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Abstract—This paper presents the use of Lévy flight, a bio-
inspired algorithm, to efficiently and effectively locate targets
in underwater search scenarios. We demonstrate how a novel
adaptation strategy, building on the Firefly optimization al-
gorithm, substantially improves Lévy flight performance. The
adaptation strategy represents a swarm intelligence approach,
the distribution patterns governing robot motion are optimized
in accordance with the distribution of targets in the environment,
as detected by and communicated between the robots them-
selves. Simulation experiments contrasting the performance of
the present Lévy flight and two other search strategies in both
sparse and clustered distributions of targets are conducted. We
identify Lévy flight as exhibiting the best performance, and this is
improved with our adaptation strategy, particularly when targets
are clustered. Finally, Lévy flight’s superior performance over
the alternative strategies examined here is empirically confirmed
through deployment on real-world underwater swarm robotic
platforms.

I. INTRODUCTION
Unmanned underwater exploration is instrumental in investi-

gating biological species, monitoring pollution, implementing
disaster warning systems, and search-rescue missions. An au-
tonomous robot equipped with sensing peripherals is deployed
in the underwater environment to locate targets interest, i.e.,
sea mines, black boxes from downed aircraft or ships, or
hazardous chemicals. In a very large environment locating
targets through use of a single AUV (Autonomous Underwater
Vehicle) is inefficient, and a swarm approach comprising
multiple AUVs operating and communicating in parallel can
succeed more quickly. A swarm of robots essentially encom-
pass a wireless mobile sensor network, performing distributed
sensing in a dynamic environment.

Animals and insects perform foraging activities when
searching for food sources in nature. With no knowledge of the
environment and a limited sensory range, biological creatures
are left with little alternative to a random walk when foraging.
With limited energy supplies, the process of evolution and
natural selection has lead to animals that optimize their random
walk strategies.

There are parallels with underwater exploration: the envi-
ronment is typically unknown, sensory range is limited, exact
localization (e.g. GPS) is often unavailable, and it is diffi-
cult to implement reliable long-range global communication

channels. At best, AUVs are initialised with a random-walk
pattern that can only be optimised when sufficient information
concerning the environment is acquired.

Fig. 1. Cocoro ‘Lily’ AUV platform

Previous work has investigated bio-inspired random walk
implemented on robots performing search in a 2-dimensional
environment [6]. An artificial repulsive potential field was
applied to improve robot dispersion following deployment
and increase their separation in the environment. This work,
however, assumed that targets were always sparely distributed.
For many real-world search applications this is not the case:
sea predators forage for prey which are clustered as a group,
such as schools of fish. Underwater mines are clustered in
fields, not uniformly distributed across oceans. As social
creatures, human victims in disaster areas are also typically
found in groups. The previous work was restricted to two
dimensions, and did not consider cooperation and communi-
cation amongst robots. In this work, we demonstrate how a
bio-inspired searching mechanism can be supplemented with
a strategy allowing the algorithm to adapt to the distribution
of targets in the environment, as detected and communicated
between robots. Robots following our search strategy move in
a particular direction for a set period of time, but the durations
of these movements are influenced by encountering targets, or
fellow robots who themselves have. The adaptation strategy
operates at the collective level, exploiting local communication



to share adaptive parameters and turning competition or indif-
ference into beneficial cooperation. This improvement scales
with additional robots, as opportunities for communication
are increased. It is important to emphasise that the present
work is conducted in 3D underwater (both simulated and
real-world) environments, furthering the challenge. In these
environments in particular a communication-based cooperative
strategy is beneficial, as global coordination and localization
are problematic.

This work in identifying optimum random search algorithms
was borne from the ANGELS [7] AND CoCoRo [8] Euro-
pean Union (EU) project. These projects are motivated by
scenarios wherein multiple AUVs cooperate in searching for
phenomenon of interest forms some constituent in a larger goal
of underwater chemical leakage monitoring, locating metal
objects, or docking for reconfigurability [9,10].

In this paper, a 3D underwater swarm simulation platform
developed within CoCoRo is used for investigating and com-
paring the feasibility and the efficiency of several random
search algorithms. Simulation holds several advantages for
this endeavour, simplifying the means and accuracy of exper-
imental observation, facilitating many repeats of a stochastic
experiment, and providing a platform for rapid prototyping and
assessment of search strategies. Simulation-based evaluation
is followed by deployment of several search strategies in a
real-world robotic setting. The experimental underwater swarm
robotic platform from the CoCoRo project, named ‘Lily’
(figure 1), is used in the experimental aquarium for performing
simple target location.

The rest of this paper is structured as follows. The Secs. II
and III describe theoretical approaches underlying the bio-
inspired Lévy flight algorithm and optimization strategy.
Secs. IV and V are devoted to implementation and experi-
ments. Finally Sec. VI concludes this work.

II. LÉVY FLIGHT RANDOM SEARCH

Lévy flight is a well known biological random search.
A Lévy flight random walk pattern uses a Lévy probability
distribution that has an infinite second moment, which is ad-
vantageous when targets are sparsely and randomly distributed
[1,3,4,5].

The Lévy probability distribution has the following form
[3,4,12]:

Pα,γ (l) =
1

2π

∫ ∞

−∞
e−γ|q|αcos(ql)dq (1)

The distribution is symmetrical around l = 0, γ represents
the scaling factor and α determines the shape of the distribu-
tion. α takes a value between 0 and 2, and determines the shape
of the distribution’s tail: larger values of α provide shorter tail
regions. An α value of 2 shapes the Lévy distribution into a
Gaussian distribution. By fixing γ = 1, for large values of l,
(1) can be approximated by [3,4]:

Pα(l)≈l−(α+1) (2)

Viswanathan et al. [4] derived several analytical solutions
to optimize the Lévy flight’s parameters. They note that given
a priori knowledge about the distribution of target sites, and
if sensing is limited, an optimal strategy for a forager is to set
α = 1.

III. OPTIMIZATION ALGORITHM

We review here several well known nature-inspired evolu-
tionary optimization strategies.

In Ant Colony Optimization (ACO) [14], ants employ
stigmergy by distributing a chemical pheromone in the envi-
ronment for establishing shortest path between their nest and
the food source. However, implementing a similar mechanism
in an underwater context is problematic; chemical marking
will be diffused underwater. An alternative such as local
communication is easier implement underwater than using
the environment for sharing the information among swarm
members.

In Particle Swarm Optimization (PSO) [15], a population
of particles is maintained which undertake search and/or
exploration of a space. Particles (represented as an agent)
maintain positions and velocities within a multi-dimensional
search space, and update their motion based on the quality
of their position in the environment, and the state of the
swarm. PSO employs global communication to find the best
location occupied by any member during the search process.
This communication requirement renders PSO unsuitable for
underwater exploration, where global communication and lo-
calization is problematic.

There are also two well known algorithms inspired by trop-
ical firefly flashing behaviors. Yang developed an optimization
algorithm based on the attractiveness of the flashing fireflies
in 2010 [16]. The metaheuristic algorithm was then used
for finding optimal solutions in a multimodal optimization
problem. A second firefly-inspired algorithm provides syn-
chronization of oscillators has found wide-spread application
in communication network applications [17,18].

A firefly’s flashing light is generated by a bioluminescence
process, and attracts both prey and mates. A firefly’s apparent
attractiveness is proportional to the intensity of light it gener-
ates, thus for any two flashing fireflies, the dimmer firefly will
move towards the brighter one. Fireflies have a limited range
for this form of communication, as light intensity decreases
with distance from the source, and the phenomenon such as
fog absorb the light. As such, fireflies are known to perform
random walks around the environment when outside of their
neighbours communication range.

The Firefly Optimization (FO) algorithm, which mimics the
attracting behavior of fireflies, is as follows [16]:

• Step 1: Initialize population with random positions
• Step 2: Define light absorption coefficient µ
• Step 3: Light intensity Ii at xi is determined by f(xi)
• Step 4: Do for each firefly in swarm

– Find other fireflies in communication distance
– if the light intensity of other firefly is higher, move

towards its position by using the movement equation



– Update the light intensity
• Step 5: Repeat steps 3-4 until termination condition is

reached
The movement of firefly i is attracted to the other with

higher light intensity firefly j by using the equation:

ˆxi(n+ 1) = ˆxi(n)+ β0e
−µr2ij (x̂j − x̂i)+ b(rand− 0.5) (3)

where:
x̂i = the position of the firefly i
x̂j = the position of the firefly j
β0 = attractiveness of the firefly j
µ = light absorption coefficient
rij = distance between firefly i and j
b = weight coefficient [0:1]

The second term of the movement equation represents
attraction, and the third term is randomization with b rep-
resenting the random gain parameter. In this original firefly
optimization algorithm, uniform distribution is applied to
generate random movement, in case the firefly is outside
communication range with others, thus results zero for the
second term.

We have generated a novel swarm algorithm for exploring
an environment that incorporates social interaction, but without
the need for global communication or stigmergy. Our algo-
rithm constitutes individual agents performing a Lévy flight
exploration, endowed with a short term memory representing
their individual past experiences. This memory is defined as
attractiveness and is used for local communication between
agents when in communication range. Memory and commu-
nication are used to modulate the properties of the exploration
pattern of other AUVs. In this manner it constitutes a “swarm
level” cognitive layer that reflects the constitution of the swarm
and the configuration of the environment. The algorithm is
based on a modification of the original FO algorithm [16].

The first step of the modification is to choose the attrac-
tiveness parameter. An AUV’s attractiveness is defined as the
period since it last found a target; it increases every time
a target is located and decays with time. The attractiveness
variable influences an AUV’s velocity as follows:

vn+1 = wivn − cβ (4)

where:
wi = inertia coefficient
vn = current velocity of the robot
β = attractiveness of the firefly
c = weight coefficient

The second step of the modification entails adopting a
Lévy flight random walk to control motion. The random
motion element of the FO is simply replaced by the random
number from the Lévy distribution generator. The modified
FO algorithm is as follows:

• Step 1: Initialize population with random positions and
constant velocities

• Step 2: Evaluate - compute attractiveness variables
– if the robot locates a target, increase the attractive-

ness value
– if the robot does not see any target, apply linear

decay to the attractiveness value
• Step 3: Do if the robot agent is in communication range

with other nearby robot
– Step 3.1: compare the attractiveness variable with

neighboring robots
– Step 3.2: move towards the robot that has higher

attractiveness
– Step 3.3: update attractiveness and velocity

• Step 4: Repeat steps 2-3 until termination condition is
reached

In combination with the movement equation in the next sec-
tion, the proposed optimization algorithm can scale the pattern
of the random walk relative to the distribution of the found
targets. After locating a target an AUV’s average forward
velocity is decreased, thereby increasing the likelihood that
it locates other targets clustered nearby.

The proposed algorithm also influences other robots in the
swarm, negotiating and to recalculating the attractiveness, that
become an adaptation parameter for scaling the random walk,
thus improving the performance in collective level.

Hence, at the collective level, this combined optimization al-
gorithm and bio-inspired random walk becomes more adaptive
to distribution of targets in space. It is also important to note
that the algorithm performs best if and AUV’s communication
range (or ‘attracting range’) is further than its sensory range
(for recognizing the availability of a target), as is the case on
the CoCoRo ‘Lily’ AUV.

IV. IMPLEMENTATION FRAMEWORK

One main goal of this work is to provide a generic im-
plementation framework for the Lévy flight random walk in
underwater robotic platforms, and demonstrate this both in
simulation and in real robots.

A. Lévy Distribution Generator
A numerical approach for generating random numbers based

on Lévy probability distribution is required to generate the
length of the walk/swim for each robot. Such an algorithm was
introduced in [12]. This algorithm requires two independent
random variables a and b which have Gaussian distribution.
Furthermore, a nonlinear transformation function is intro-
duced:

m =
a

|b|
1
α

(5)

within the nonlinear transformation, the sum of variables with
an appropriate normalization

zn =
1

n
1
α

n∑

k=1

mk (6)



Fig. 2. State diagram of the controller. Here, TL is the time delay generated
from the Lévy distribution generator, and TU is the time delay generated from
the Uniform distribution generator.

converges to the Lévy probability distribution with larger n
(the usual value of n is 100 [12]).

(a) (b)

Fig. 3. Output of the Lévy generator (a) Oscillator output. (b) Probability
distribution.

The output of the approximated random number generator
is a Pulse Width Modulation (PWM) oscillator that has duty
cycle proportional to the Lévy distribution. This PWM output
is applied to control the activation of the AUVs propellers,
providing forward motion. The propellers are activated during
the positive phase for a length of time based on the Lévy
random number generator. During the negative (zero) phase the
AUV changes its heading (0-360 degrees) based on a uniform
distribution.

B. Swim-length generator

The time duration of forward propeller’s activation is
changed in every random walk phase according to the Lévy
distribution. However, as described below, the motion equation
of an AUV platform is non linear, as such actual swim
length attained has a different probability distribution than the
generated oscillator.

The motion equation of the ‘Lily’ AUV is derived from the
drag force equation:

m.a =
1

2
ρ.v2.A.Cd (7)

where m is the mass of the AUV, a is the acceleration, ρ
is the water density, v is the velocity, A is the surface area of
the frontal part of the vehicle, and Cd is the drag coefficient.
Empirical data has revealed 1

2ρ.A.Cd to be 0.562, and m to
be 440g [8].

By applying maximum thruster force (measured at 0.01N
[8]), the motion equation of the AUV is a non-linear first order
differential equation:

dv

dt
+ 1.4v2 = 0.025 (8)

The non-linear motion equation of the AUV has an expo-
nential solution. Solving the differential equation by using
an online numerical method on the small AUV platform is
computationally expensive. A less computationally expensive
offline solution, such as look-up table, can be used instead.
Another alternative method is by eliminating the non-linear
part of the motion behavior of the AUV, which disappears
after the robot enters the terminal velocity condition. It is
also shown in the figure that the sum of the non-linear part is
constant if the thrusting force of the propeller is also constant.
Nonetheless, the non-linear error is proportional to the change
in the thrusting force. The validity of the alternative method
can be proved analytically by using a convolution operation;
the proportional error does not change the probability distri-
bution. Furthermore, it has been biologically established that
some error in the Lévy flight is acceptable with respect to
successful foraging activity [5].

(a) (b)

Fig. 4. Dynamic response of the ‘Lily’ AUV (a) Velocity vs Time. (b)
Distance vs Time.

Fig. 4 shows that terminal velocity is reached after 10s,
having travelled 50cm. Therefore, by adding 10s of offset
to the generated random variable, the non-linear part of
the motion can be eliminated. However, this solution is not
feasible for experiments in small swimming pool environments
or with experimental aquariums of limited size. Thus, the
look-up table solution is adopted here instead. Non-linear
motion also occurs with respect to vertical movement (e.g.
diving), however the combination of reliable data provided
from a pressure sensor and a diving control algorithm [8] can
eliminate the non-linear component of vertical movement.



C. Underwater Robotic Simulation Platform

The experimental simulation is implemented in CoCoRo’s
3D underwater swarm robotic simulator (CoCoRoSim), which
is implemented in Netlogo 3D. CoCoRoSim simulates small
to medium sized underwater environments, and emulates both
sensor/actuator functionalities of the ‘Lily’ platform, and the
physical properties (water density and damping, gravity, etc)
of the underwater environment.

A large simulated environment is necessary for implement-
ing swarm robotic experiments with many AUVs. As such
an environment representing 8×8×1.5 meters (height, width,
depth) is prepared. Static robots that transmit specific messages
over a particular range represent targets of interest that must
be located by the swarm. In order to simplify observation,
targets change color when located by members of the swarm.

V. MULTI-ROBOTIC RANDOM SEARCH EXPERIMENTS

A. Simulation-based experiments

We perform simulation-based experiments to compare the
performance of several exploration algorithms for varying
numbers of robots in the swarm and differing distributions of
targets in the environment (sparsely distributed or clustered).
In addition to a Lévy flight algorithm and Lévy flight comple-
mented with adaptation provided through the Firefly algorithm
outlined above, random walks based on Gaussian and Uniform
distributions are investigated. As these are stochastic algo-
rithms data presented here are representative of 100 individual
simulation executions.

Fig. 5. Locating sparsely distributed targets with a swarm of 20 robots.

Fig. 6. Locating clustered targets with a swarm of 20 robots.

The first experiment demonstrates the applicability of Lévy
flight in locating targets in 3D underwater environments. Here,
Lévy flight is compared with Gaussian and Uniform random
walks, which employ normal and uniform distributions in
selecting the length of walks/swims in each phase.

Fig. 7. Number of robots near clusters over time. The average number is
0.29 for the Lévy flight and 0.42 after added with the modified FO algorithm.

Fig. 5 demonstrates that Lévy flight outperforms the other
random walk strategies by locating all the targets deployed
in an environment in the least time. The other compared
algorithms are Gaussian and Uniform random walk. The
selected Gaussian random walk has zero mean for exploiting
walk-length near-by the robot position and has large variance
(which is equal to the size of the environment) for generating
longer jump. The Uniform random walk is set to have half-
length of the environment for the average walk-length. In
this experiment, targets are sparely distributed throughout
the environment. Lévy flight’s performance is due to the
infinite second moment of its distribution, which results in
less frequent long jumps to locate targets than Gaussian or
Uniform distributions. Fig. 6 demonstrates similar trends when
targets are clustered near one another, and further highlights
the additional performance increase bestowed upon Lévy flight
by introducing the modified FO strategy (see Sec. III).

These results show that the Gaussian distribution has an
improved performance in clustered targets than the Uniform
distribution, but not in sparsely distributed targets. Lévy flight
is more robust to the particular distribution of the targets,
offering the best performance in both cases.

Fig. 7 shows time-series data of the number of robots
located near clusters for Lévy flight and Lévy flight added with
the modified FO (Levy+) exploration strategies. The average
number of robots near the clusters increases from 0.29 to 0.42
after applying the fireflies inspired adaptation algorithm. This
experiment shows that the modified FO algorithm substantially
impacts the adaptability and the collective behavior of all
robots, allowing them to remain in the vicinity of targets
for longer, and reducing the exploration time for locating all
clustered targets.

It is also shown in Fig. 8 that the optimization algorithm
significantly decreases the time required to locate all targets,
and the benefit is more apparent for greater numbers of targets.



Fig. 8. Targets searching experimental result with 20 robots. Required time
vs remaining targets

Fig. 9. Targets searching experimental result . Exploration time vs number
of robots

In search and rescue scenarios the reduction in average time
to locate all targets can be of huge benefit, particularly if
lives are at risk. The results of Fig. 9 also highlight that the
optimization algorithm has greater impact when larger swarms
are deployed. This is likely due to the increases opportunity for
communication amongst robots. Without the collaboration that
the optimization algorithm provides, increasing the number of
robots improves competition among robots and reduces the
benefit of additional robots.

B. Real robot experiment
This section describes the deployment of several exploration

strategies in real-world robots, in a medium sized aquarium of
dimensions 2.5×2.5×1.5× meters.

Fig. 10. ‘Lily’ underwater swarm platform: dimensions and locomotion.

Fig. 11. ‘Lily’ underwater swarm platform: Sensing angle.

The proposed algorithm is implemented on the ‘Lily’ Co-
CoRo underwater swarm platform. ‘Lily’ is a small AUV of
13x10x7 cm dimensions. Horizontal motion is provided by two
differential propellers on the lower left and right (see Fig. 10),
and a buoyancy pump provides vertical motion.

‘Lily’ AUV uses blue-light based optical systems for both
sensing and communication. The blue light optical sensor
can perform passive sensing for measuring relative distance
with other robots, and also to accomplish active sensing
for detecting some obstacles in underwater environment. In
the ‘Lily’ AUV, the maximum range is 70cm for passive
sensing and communication, and 15cm for active sensing.
The maximum bitrate of the optical communication system
is 100kbps. The technical specification of the sensing and
communication fulfill the requirement of the FO algorithm
implementation, that specify longer range for communication
than for sensing (attracting range > target sensing range).

Fig. 12. Real robot experiment with ’Lily’ Cocoro platform (rear view)

During the real robot experiments, five robots are deployed
into the aquarium to find three passive robots which are
sparsely distributed. 10 trials of experiments are done for
Uniform, Gaussian, and Lévy flight random walk strategies.
Given the limited number of Lily robots available, a clustered
targets experiment can not be performed. A simple implemen-
tation of the FO algorithm for robot aggregation behavior is
implemented separately and tested within the real robot, in
order to verify the feasibility of implementing the adaptation
capability by using FO algorithm.

Table I demonstrates that, as with the simulation-based
results, the Lévy flight strategy out-performs Gaussian and



Type of random walk Average exploration time
Uniform 357.3 s
Gaussian 393.9 s

Lévy flight + 271.3 s

TABLE I
RESULT FROM REAL ROBOT EXPERIMENT.

Uniform distribution random walk strategies in locating the
targets. In this case targets were located in 25% less time than
the Uniform walk, and 31% less time than the Gaussian walk.

VI. CONCLUSION AND FUTURE WORK

In our experiments the proposed adaptive random search-
ing algorithm is implemented and investigated for collective
underwater exploration scenario. The proposed algorithm is
the Lévy flight algorithm that is scaled adaptively by using a
modified firefly optimization algorithm.

The result of the experiments with the 3D underwater multi
robotic simulator and with the ‘Lily’ AUV robot show that the
performance of the proposed bio-inspired algorithm outper-
forms Gaussian- and Uniform-distribution based random walk
strategies. Simulation experiments also confirm that the added
adaptation algorithm improves the performance substantially
when targets are located in clusters in the environment. Such
a clustering is typical of targets in the natural world, such
as prey, human victims following a disaster, and sea mines.
The added adaptation method also accelerates the location
of targets during the earlier stages of search, and further
improves performance when additional robots are deployed
in the environment.

From practical point of view, the experiment with the ‘Lily’
AUV demonstrates the feasibility of implementing the Lévy
flight and firefly algorithm to a simple and small underwater
robotic platform.

The investigated algorithm shows promise, and is ready for
deployment in a real-world underwater exploration problem
where knowledge of the environment is limited. For future
work, the combination of the optimized bio-inspired algorithm
and a 3D simultaneous localization and mapping (3D SLAM)
method represents a very promising idea.
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