differentiation in the prostate”. Proceedings of the 2011 Workshop
on Complex Systems Modelling and Simulation, Paris, France. Ed. by Susan Stepney,
Peter Welch, Paul S. Andrews and Carl G. Ritson. Luniver Press, pp. 113–133 (see
pp. 192, 193, 331, 333).

178. Fiona A. C. Polack, Tim Hoverd, Adam T. Sampson, Susan Stepney and Jon
Timmis (2008). “Complex Systems Models: Engineering Simulations”. ALife XI,
Winchester, UK, August 2008. MIT Press, pp. 482–489 (see p. 7).

179. R. S. Pressman and B. R. Maxim (2014). Software Engineering: A Practitioner’s Ap-
proach. 8th edition. McGraw-Hill (see p. 27).

180. Przemyslaw Prusinkiewicz, Scott Crawford, Richard S Smith, Karin Ljung, Tom
Bennett, Veronica Ongaro and Ottoline Leyser (2009). “Control of bud activation
by an auxin transport switch”. PNAS 106(41):17431–17436 (see p. 214).

181. Steven F. Railsback (2001). “Concepts from complex adaptive systems as a frame-
work for individual-based modelling”. Ecological Modelling 139(1):47–62 (see pp. 224,
225).

182. Mark Read (2012). “Statistical and Modelling Techniques to Build Confidence in
the Investigation of Immunology through Agent-Based Modelling”. PhD thesis.
University of York (see pp. 183, 335, 336).

183. Mark N. Read, Kieran Alden, Louis M. Rose and Jon Timmis (2016). “Automated
multi-objective calibration of biological agent-based simulations”. Journal of The
Royal Society Interface 13(122):DOI: 10.1098/rsif.2016.0543 (see p. 166).

184. Mark Read, Paul S. Andrews, Jon Timmis and Vipin Kumar (2009). “A Domain
Model of Experimental Autoimmune Encephalomyelitis”. Proceedings of the 2009
Workshop on Complex Systems Modelling and Simulation, York, UK. Ed. by Susan
Stepney, Peter H. Welch, Paul S. Andrews and Jon Timmis. Luniver Press, pp. 9–44
(see pp. 113, 190, 331).

185. Mark Read, Paul S. Andrews, Jon Timmis and Vipin Kumar (2014). “Modelling
biological behaviours with the unified modelling language: an immunological
case study and critique”. Journal of the Royal Society Interface 11(99):(see pp. 113,
183).

186. Mark Read, Paul S. Andrews, Jon Timmis, Richard A. Williams, Richard B. Greaves,
Huiming Sheng, Mark Coles and Vipin Kumar (2013). “Determining disease inter-

352 References

vention strategies using spatially resolved simulations”. PloS one 8(11):e80506 (see
p. 335).

187. Howard Rheingold (1992). Virtual Reality. Simon and Schuster (see p. 8).

188. Angelika Riedl, Michaela Schlederer, Karoline Pudelko, Mira Stadler, Stefanie
Walter, Daniela Unterleuthner, Christine Unger, Nina Kramer, Markus Hengst-
schläger, Lukas Kenner, Dagmar Pfeiffer, Georg Krupitza and Helmut Dolznig
(2017). “Comparison of cancer cells in 2D vs 3D culture reveals differences in
AKT–mTOR–S6K signaling and drug responses”. Journal of Cell Science 130(1):203–
218 (see p. 32).

189. Marylyn Ritchie, Emily Holzinger, Ruowang Li, Sarah Pendergrass and Dokyoon
Kim (2015). “Methods of integrating data to uncover genotype-phenotype inter-
actions”. Nature Reviews Genetics 16:85–97 (see p. 38).

190. Frank E. Ritter, Michael J. Schoelles, Karen S. Quigley and Laura Cousino Klein
(2011). “Determining the Number of Simulation Runs: Treating Simulations as
Theories by Not Sampling Their Behavior”. Human-in-the-Loop Simulations. Springer,
pp. 97–116 (see p. 180).

191. Tânia Rodrigues, Banani Kundu, Joana Silva-Correia, S.C. Kundu, Joaquim M. Oli-
veira, Rui L. Reis and Vitor M. Correlo (2018). “Emerging tumor spheroids techno-
logies for 3D in vitro cancer modeling”. Pharmacology and Therapeutics 184:201–211
(see p. 33).

192. Eric Rohmer, Surya P. N. Singh and Marc Freese (2013). “V-REP: A versatile and
scalable robot simulation framework”. Proc. IEEE/RSJ International Conference on
Intelligent Robots and Systems, Tokyo, 2013. IEEE, pp. 1321–1326 (see p. 30).

193. Andreas Rüping (2003). Agile Documentation. Wiley (see p. 219).

194. Derek Ruths, Melissa Muller, Jen-Te Tseng, Luay Nakhleh and Prahlad T. Ram
(2008). “The Signaling Petri Net-Based Simulator: A Non-Parametric Strategy for
Characterizing the Dynamics of Cell-Specific Signaling Networks”. PLoS Comput
Biol 4(2):e1000005 (see p. 63).

195. Erol Şahin and Alan F. T. Winfield, eds. (2008). Swarm Intelligence: special issue on
Swarm Robotics. Vol. 2(2–4) (see p. 242).

196. Andrea Saltelli, Karen Chan and E. Marian Scott, eds. (2000). Sensitivity Analysis.
Wiley (see p. 179).

197. S. Sanders, A. C. Rolfe and EDFA-JET workprogramme (2003). “The use of virtual
reality for preparation and implementation of JET remote handling operations”.
Fusion Engineering and Design 69(1–4):157–161 (see p. 11).

198. Robert G. Sargent (2005). “Verification and validation of simulation models”. 37th
Winter Simulation Conference. ACM, pp. 130–143 (see pp. 7, 332).

199. Viktoria Spaiser, Peter Hedström, Shyam Ranganathan, Kim Jansson, Monica K.
Nordvik and David J. T. Sumpter (2018). “Identifying Complex Dynamics in Social
Systems: A New Methodological Approach Applied to Study School Segregation”.
Sociological Methods and Research 47(2):103–135 (see p. 41).

200. Ned Stafford (2010). “Science in the digital age”. Nature 467:S19–S21 (see p. 40).

References 353

201. Susan Stepney (2013). “CoSMoS simulation experiment reproducibility and the
ODD protocol”. Proceedings of the 2013 Workshop on Complex Systems Modelling and
Simulation, Milan, Italy, July 2013. Ed. by Susan Stepney and Paul S. Andrews.
Luniver Press, pp. 93–107 (see pp. 224, 331).

202. Susan Stepney and Paul S. Andrews, eds. (2013). Proceedings of the 2013 Workshop
on Complex Systems Modelling and Simulation, Milan, Italy, July 2013. Luniver Press
(see p. 331).

203. Susan Stepney and Paul S. Andrews, eds. (2014). Proceedings of the 2014 Workshop
on Complex Systems Modelling and Simulation, New York, NY, USA, July 2014. Luniver
Press (see p. 331).

204. Susan Stepney and Paul S. Andrews (2015a). “CoSMoS special issue editorial”.
Natural Computing 14:1–6 (see p. 331).

205. Susan Stepney and Paul S. Andrews, eds. (2015b). Proceedings of the 2015 Workshop
on Complex Systems Modelling and Simulation, York, UK, July 2015. Luniver Press
(see p. 331).

206. Susan Stepney, Paul S. Andrews and Mark N. Read, eds. (2012). Proceedings of
the 2012 Workshop on Complex Systems Modelling and Simulation, Orleans, France.
Luniver Press (see p. 331).

207. Susan Stepney, Fiona Polack and Peter Welch, eds. (2008). Proceedings of the 2008
Workshop on Complex Systems Modelling and Simulation, York, UK. Luniver Press (see
p. 331).

208. Susan Stepney, Peter H. Welch, Paul S. Andrews and Adam T. Sampson, eds.
(2010). Proceedings of the 2010 Workshop on Complex Systems Modelling and Simu-
lation, Odense, Denmark. Luniver Press (see p. 331).

209. Susan Stepney, Peter H. Welch, Paul S. Andrews and Jon Timmis, eds. (2009). Pro-
ceedings of the 2009 Workshop on Complex Systems Modelling and Simulation, York, UK.
Luniver Press (see p. 331).

210. Susan Stepney, Peter Welch, Paul S. Andrews and Carl G. Ritson, eds. (2011). Pro-
ceedings of the 2011 Workshop on Complex Systems Modelling and Simulation, Paris,
France. Luniver Press (see p. 331).

211. Chong Sun and René Bernards (2014). “Feedback and redundancy in receptor tyr-
osine kinase signaling: relevance to cancer therapies”. Trends in Biochemical Sciences
39(10):465–474 (see p. 35).

212. J. Teles, C. Pina et al. (2013). “Transcriptional Regulation of Lineage Commitment
– A Stochastic Model of Cell Fate Decisions”. PLOS Computational Biology 9(8)
:e1003197 (see p. 263).

213. John Timmer (2010). “Keeping computers from ending science’s reproducibility”.
Ars Technica :http://arst.ch/d1p (see p. 7).

214. Jon Timmis, Kieran Alden, Paul Andrews, Ed Clark, Adam Nellis, Becky Naylor,
Mark Coles and Paul Kaye (2017). “Building confidence in quantitative systems
pharmacology models: An engineer’s guide to exploring the rationale in model
design and development”. CPT Pharmacometrics & Systems Pharmacology 6(3):156–
167 (see p. 193).

354 References

215. R. Turner (2007). “Toward Agile systems engineering processes”. Crosstalk :11–15
(see p. 27).

216. Dieter Vanderelst and Alan Winfield (2017). “Rational imitation for robots: the cost
difference model”. Adaptive Behavior 25(2):60–71 (see p. 37).

217. Dieter Vanderelst and Alan Winfield (2018). “An architecture for ethical robots
inspired by the simulation theory of cognition”. Cognitive Systems Research 48:56–
66 (see p. 37).

218. Marco Viceconti, Peter Hunter and Rod Hose (2015). “Big data, big knowledge: big
data for personalized healthcare”. IEEE Journal of Biomedical and Health Informatics
19(4):1209–1215 (see p. 36).

219. T. Vicsek (2002). “The bigger picture”. Nature 418:131 (see p. 264).

220. John Vlissides, James O. Coplien and Norman L. Kerth, eds. (1996). Pattern Lan-
guages of Program Design 2. Addison Wesley (see p. 13).

221. Colin Warwick (2009). “Everything you always wanted to know about SPICE*
(*But were afraid to ask)”. EMC Journal 82:27–29 (see p. 10).

222. D. J. Weatherall (2001). “Phenotype-genotype relationship in monogenic disease:
lessons from the Thalassemias”. Nature Reviews Genetics 2:245–255 (see p. 251).

223. Ken Webb and Tony White (2005). “UML as a cell and biochemistry modeling
language”. BioSystems 80:283–302 (see p. 113).

224. Herman A. van Wietmarschen, Heleen M. Wortelboer and Jan van der Greef
(2016). “Grip on health: A complex systems approach to transform health care”.
Journal of Evaluation in Clinical Practice 24(1):269–277 (see p. 41).

225. Stephen P. Wilson, John A. McDermid, Clive H. Pygott and David J. Tombs (1996).
“Assessing complex computer based systems using the goal structuring notation”.
ICECCS 1996: Second IEEE International Conference on Engineering of Complex Com-
puter Systems. IEEE Press, pp. 498–505 (see p. 193).

226. Alan F. T. Winfield, Christian Blum and Wenguo Liu (2014). “Towards an Eth-
ical Robot: Internal Models, Consequences and Ethical Action Selection”. Advances
in Autonomous Robotics Systems. Ed. by Michael Mistry, Aleš Leonardis, Mark
Witkowski and Chris Melhuish. Springer, pp. 85–96 (see p. 37).

227. Alan F. T. Winfield and Verena V. Hafner (2018). “Anticipation in Robotics”. Hand-
book of Anticipation: Theoretical and Applied Aspects of the Use of Future in Decision
Making. Ed. by Roberto Poli. Springer, pp. 1–30 (see pp. 37, 38).

228. M. J. Wiser, N. Ribeck and R. E. Lenski (2013). “Long-term dynamics of adaptation
in asexual populations”. Science 342:1364–1367 (see p. 334).

229. H. Xu, C. Schaniel, I. R. Lemischka and A. Ma’ayan (2010). “Toward a complete in
silico, multi-layered embryonic stem cell regulatory network”. Wiley Interdisciplin-
ary Reviews: Systems Biology and Medicine 2(6):708–733 (see pp. 262, 300).

230. P. Zandstra and G. Clarke (2014). “Computational Modeling and Stem Cell En-
gineering”. Stem Cell Engineering. Ed. by R. M. Nerem, J. Loring et al. Springer,
pp. 65–97 (see p. 251).

Index

A Bespoke Too Far, 141
acceptance test, 135
Agent Based Modelling, 63, 114, 210, 331
AlKan project, 333
Amateur Coding, 171
Amateur Science, 101, 103, 139
Analysis Paralysis, 140
Antipattern Template, 15
apoptosis, 57
Argue Instrument Fit For Purpose, 82, 83,

189
Argument Context, 199
Argument Modeller, 105, 107, 109, 112, 258
Argument Structuring Notation, 192, 205
Ask [Silly] Questions, 58, 111, 219
aspatial, 158
Assumption, 200
assumption, 51

Basic Domain Model, 21, 64, 133, 268, 281,
302

Basic Platform Model, 22, 73, 152, 280
Box Ticking, 115

cake, 50
Calibration, 19, 67, 78, 135, 155, 165, 283
cancer, 43, 46
Cartoon, 54, 62, 126, 267
Cartoon as Model, 142
Claim, 194
claim, 83, 189, 193
committed basal cell, 55, 58
consequence, 110
consequence, assumption, 51

continuous space, 158
correct, 23
CoSMoS, vii
CoSMoS Simulation Project, 44, 83, 93, 96,

235, 253, 295
Create Generic Argument, 202
criticality, 49, 123
Cutting Corners, 115

data
calibration, 135
unseen, 135
validation, 135

Data Dictionary, 67, 134, 273, 306
daughter cell, 58
Debug by Video, 169
Development Phase, 17, 70, 96, 279, 309
diagram, 334
differentiation, cell, 58
dimension, 158
dimensionless number, 168
Discovery Phase, 17, 45, 95, 255, 279, 297,

309
discrete space, 158
division, cell, 58
Divorced Argumentation, 116
Document Assumptions, 50, 51, 58, 68, 75,

107, 109, 258, 259, 265, 276, 281, 299,
307

Domain, 16, 18, 54, 60, 101, 125, 211, 261,
300, 327, 334

Domain Behaviours, 21, 64, 137, 211, 275,
306

355

356 Index

Domain Experiment Model, 20, 21, 67, 137,
275

Domain Model, 18, 19, 61, 131, 245, 266,
301

Domain Modeller, 16, 103, 258
Domain Scientist, 16, 61, 102, 258
Domain Specific Language, 194, 230, 331

Eclipse, 77, 164, 335
Embodied Simulation, 241
Engineered Domain, 95, 193, 240
Environment Orientation, 114, 212
epithelial cell, 58
Evidence, 197
Executable Domain Model, 142
Expected Behaviours, 56, 129, 264, 301
Experimenter role, 101
Exploration Phase, 17, 79, 97, 285, 315

fit for purpose, 23
FLAME, 337
fusion place, 66
!! Future, 47, 243

Glossary, 57, 130, 265
grid, 158
grid size, 159

hacking, 172
HAZOP, 179
House Style, 115, 116, 231
Hybrid Model, 64, 114, 213

Implementation Approach, 76, 77, 161, 282
incomplete pattern expansion, 79
Independent Simulation Implementor, 173
initialisation, 155, 167
instrumentation, 155

Java, 77
Justification, 201
justification, 110
justification, assumption, 51

luminal cell, 55, 58

MASON, 337
Metamodel, 128, 236, 334
Modelling Approach, 62, 72, 112, 267, 280
modelling concept, 65

Multi-domain Simulation, 94, 103, 244
Multi-increment Simulation, 44, 47, 49, 94,

114, 242
Multi-scale Simulation, 94, 245

NetLogo, 337
network, 158
Nyquist-Shannon sampling, 161

ODD Protocol, 223
oncogene, 46
One Size Fits All, 144
optional roles, 50
overview, 55

Partial Process, 44, 95, 232
Pattern Template, 14
Petri net, 63, 333
place, Petri net, 333
Platform Model, 18, 71, 151, 214, 279, 309
Post Hoc, 95, 234
Premature Implementation, 171
PRNG, 156
Program In the Answer, 73, 172, 218
Project Repository, 221
Proof by Video, 169, 184
Propagate Changes, 75, 79, 114, 164, 170
prostate, 43
Prototype, 49, 123, 215
pseudo-random number generator, 156

reason, assumption, 51
Refactor, 235
Research Context, 45, 70, 71, 79, 102, 121,

162, 255, 297
resources, 53
Results Model, 19, 80, 138, 176, 285, 315
rigour, 84
role, 48
role, scribe, 50
Roles, 49, 99, 109, 258
running example, 43

scope, 24, 60
Scribe role, 100
scribe role, 50
Seamless Development, 94, 216
Sensitivity Analysis, 80, 177, 286, 316
Shortcuts, 217
Simulation Behaviours, 22, 81, 181, 289
Simulation Engineer, 16, 105, 258

Index 357

Simulation Experiment, 17, 22, 76, 81, 179,
286, 316

Simulation Experiment Model, 20, 22, 74,
154, 281

Simulation Platform, 17, 19, 75, 76, 163,
176, 282, 310

Simulation Purpose, 46–48, 82, 123, 192,
257

Space Model, 74, 157, 281
spatial, 158
spatial dimension, 158
spatial grid, 158
spatial network, 158
Stakeholder representative role, 101
state machine, 64
stem cell, 55, 58
Stochasticity Model, 68, 74, 156, 281
Strategy, 196
strategy, 84, 189, 191
stromal cell, 55
Structured Argument, 23, 84, 191
success criteria, 53, 122

Take Notes, 220

testing, 162
Time Model, 74, 160, 281
token, Petri net, 333
transit amplifying cell, 55, 58
transition, Petri net, 333
Tweaking Code, 114, 185
Tweaking Experiments, 186

Uncritical Domain Modeller, 101, 103, 111,
145

Uncritical Domain Scientist, 101, 103, 111,
145

!! Unfit, 87, 202
Unfit, 87, 201
Use Generic Argument, 204

vacuole, 158
valid, 23
Version Control, 114
visual analytics, 183
Visualisation Model, 82, 183

walk away, 122
well-mixed, 158

